
PERFORMANCE(U) CARNEGIE-MELLON UNIV PITTSBURGH PA
ROBOTICS INST M ANNARATONE ET RL JUL 87

UNCLASSIFIED CMU-RI-TR-87-BiS NB839-85-C-Si34 F/G 12/6 NL

E0 IhhhhhhOEShIjlo
EhhmhElhEmmohE
ENONSESE

oM WJ.0

-.2 11111=4 H

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

The Warp Computer:
Architecture, Implementation, and Performance

Marco Annaratone, Emmanuel Arnould, Thomas Gross,
H. T. Kung, Monica Lam, Onat Menzilcioglu, Jon A. Webb

CN-RI-TR-87-18

/2

The Warp Computer:
Architecture, Implementation, and Performance

Marco Annaratone, Emmanuel Arnould, Thomas Gross,
H. T. Kung, Monica Lam, Onat Menzilcioglu, Jon A. Webb

CMU-RI-TR-87-18

DTC
Department of Computer Science L LE CTE

The Robotics Institute S1D
Carnegie Mellon University EP 1 11987

Pittsburgh, Pennsylvania 15213

July 1987 A

fo P'ublicen hQs e92 0pr1 -' on Os,2"- nd s T. °ed

Copyright © 1987 Carnegie Mellon University

The research was supported in part by Defense Advanced Research Projects Agency (DoD) monitored by the Space
and Naval Warfare Systems Command under Contract N00039-85-C-0134, and in part by the Office of Naval
Research under Contracts N00014-87-K-0385 and N00014-87-K-0533.

Warp is a service mark of Carnegie MeUon University. uNIX is a trademark of AT&T BeU Laboratories. Sun-3 is a trademark of Sun
Microsystems.

To appear in IEEE Transactions on Computers for a special issue on supercomputers.

87_ 8 074

Unclassified
SECURITY CLASSIVICAIIO4 Or rI Pet~t '"'ho Dore Ente,.g,

REPORT DOCUMEN4TATION PAGE READ INSTRUCTIONS

XEPORT NtUMUERt GOVI ACCESSION NO 3. AECIPIENT'S CATALOG NUMBER
CMU-RI-TR-87-18

4. TITLE (and Swbrla. 5. TYPE or REPORT a PERIOD COVERED
The Warp Computer: Architecture, Implementation, Interim

and PrformnceS6 PERFORMING ORG. REPORT HUMMER

1AUTa.OR(e) 9. CONTRACT OR GRANT muMSeR(.Jo
DARPA N00039-85-C-0134Marco Annaratone, Emmnanuel Arnould, Thomas Gross, ONR N00014-87-K-0385H.T. Kung, Monica Lam, Onat Menzilcioglu, Jon A. Webb N00014-87-K-0533

S. PERFORMING ORGANIZATION NAME AND ADDRESS 30. PROGRAM EL IEMT. PROJ ECT. TASK(

Carnegie Mellon University AE OKUI USA
The Robotics Institute
Pittsburgh,_PA__15213

It. CONTROLLING4 OFFICE NAME AND ADDRESS ~ftCRPj, 4 ATE

NUMBER OF PAGES

UILMOTRING AGENCY NAME & AOORESS(ll differeJ COauVOIlnS Office) IS. SECURITY CL.ASS. (of Whe report)

Space and Naval Warfare Systems Command Unclassified
111,L DECLASSIF3CATION/DOWNORAAING

SCHEDULE

16. tiMSTRIBUTION STATEMENT (01*0ae Report)

Approved for public release; distribution unlimited

ST. DIST RIBUTION4 STATEMENT (of the obe,,aot entered 1a Blo..h 20. It differentl kow Report)

Approved for public release; distribution unlimited

IS. SUPPLEMENTARY NOTES

19. Key WORDS (Connuo on "re., ee J fiecosomAind ids"~Il by block nmn'S.)

M0 ASTRACT (Conwom. an eese, side It nieeI7 and 8deat80Y &V 6109k "umber)
The Warp machine is a systolic array computer of linearly connected cells, each of
which is a programmable processor capable of performing 10 million floating-point
operations per second (10 MFL0PS). A typical Warp array includes 10 cells, thus
having a peak computation rate of 100 MFLOPS. The Warp array can be extended to
include more cells to accommodate applications capable of using the increased compu-
tational bandwidth. Warp is integrated as an attached processor into a UNIX host
system. Programs for Warp are written in a high-level language supported by an
optimizing compiler.

DD , F:."7 1473 coIroor I NOV 49is asoLEvg Unclassified
S/ O0201-601seCURITY CILASS CATiON Of rWIS PA GE~hg 9NOR 0 0

(20 cont'd)

The first 10-cell prototype was completed in February 1986; delivery of production
machines started in April 1987. Extensive experimentation with both the prototype
and production machines has demonstrated that the Warp architecture is effective in
the application domain of robot navigation, as well as in other fields such as
signal processing, scientific computation, and computer vision research. For these
applications, Warp is typically several hundred times faster than a VAX 11/780 class
computer.

This paper describes the architecture, implementation and performance of the Warp
machine. Each major architectural decision is discussed and evaluated with system,
software and application considerations. The programming model and tools developed
for the machine are also described. The paper concludes with performance data for
a large number of applications.

Table of Contents
I Introduction 1
2 Warp system overview 1
3 Warp array architecture 3
4 Warp cell architecture 4

4.1 Inter-cell communication 4
4.1.1 Programmable delay 5
4.1.2 Flow control 5
4.1.3 Input control 6
4.1.4 Randomly accessible queues 7
4.1.5 Queue size 8

4.2 Control path 8
4.3 Data path 9

4.3.1 Floating-point units 9
4.3.2 Crossbar 9
4.3.3 Data storage blocks 9
4.3.4 Address generation 9

5 Warp cell and IU implementation 10
6 Host system 12

6.1 Host I/O bandwidth 13
6.2 Host software 14

7 Programming Warp 14
7.1 The W2 language 14
7.2 Problem partitioning 15

7.2.1 Input partitioning 15
7.2.2 Output partitioning 15
7.2.3 Pipelining 15

8 Evaluation 17
8.1 Performance data 17
8.2 Architectural Alternatives 20

8.2.1 Programming model 20
8.2.2 Processor 11O bandwidth and topology 20
8.2.3 Processor number and power 22

9 Conclusions 23

Irv4

%''t . "

ii

List of Figures
Figure 1: Warp system overview 2
Figure 2: Warp cell data path 2
Figure 3: Compile-time flow control 6
Figure 4: Merging equal-length loops with an offset: (a) original loops, (b) execution 7

trace, and (c) merged loop.
Figure 5: Merging loops with different lengths: (a) original loops, (b) execution trace, 8

and (c) merged loop.
Figure 6: Host of the Warp machine 12
Figure 7: Example program 16
Figure 8: Performance distribution of a set of 72 W2 programs 18

H

List of Tables
Table 1: Implementation metrics for Warp cell 11
Table 2: Implementation metrics for IU 11
Table 3: Measured speedups on the wire-wrapped prototype Warp machine 19
Table 4: Performance of specific algorithms on the wire-wrapped prototype Warp 21

machine

-"- "

Abstract

3The Warp machine is a systolic array computer of linearly connected cells, each of which is a programmable
processor capable of performing 10 million floating-point operations per second (10 MflOPS). A typical Warp
array includes 10 cells, thus having a peak computation rate of 100 MFLOPS. The Warp array can be extended to
include more cells to accommodate applications capable of using the increased computational bandwidth. Warp is
integrated as an attached processor into a uJNix host system. Programs for Warp are written in a high-level language
supported by an optimizing compiler.

The first 10-cell prototype was completed in February 1986; delivery of production machines started in April 1987.
Extensive experimentation with both the prototype and production machines has demonstrated that the Warp
architecture is effective in the application domain of robot navigation, as well as in other fields such as signal
processing, scientific computation, and computer vision research. For these applications, Warp is typically several
hundred times faster than a VAX 11/780 class computer.

This paper describes the architecture, implementation and performance of the Warp machine. Each major
architectural decision is discussed and evaluated with system, software and application considerations. The
programming model and tools developed for the machine are also described. The paper concludes with performance
data for a large number of applications.

1 Introduction
The Warp machine is a high-performance systolic array computer designed for computation-intensive

applications. In a typical configuration, Warp consists of a linear systolic array of 10 identical cells, each of which
is a 10 MFLOPS programmable processor. Thus a system in this configuration has a peak performance of 100
MFLOPS.

The Warp machine is an attached processoi to a general purpose host running the UNIX operating system. Warp
can be accessed by a procedure call on the host, or through an interactive, programmable command interpreter called
the Warp shell [8]. A high-level language called W2 is used to program Warp; the language is supported by an
optimizing compiler [12,23].

The Warp project started in 1984. A 2-cell system was completed in June 1985 at Carnegie Mellon. Construction

of two identical 10-cell prototype machines was contracted to two industrial partners, GE and Honeywell. These
prototypes were built from off-the-shelf parts on wire-wrapped boards. The first prototype machine was delivered

by GE in February 1986, and the Honeywell machine arrived at Carnegie Mellon in June 1986. For a period of
about a year during 1986-87, these two prototype machines were used on a daily basis at Carnegie Mellon.

We have implemented application programs in many areas, including low-level vision for robot vehicle
navigation, image and signal processing, scientific computing, magnetic resonance imagery (MRI) image
processing, radar and sonar simulation, and graph algorithms [3,4]. In addition, we have developed a significant
low-level image library of about one hundred routines [17]. Our experience has shown that Warp is effective in
these applications; Warp is typically several hundred times faster than a VAX 11/780 class computer.

Encouraged by the performance of the prototype machines, we have revised the Warp architecture for re-
implementation on printed circuit (PC) boards to allow faster and more efficient production. The revision also
incorporated several architectural improvements. The production Warp machine is referred as the PC Warp in this

paper. The PC Warp is manufactured by GE, and is available at about $350,000 per machine. The first PC Warp
machine was delivered by GE in April 1987 to Carnegie Mellon.

This paper describes the architecture of the Warp machine, the rationale of the design and the implementation,
and performance measurements for a variety of applications. The organization of the paper is as follows. We first
present an overview of the system. We then describe how the overall organization of the array allows us to use the
cells efficiently. Next we focus on the cell architecture: we discuss each feature in detail, explaining the design and
the evolution of the feature. We conclude this section on the cell with a discussion of hardware implementation
issues and metrics. We then describe the architecture of the host system. To give the reader some idea of how the
machine can be programmed, we describe the W2 programming language, and some general methods of partitioning
a problem onto a processor array that have worked well for Warp. To evaluate the Warp machine architecture, we
present performance data for a variety of applications on Warp, and a comparison of the architecture of Warp with
other parallel machines.

2 Warp system overview
There are three major components in the system- the Warp processor array (Warp array), the interface unit (1U.),

and the host, as depicted in Figure 1. The Warp array performs the computation-intensive routines such as low-level
vision routines or matrix operations. The IU handles the input/output between the array and the host, and can
generate addresses (Adr) and control signals for the Warp array. The host supplies data to and receives results from
the array. In addition, it executes those parts of the application programs which are not mapped onto the Warp
array. For example, the host may perform decision-making processes in robot navigation or evaluate convergence
Criteria in iterative methods for solving systems of linear equations.

2

Ad-rI
INTERFACE L

UNIT r

-- ... --

WARP PROCESSOR ARRAY

Figure 1: Warp system overview

The Warp array is a linear systolic array with identical cells called Warp cells, as shown in Figure 1. Data flow
through the array on two communication channels (X and Y). Those addresses for cells' local memories ana :ol
signals that are generated by the IU propagate down the Adr channel. The direction of the Y channel is statically
configurable. This feature is used, for example, in algorithms that require accumulated results in the last cell to be
sent back to the other cells (e.g., in back-solvers), or require local exchange of data between adjacent cells (e.g., in
some implementations of numerical relaxation methods).

XQ

Data
Mem Cross M

32K x 32Ba2Kx3

Address
• Cross

Figure 2: Warp cell data path

Each Warp cell is implemented as a programmable horizontal micro-engine, with its own microscqucnccr and
program memory for 8K instructions. The Warp cell data path, as depicted in Figure 2, consists of a 32-bit
floating-point multiplier (Mpy) and a 32-bit floating-point adder (Add), two local memory banks for resident and

3

temporary data (Mem), a queue for each inter-cell communication channel (XQ, YQ, and AdrQ), and a register file
to buffer data for each floating-point unit (AReg and MReg). All these components are connected through a
crossbar. Addresses for memory access can be computed locally by the address generation unit (AGU), or taken
from the address queue (AdrQ).

The Warp cell datapath is similar to the datapath of the Floating Point Systems AP-120B/FPS-164 line of
processors [9], which are also used as attached processors. Both the Warp cell and any of these FPS processors

contain two floating-point units, memory and an address generator, and are oriented towards scientific computing
and signal processing. In both cases, wide instruction words are used for a direct encoding of the hardware
resources, and software is used to manage the parallelism (that is, to detect parallelism in the application code, to use
the multiple functional units, and to pipeline instructions). The Warp cell differs from these earlier processors in
two key aspects: the full crossbar of the Warp cell provides a higher intra-cell bandwidth, and the X and Y channels
with their associated queues provide a high inter-cell bandwidth, which is unique to the Warp army architecture.

The host consists of a Sun-3 workstation that serves as the master controller of the Warp machine, and a
VME-based multi-processor external host, so named because it is external to the workstation. The workstation
provides a UNIX environment for running application programs. The external host controls the peripherals and
contains a large amount of memory for storing data to be processed by the Warp array. It also transfers data to and
from the Warp array and performs operations on the data when necessary, with low operating system overhead.

Both the Warp cell and IU use off-the-shelf, TrL-compatible parts, and are each implemented on a 15"x17"
board. The entire Warp machine, with the exception of the Sun-3, is housed in a single 19" rack, which also
contains power supplies and cooling fans. The machine typically consumes about 1,800 W.

3 Warp array architecture
In the Warp machine, parallelism exists at both the array and cell levels. This section discusses how the Warp

architecture is designed to allow efficient use of the array level parallelism. Architectural feitures to support the cell

level parallelism are described in the next section.

The key features in the architecture that support the array level parallelism are: simple topology of a linear array,
powerful cells with local program control, large data memory for each cell, and high inter-cell communication
bandwidth. These features support several problem partitioning methods important to many applications [21, 221.
More details on the partitioning methods are given in Section 7.2, and a sample of applications using these methods

are listed in Section 8.

A linear array is easier for a programmer to use than higher dimensional arrays. Many algorithms in scientific
computing and signal processing have been developed for linear arrays [18]. Our experience of using Warp for
low-level vision has also shown that a linear organization is suitable in the vision domain as well. A linear array is
easy to implement in hardware, and demands a low external I/O bandwidth since only the two end-cells
communicate with the outside world. Moreover, a linear array consisting of powerful, programmable processors
with large local memories can efficiently simulate other interconnection topologies. For example, a single Warp cell

can be time multiplexed to perform the function of a column of cells, so that the linear Warp array can implement a
two-dimensional systolic array.

The Warp array can be used for both fine-grain and large-grain parallelism. It is efficient for fine-grain
parallelism needed for systolic processing, because of its high inter-cell bandwidth. The I/O bandwidth of each cell
is higher than that of other processors with similar computational power. Each cell can transfer 20 million 32-bit
words (80 Mbytes) per second to and from its neighboring cells, in addition to 20 million 16-bit addresses. This

4

high inter-cell communication bandwidth permits efficient transfers of large volumes of intermediate data between
neighboring cells.

The Warp array is efficient for large-grain parallelism because it is composed of powerful cells. Each cell is
capable of operating independently; it has its own program sequencer and program memory of 8K instructions.
Moreover, each cell has 32K words of local data memory, which is large for systolic array designs. For a given I/O
bandwidth, a larger data memory can sustain a higher computation bandwidth for some algorithms [20].

Systolic arrays are known to be effective for local operations, in which each output depends only on a small
corresponding area of the input. The Warp array's large memory size and its high inter-cell I/O bandwidth enable it
to perform global operations in which each output depends on any or a large portion of the input [21]. The ability of
performing global operations as well, significantly broadens the applicability of the machine. Examples of global
operations are fast Fourier transform (FFT), image component labeling, Hough transform, image warping, and
matrix computations such as LU decomposition or singular value decomposition (SVD).

Because each Warp cell has its own sequencer and program memory, the cells in the array can execute different
programs at the same time. We call computation where all cells execute the same program homogeneous, and
heterogeneous otherwise. Heterogeneous computing is useful for some applications. For example, c~id-cells may
operate differently from other cells to deal with boundary conditions. Or, in a multi-function pipeline [13], different
sections of the array perform different functions, with the output of one section feeding into the next as input.

4 Warp cell architecture
This section describes the design and the evolution of the architectural features of the cell. Some of these features

were significantly revised when we re-implemented Warp in PC boards. For the wire-wrapped prototype, we
omitted some architectural features that are difficult to implement and are not necessary for a substantial fraction of
application programs [1]. This simplification in the design permitted us to gain useful experience in a relatively
short time. With the experience of constructing and using the prototype, we were able to improve the architecture
and expand the application domain of the production machine.

4.1 Inter-cell communication
Each cell communicates with its left and right neighbors through point-to-point links, two for data and one for

addresses. A queue with a depth of 512 words is associated with each link (XQ, YQ and AdrQ in Figure 2) and is
placed in the data path of the input cell. The size of the queue is just large enough to buffer one or two scan-lines of
an image, which is typically of size 512x5l2 or 256x256. The ability to buffer a complete scan-line is important for
the efficient implementation of some algorithms such as two-dimensional convolutions [19]. Words in the queues
are 34 bits wide; along with each 32-bit data word, the sender transmits two bits of control signal that can be tested
by the receiver.

Flow control for the communication channels is implemented in hardware. When a cell tries to read from an

empty queue, it is blocked until a data item arrives. Similarly, when a cell tries to write to a full queue of a
neighboring cell, the writing cell is blocked until some data is removed from the full queue. The blocking of a cell
is transparent to the program; the state of all the computational units on the data path freezes for the duration the cell
is blocked. Only the cell that tries to read from an empty queue or to deposit a data item into a full queue is blocked.
All other cells in the array continue to operate normally. The data queues of a blocked cell are still able to accept
input; otherwise a cell blocked on an empty queue will never become unblocked.

The implementation of run-time flow control by hardware has two implications: First, we need two clock

Anil!I

5

generators-one for the computational units whose states freeze when a cell is blocked, and one for the queues.
Second, since a cell can receive data from either of its two neighbors, it can block as a result of the status of the
queues in either neighbor, as well as its own. This dependence on other cells adds serious timing constraints to the
design since clock control signals have to cross board boundaries. The complexity will be further discussed in
Section 5.

The inter-cell communication mechanism is the most revised feature on the cell; it has evolved from primitive
programmable delay elements to queues without any flow control hardware, and finally to the run-ime flow-
controlled queues. In the following, we step through the different design changes.

4.1.1 Programmable delay
In an early design, the input buffer on each communication channel of a cell was a programmable delay element.

In a programmable delay element, data are latched in every cycle and they emerge at the output port a constant
number of cycles later. This structure is found in many systolic algorithm designs to synchronize or delay one data
stream with respect to another. However, programmable high-performance processors like the Warp cells require a
more flexible buffering mechanism. Warp programs do not usually produce one data item every cycle; a clocking
discipline that reads and writes one item per cycle would be too restrictive. Furthermore, a constant delay through
the buffer means that the timing of data generation must match exactly that of data consumption. Therefore, the
programmable delays were replaced by queues to remove the tight coupling between the communicating cells.

4.1.2 Flow control
Queues allow the receiver and sender to run at their own speeds provided that the receiver does not read past the

end of the queue and the sender does not overflow the queues. There are two different flow control disciplines,
run-time and compile-time flow-control. As discussed above, hardware support for run-time flow control can be
difficult to design, implement and debug. Alternatively, for a substantial set of problems in our application domain,
compile-time flow control can be implemented by generating code that requires no run-time support. Therefore, we
elected not to support run-time flow control in the prototype. This decision permitted us to accelerate the
implementation and experimentation cycle. Run-time flow control is provided in the production machine, so as to
widen the application domain of the machine.

Compile-time flow control can be provided for all programs where data only flow in one direction through the
array and where the control flow of the programs is not data dependent. Data dependent control flow and two-way
data flow can also be allowed for programs satisfying some restrictions [6]. Compile-time flow control is
implemented by skewing the computation of the cells so that no receiving cell reads from a queue before the
corresponding sending cell writes to it. For example, suppose two adjacent cells each execute the following
program:

dequeue (X);
output (X) ;
dequeue (X);
compute
compute
output(X)

In this program, the first cell removes a data item from the X queue (dequeue (X)) and sends it to the second
cell on X (output (X)). The first cell then removes a second item, and forwards the result to the second cell after
2 cycles of computation. For this program, the second cell needs to be delayed by 3 cycles to ensure that the
dequeue of the second cell never overtakes the corresponding output of the first cell, and the compiler will
insert the necessary nops, as shown in Figure 3.

6

First cell Second cell

dequeue(X); nop
output(X) ; nop
dequeue(X); nop
compute ; dequeue (X);
compute ; output (X) ;
output(X) ; dequeue(X);

compute
compute
output (X)

Figure 3: Compile-time flow control

Run-time flow control expands the application domain of the machine and often allows the compiler to produce
more efficient code; therefore it is provided in the production machine. Without run-time flow control, WHILE loops

and FOR loops with computed loop bounds on the cells cannot be implemented. That is, only loops with compile-
time constant bounds can be supported. This restriction limits the class of programs executable on the machine.
Moreover, many programs for the prototype machines can be made more efficient and easier to write on the
production machine by replacing the FOR loops with WHilLE loops. Instead of executing a fixed number of iterations
to guarantee convergence, the iteration can be stopped as soon as the termination condition is met. The compiler can
produce more effl' ient code since compile-time flow control by skewing delays the receiving cell sufficiently to
guarantee correct behavior, but this delay is not necessarily the minimum delay needed. Run-time flow control will

dynamically find the minimum bound.

4.1.3 Input control
In the current design, latching of data into a cell's queue is controlled by the sender, rather than by the receiver.

As a cell sends data to its neighbor, it also signals the receiving cell's input queue to accept the data.

In our first 2-cell prototype machine, input data were latched under the microinstruction control of the receiving
cell. This implied that inter-cell communication required close cooperation between the sender and the receiver; the
sender presented its data on the communication channel, and in the same clock cycle the receiver latched in the
input. This design was obviously not adequate if flow control was supported at run time; in fact, we discovered that
it was not adequate even if flow control was provided at compile time. The tight coupling between the sender and

the receiver greatly increased the code size of the programs. The problem was corrected in subsequent
implementations by adopting the design we currently have, that is, the sender provides the signal to the receiver's

queue to latch in the input data.

In the above discussion of the example of Figure 3, it was assumed that the control for the second cell to latch in
input was sent with the output data by the first cell. If the second cell were to provide the input control signals, we
would need to add an input operation in its microprogram for every output operation of the first cell, at exactly

the cycle the operation takes place. Doing so, we obtain the following program for the second cell:

fnop
input (X)

hop
dequeue (X);
output(X) ;

input (X), dequeue (X);
compute
compute
output(X)

I I' f I r ' f' "..... -: ' q tl~* tl'3l!l llM

7

Each line in the program is a micro-instruction; the first column contains the Input operations to match the
Output operations of the first cell, and the second column contains the original program.

Since the input sequence follows the control flow of the sender, each cell is logically executing two processes: the
input process, and the original computation process of its own. These two processes must be merged into one since

there is only one sequencer on each cell. If the programs on communicating cells are different, the input process and
the cell's own computation process are different. Even if the cell programs are identical, the cell's computation

process may need to be delayed with respect to the input process because of compile-time flow control as described
above. As a result, we may need to merge control constructs from different parts of the program. Merging two

equal-length loops, with an offset between their initiation times, requires loop unrolling and can result in a three-fold
increase in code length. Figure 4 illustrates this increase in code length when merging two identical loops of n
iterations. Numbers represent operations of the input process, and letters represent the computation process. If two
iterative statements of different lengths are overlapped, then the resulting code size can be of the order of the least
common multiple of their lengths. For example, in Figure 5, a 2-instruction loop of 3n iterations is merged with a
3-instruction loop of 2n iterations. Since 6 is the minimum number of cycles before the combined sequence of
operations repeats itself, the resulting merged program is a 6-instruction loop of n iterations.

0 0 0
1 1 1

a 2 a 2 a

n b 3 b n-i 3 b
C0 c 0 C

d 1 d i.d

2 a 2 a

3 b 3 b
C C

d d

0

2 a

(a) (b) (c)
Figure 4: Merging equal-length loops with an offset:

(a) original loops, (b) execution trace, and (c) merged loop.

4.1.4 Randomly accessible queues
The queues in all the prototype machines are implemented with RAM chips, with hardware queue pointers.

Furthermore, there was a feedback path from the data crossbar back to the queues, because we intended to use the
queues as local storage elements as well [I]. Since the pointers must be changed when the queue is accessed
randomly, and there is only a single pair of queue pointers, it is impossible to multiplex the use ol the buffer as a
communication queue and its use as a local storage element. Therefore, the queues in the production machine are
now implemented by a FIFO chip. This implementation allows us to increase the queue size from 128 to 512 words.
with board space left over for other improvements as well.

8

0 a 0 a 0 a
2nE 1 b 1 b

2 a n 2 a

0 b 0 b

1 a 1 a

2 b 2 b

a
b

(a) (b) (c)
Figure 5: Merging loops with different lengths:
(a) original loops, (b) execution trace, and (c) merged loop.

4.1.5 Queue size
The size of the queues is an important factor in the efficiency of the array. Queues buffer the input for a cell and

relax the coupling of execution in communicating cells. Although the average communication rate between two
communicating cells must balance, a larger buffer allows the cells to receive and send data in bursts at different
times.

The long queues allow the compiler to adopt a simple code optimization strategy [23]. The throughput for a
unidirectional array is maximized by simply optimizing the individual cell programs provided that sufficient
buffering is available between each pair of adjacent cells. In addition, some algorithms, such as two-dimensional
convolution mentioned above, require large buffers between cells. If the queues are not large enough, a program
must explicitly implement buffers in local memory.

4.2 Control path
Each Warp cell has its own local program memory and sequencer. This is a good architectural design even if the

cells all execute the same program, as in the case of the prototype Warp machine. The reason is that it is difficult to
broadcast the microinstruction words to all the cells, or to propagate them from cell to cell, since the instructions
contain a large number of bits. Moreover, even if the cells execute the same program, the computations of the cells
arc often skewed so that each cell is delayed with respect to its neighboring cell. This skewed computation model is
easily implemented with local program control. The local sequencer also supports conditional branching efficiently.
In SIMD machines, branching is achieved by masking. The execution time is equivalent to the sum of the execution
time of the then-clause and the else-clause of a branch. With local program control, different cells may follow
different branches of a conditional statement depending on their individual data: the execution time is the execution
time of the clause taken.

The Warp cell is horizontally microcoded. Each component in the data path is controlled by a dedicated field:
this orthogonal organization of the microinstruction word makes scheduling easier since there is no interference in
the schedule of different components.

9

4.3 Data path

4.3.1 Floating-point units
Each Warp cell has two floating-point units, one multiplier and one adder, implemented with commercially

available floating-point chips [35]. These floating-point chips depend on extensive pipelining to achieve high
performance. Both the adder and multiplier have 5-stage pipelines. General purpose computation is difficult to
implement efficiently on deeply pipelined machines, because data-dependent branching is common. There are less
data dependency hi numerical or computer vision programs, and we developed scheduling techniques that use the
pipelining efficiently. Performance results are reported in Section 8.

4.3.2 Crossbar
Experience with the Programmable Systolic Chip showed that the internal data bandwidth is often the bottleneck

of a systolic cell [11]. In the Warp cell, the two floating-point units can consume up to four data items and generate
two results per cycle. Several data storage blocks interconnected with a crossbar support this high data processing
rate. There are six input and eight output ports connected to the crossbar switch; up to six data items can be
transferred in a single cycle, and an output port can receive any data item. The use of the crossbar also makes
compilation easier when compared to a bus-based system since conflicts on the use of one or more shared busses can
complicate scheduling tremendously.

Custom chip designs that combine the functionality of the crossbar interconnection and data buffers have been
propo'sed [16, 28]. In the interconnection chip designed for polycyclic architectures [281, a "queue" is associated
with each cross point of the crossbar. In these storage blocks, data are always written at the end of the queue;
however, data can be read, or removed, from any location. The queues are compacted automatically whenever data
is removed. The main advantage of this design is that an optimal code schedule can be readily derived for a class of
inner loops [27]. In the Warp cell architecture, we chose to use a conventional crossbar with data buffers only for its
outputs (the AReg and MReg register files in Figure 2), because of the lower hardware cost. Near-optimal schedules
can be found cheaply using heuristics [231.

4.3.3 Data storage blocks
As depicted by Figure 2, the local memory hierarchy includes a local data memory, a register file for the integer

unit (AGU), two register files (one for each floating-point unit), and a backup data memory. Addresses for both data
memories come from the address crossbar. The local data memory can store 32K words, and can be both read and
written every (200 ns) cycle. The capacity of the register file in the AGU unit is 64 words. The register files for the
floating-point units each hold 31 usable words of data. (The register file is written to in every cycle, so that one
word is used as a sink for those cycles without useful write operations). They are 5-ported data buffers and can each
accept two data items from the crossbar and deliver two operands to the functional units every cycle. The additional
ports are used for connecting the register files to the backup memory. This backup memory contains 2K words and
is used to hold all scalars, floating-point constants, and small arrays. The addition of the backup memory increases
memory bandwidth and improves throughput for those programs operating mainly on local data.

4.3.4 Address generation
As shown in Figure 2, each cell contains an integer unit (AGU) that is used predominantly as a local address

generation unit. The AGU is a self-contained integer ALU with 64 registers. It can compute up to two addresses
per cycle (one read address and one write address).

The local address generator on the cell is one of the enhancements that distinguish the PC Warp machine from the
prototype. In the prototype, data independent addresses are generated on the IU and propagated down the cells.

Li

10

Data dependent addresses were computed locally on each cell using the floating-point units. The [U of the prototype

had the additional task of generating the loop termination signals for the cells. These signals are propagated along
the Adr channel to the cells in the Warp array.

There was not enough space on the wire-wrapped board to include local address generation capability on each
Warp cell. Including an AGU requires board space not only for the AGU itself, but also for the bits in the

instruction word for controlling it. An AGU was area expensive at the time the prototype was designed, due to the
lack of VLSI parts for the AGU functions. The address generation unit in the prototype [U uses AMD2901 parts
which contain 16 registers. Since this number of registers is too small to generate complicated addressing patterns

quickly, the ALU is backed up by a table that holds up to 16K pre-computed addresses. This table is too large to
replicate on all the cells. The address generation unit on the PC Warp cells is a new VLSI component
(IDT-49C402), which combines the register file and ALU on a single chip. The large number of registers makes the

back-up table unnecessary for most addressing patterns, so that the AGU is much smaller and can be replicated on
each cell of the production machine.

The prototype was designed for applications where all cells execute the same program with data independent loop

bounds. However, not all such programs could be supported due to the size of the address queue. In the pipelining
mode, where the cells implement different stages of a computation pipeline, a cell does not start executing until the
preceding cell is finished with the frst set of input data. The size of the address queue must at least equal the
number of addresses and conuol signals used in the computation of the data set. Therefore the size of the address

queues limits the number of addresses buffered, and thus the grain size of parallelism.

For the production machine, each cell contains an AGU and can generate addresses and loop control signals

efficiently. This improvement allows the compiler to support a much larger class of applications. We have
preserved the address generator and address bank on the IU (and the associated Adr channel, as shown in Figure 1).
Therefore, the IU can still support those homogeneous computations that demand a small set of complicated
addressing patterns that can be conveniently stored in the address bank.

5 Warp cell and IU implementation
The Warp array architecture operates on 32-bit data. All data channels in the Warp array, including the internal

data path of the cell, are implemented as 16-bit wide channels operating at 100 ns. There are two reasons for
choosing a 16-bit time-multiplexed implementation. First, a 32-bit wide hardware path would not allow
implementing one cell per board. Second, the 200 ns cycle time dictated by the Weitek floating-point chips (at the

time of design) allows the rest of the data path to be time multiplexed. This would not have been possible if the
cycle time of the floating-point chips were under 160 ns. The micro-engine operates at 100 ns and supports high and
low cycle operations of the data path separately.

All cells in the array are driven from a global 20 MHz clock generated by the IU. To allow each cell to block
individually, a cell must have control over the use of the global clock signals. Each cell monitors two concurrent
processes: the input data flow (I process) and the output data flow (0 process). If the input data queue is empty, the
I process flow must be suspended before the next read from the queue. Symmetrically, the 0 process is stopped
before the next write whenever the input queue of the neighboring cell is full. Stopping the I or 0 process pauses all
computation and output activity, but the cell continues to accept input. There is only a small amount of time
available between detection of the queue full/empty status and blocking the read/write operation. Since the cycle
time is only 100 ns, this tight timing led to race conditions in an early design. This problem has been solved by
duplicating on each cell the status of the 1/0 processes of the neighboring cells. In this way, a cell can anticipate a
queue full/empty condition and react within a clock cycle.

11

A large portion of the internal cell hardware can be monitored and tested using built-in serial diagnostic chains
under control of the IU. The serial chains are also used to download the Warp cell programs. Identical programs
can be downloaded to all cells at a rate of 95 ps per instruction from the workstation and about 66 ps per instruction
from the external host. Starting up a program takes about 9 ms.

The Warp cell consists of six main blocks: input queues, crossbar, processing elements, data memory, address
generator, and micro-engine. Table I presents the contribution of these blocks to the implementation of the Warp
cell. The micro-engine includes the program memory (8K instruction words of 272 bits, including parity). The
Warp cell consumes 94 W (typical) and 136 W (maximum).

Block in Warp cell Chip count Area contribution (%)

Queues 22 9

Crossbar 32 11

Processing elements and registers 12 10

Data memory 31 9

Local address generator 13 6

Micro-engine 90 35

Other 55 20

Totalfor Warp cell 255 100

Table 1: Implementation metrics for Warp cell

The IU handles data input/output between the host and the Warp array. The host-lU interface is streamlined by
implementing a 32-bit wide interface, even though the Warp array has only 16-bit wide intzrnal data paths. This
arrangement is preferred because data transfers between host and IU are slower than the transfers between IU and
the array. Data transfers between host and IU can be controlled by interrupts; in this case, the IU behaves like a
slave device. The IU can also convert packed 8-bit or 16-bit integers transferred from the host into 32-bit floating-
point numbers for the Warp array, and vice versa.

The IU is controlled by a 96-bit wide programmable micro-engine, which is similar to the Warp cell controller in
programmability. The IU has several control registers that are mapped into the host address space; the host can
control the IU and hence the Warp array by setting these registers. The IU has a power consumption of 82 W
(typical) and 123 W (maximum). Table 2 presents implementation metrics for the IU.

Block in IU Chip count Area contribution (%)

Data-converter 44 19

Address generator 45 19

Clock and host interface 101 31

Micro-engine 49 20

Other 25 Ii

Totalfor IU 264 1 (X)

Table 2: Implementation mctrics for IU

12

6 Host system
The Warp host controls the Warp array and other peripherals, supports fast data transfer rates to and from the

Warp array, and also runs application code that cannot easily be mapped on the array. An overview of the host is
presented in Figure 6. The host is partitioned into a standard workstation (the master) and an external hosL The
workstation 2rovides a UNIX programming cnvironment to the user, and also controls the external host. The external
host consists of two cluster processors, a subsystem called support processor, and some graphics devices (I, 0).

d UNIX 4.2 Workstation

SUPPORT
PROCESSOR VSB LOCAL BUS

P N N
M 0

LUE M MS S CLUSTER 2

INTERFACE UNIT P: processor

M: memoryI S: switch

1: graphics input
WARP OOCESSOR ARRAY 0: graphics output

Figure 6: Host of the Warp machine

Control of the external host is strictly centralized: the workstation, the master processor, issues commands to the
cluster and support processors through message buffers local to each of these processors. The two clusters work in
parallel, each handling a unidirectional flow of data to or from the Warp processor, through the IU. The two clusters
can exchange their roles in sending or receiving data for different phases of a computation, in a ping-pong fashion.
An arbitration mechanism transparent to the user has been implemented to prohibit simultaneous writing or reading
to the Warp array when the clusters switch roles. The support processor controls peripheral 1/0 devices and handles
floating-point exceptions and other interrupt signals from the Warp array. These interrupts are serviced by the
support processor, rather than by the master processor, to minimize interrupt response time. After servicing the
interrupt, the support processor notifies the master processor.

The external host is built around a VME bus. The two clusters and the support processor each consist of a
standalone MC68020 microprocessor (P) and a dual-ported memory (M), which can be accessed either via a local
bus or via the global VME bus. The local bus is a VSB bus in the production machine and a VMX32 bus for the
prototype; the major improvements of VSB over VMX32 are better support for arbitration and the addition of
DMA-type accesses. Each cluster has a switch board (S) for sending and receiving data to and from the Warp array,
through the IU. The switch also has a VME interface, used by the master processor to start, stop, and control the
Warp array. The VME bus of the master processor inside the workstation is connected to the VME bus of the
external host via a bus-coupler (bus repeater). While the prototype Warp used a commercial bus-coupler, the PC
Warp employs a custom-designed device. The difference between the two is that the custom-designed bus repeater
decouples the external host VME bus from the Sun-3 VME bus: intra-bus transfers can occur concurrently on both
busses.

13

There are three memory banks inside each cluster processor to support concurrent memory accesses. For
example, the first memory bank may be receiving a new set of data from an I/O device, while data in the second
bank is transferred to the Warp array, and the third contains the cluster program code.

Presently, the memory of the external host are built out of 1-Mbyte memory boards; including the 3 Mbytes of
memory on the processor boards, the total memory capacity of the external host is 11 Mbytes. An expansion of up
to 59 Mbytes is possible by populating all the 14 available slots of the VME card cage with 4-Mbyte memory
boards. Large data structures can be stored in these memories where they will not be swapped out by the operating
system. This is important for consistent performance in real-time applications. The external host can also support
special devices such as frame buffers and high speed disks. This allows the programmer to transfer data directly
between Warp and other devices.

Except for the switch, all boards in the external host are off-the-shelf components. The industry standard boards
allow us to take advantage of commercial processors, I/O boards, memory, and software. They also make the host

an open system to which it is relatively easy to add new devices and interfaces to other computers. Moreover,
standard boards provide a growth path for future system improvements with a minimal investment of time and
resources. During the transition from prototype to production machine, faster processor boards (from 12 MHz to 16
MHz) and larger memories have been introduced, and they have been incorporated into the host with little effort.

6.1 Host 11O bandwidth
The Warp array can input a 32-bit word and output a 32-bit word every 200 ns. Correspondingly, to sustain this

peak rate, each cluster must be able to read or write a 32-bit data item every 200 ns. This peak I/O bandwidth
requirement can be satisfied if the input and output data are 8-bit or 16-bit integers that can be accessed sequentially.

In signal, image and low-level vision processing, the input and output data are usually 16- or 8-bit integers. The
data can be packed into 32-bit words before being transferred to the IU, which unpacks the data into two or four
32-bit floating-point numbers before sending them to the Warp array. The reverse operation takes place with the
floating-point outputs of the Warp array. With this packing and unpacking, the data bandwidth requirement between
the host and IU is reduced by a factor of two or four. Image data can be packed on the digitizer boards, without
incurring overhead on the host. The commercial digitizer boards pack only two 8-bit pixels at a time; a frame-buffer
capable of packing 4 pixels into a 32-bit word has been developed at Carnegie Mellon.

The I/O bandwidth of the PC Warp external host is greatly improved over that of the prototype machine [5]. The
PC Warp supports DMA and uses faster processor and memory boards. If the data transfer is sequential, DMA can
be used to achieve the transfer time of less than 500 ns per word. With block transfer mode, this transfer time is
further reduced to about 350 ns. The speed for non-sequential data transfers depends on the complexity of the
address computation. For simple address patterns, one 32-bit word is transferred in about 900 ns.

There are two classes of applications: those whose input/output data are pixel values (e.g., vision), and those
whose input/output data are floating-point quantities (e.g., scientific computing). In vision applications, data are
often transferred in raster order. By packing/unpacking the pixels and using DMA, the host 1/O bandwidth can
sustain the maximum bandwidth of all such programs. Many of the applications that need floating-point input and
output data have non-sequential data access patterns. The host becomes a bottleneck if the rate of data transfer (and
address generation if DMA cannot used) is lower than the rate the data is processed on the array. Fortunately. for
many scientific applications, the computation per data item is typically quite large and the host I/O bandwidth is
seldom the limiting factor in the performance of the array.

14

6.2 Host software
The Warp host has a run-time software library that allows the programmer to synchronize the support processor

and two clusters and to allocate memory in the external host. The run-time software also handles the
communication and interrupts between the master and the processors in the external host. The library of run-time
routines includes utilities such as copying and moving data within the host system, subwindow selection of images,

and peripheral device drivers. The compiler generates program-specific input and output routines for the clusters so
that a user needs not be concerned with programming at this level; these routines are linked at load time to the two
cluster processor libraries.

The application program usually runs on the Warp array under control of the master, however, it is possible to
assign sub-tasks to any of the processors in the external host. This decreases the execution time for two reasons:
there is more parallelism in the computation, and data transfers between the cluster and the array using the VSB bus
are twice as fast as transfers between the master processor and the array through the VME bus repeater. The
processors in the external host have been extensively used in various applications, for example, obstacle avoidance
for a robot vehicle and singular value decomposition.

Memory allocation and processor synchronization inside the external host are handled by the application program
through subroutine calls to the run-time software. Memory is allocated through the equivalent of a UNIX mallocO
system call, the only difference being that the memory bank has to be explicitly specified. This explicit control
allows the user to fully exploit the parallelism of the system; for example, different processors can be programmed
to access different memory banks through different busses concurrently.

Tasks are scheduled by the master processor. The application code can schedule a task to be run on the
completion of a different task. Once the master processor determines that one task has completed, it schedules
another task requested by the application code. Overhead for this run-time scheduling of tasks is minimal.

7 Programming Warp
As mentioned in the introduction, Warp is programmed in a language called W2. Programs written in W2 are

translated by an optimizing compiler into object code for the Warp machine. W2 hides the low level details of the
machine and allows the user to concentrate on the problem of mapping an application onto a processor array. In this
section, we first describe the language and then some common computation partitioning techniques.

7.1 The W2 language
The W2 language provides an abstract programming model of the machine that allows the user to focus on

parallelism at the array level. The user views the Warp system as a linear array of identical, conventional processors
that can communicate asynchronously with their left and right neighbors. The semantics of the communication
primitives are that a cell will block if it tries to receive from an empty queue or send to a full one. These semantics
are enforced at compile time in the prototype and at run time in the PC Warp, as explained in Section 4.1.2.

The user supplies the code to be executed on each cell, and the compiler handles the details of code generation
and scheduling. This arrangement gives the user full control over computation partitioning and algorithm design.
The language for describing the cell code is Algol-like, with iterative and conditional statements. In addition, the
language provides receive and send primitives for specifying intercell communication. The compiler handles the
parallelism both at the system and cell levels. At the system level, the external host and the IU are hidden from the

user. The compiler generates code for the host and the IU to transfer data between the host and the array.
Moreover, for the prototype Warp, addresses and loop control signals are automatically extracted from the cell
programs; they are generated on the IU and passed down the address queue. At the cell level, the pipelining and

15

parallelism in the data path of the cells are hidden from the user. The compiler translates the Algol level constructs
in the cell programs directly into horizontal microcode for the cells.

Figure 7 is an example of a 10xlO matrix multiplication program. Each cell computes one column of the result.
We first load each cell with a column of the second matrix operand, then we stream the first matrix in row by row.
As each row passes through the array, we accumulate the result for a column in each cell, and send the entire row of
results to the host. The loading and unloading of data are slightly complicated because all cells execute the same

program. Send and receive transfer data between adjacent cells; the first parameter determines the direction,
and the second parameter selects the hardware channel to be used. The third parameter specifies the source (send)
or the sink (receive). The fourth parameter, only applicable to those channels communicating with the host, binds
the array input and output to the formal parameters of the cell programs. This information is used by the compiler to

generate code for the host.

7.2 Problem partitioning
As discussed in Section 3, the architecture of the Warp array can support various kinds of algorithms: fine-grain

or large-grain parallelism, local or global operations, homogeneous or heterogeneous. There are three general
problem partitioning methods [4, 22]: input partitioning, output partitioning, and pipelining.

7.2.1 Input partitioning
In this model, the input data are partitioned among the Warp cells. Each cell computes on its portion of the input

data to produce a corresponding portion of the output data. This model is useful in image processing where the
result at each point of the output image depends only on a small neighborhood of the corresponding point of the
input image.

Input partitioning is a simple and powerful method for exploiting parallelism -most parallel machines support it
in one form or another. Many of the algorithms on Warp make use of it, including most of the low-level vision

programs, the discrete cosine transform (DCT), singular value decomposition [2], connected component
labeling [22], border following, and the convex hull. The last three algorithms mentioned also transmit information
in other ways; for example, connected components labeling first partitions the image by rows among the cells, labels

each cell's portion separately, and then combines the labels from different portions to create a global labeling.

7.2.2 Output partitioning
In this model, each Warp cell processes the entire input data set or a large part of it, but produces only part of the

output. This model is used when the input to output mapping is not regular, or when any input can influence any
outpuL Histogram and image warping are examples of such computations. This model usually requires a lot of
memory because either the required input data set must be stored and then processed later, or the output must be
stored in memory while the input is processed, and then output later. Each Warp cell has 32K words of local
memory to support efficient use of this model.

7.2.3 Pipelining
In this model, typical of systolic computation, the algorithm is partitioned among the cells in the array, and each

cell performs one stage of the processing. The Warp array's high inter-cell communication bandwidth and
effectiveness in handling fine-grain parallelism make it possible to use this model. For some algorithms, this is the
only method of achieving parallelism that is possible.

A simple example of the use of pipelining is the solution of elliptic partial differential equations using successive
over-relaxation f361. Consider the following equation:

16

module HatrixHultiply (A in, a in, C out)
float A[10,10], B10,10], C[10,10];

cellprogram (cid : 0 : 9)
begin

function mm
begin

float col[10]; /* stores a column of the B matrix */
float row; /* accumulates the result of a row
float element;
float temp;
int ij;

/* first load a column of B in each cell */
for i :- 0 to 9 do begin

receive (L, X, coli], B(i,0]);
for j :- 1 to 9 do begin

receive (L, X, temp, B[i,j]);
send (R, X, temp);

end;
send (R, X, 0.0);

end;

/* calculate a row of C in each iteration */
for i := 0 to 9 do begin

/* each cell computes the dot product
between its column and the same row of A *1

row :- 0.0;
for j := 0 to 9 do begin

receive (L, X, element, A[i,j]);
send (R, X, element);
row := row + element * col[j];

end;

/* send out the result of each row of C */
receive (L, Y, temp, 0.0);
for j := 0 to 8 do begin

receive (L, Y, temp, 0.0).
send (R, Y, temp, C[i,j]);

end;
send (R, Y, row, C[i,9]);

end;
end
call mm;

end
Figure 7: Example program

a 2- =f(x,y).

The system is solved by repeatedly combining the current values of u on a 2-dimensional grid using the following

recurrence:

Ui.J = (l-)) Ui + 0 ' f j+ ui j - I+u i'j+ l+ui+l 'J+ui- I'j where w is a constant paramctcr.
4

In the Warp implementation, each cell is responsible for one relaxation, as expressed by the above equation. In

17

raster order, each cell receives inputs from the preceding cell, performs its relaxation step, and outputs the results to
the next cell. While a cell is performing the kth relaxation step on row i, the preceding and next cells perform the
k-1st and k+lsl relaxation steps on rows i+2 and i-2, respectively. Thus, in one pass of the u values through the
10-cell Warp array, the above recurrence is applied ten times. This process is repeated, under control of the external
host, until convergence is achieved.

8 Evaluation
Since the two copies of the wire-wrapped prototype Warp machine became operational at Carnegie Mellon in

1986, we have used the machines substantially in various applications (2, 3,4, 10, 13, 22]. The application effort
has been increased since April 1987 when the first PC Warp machine was delivered to Carnegie Mellon.

The applications area that guided the development of Warp most strongly was computer vision, particularly as
applied to robot navigation. We studied a standard library of image processing algorithms [30] and concluded that
the great majority of algorithms could efficicntly use the Warp machine. Moreover, robot navigation is an area of
active research at Carnegie Mellon and has real-time requirements where Warp can make a significant difference in
overall performance [32, 33]. Since the requirements of computer vision had a significant influence on all aspects of
the design of Warp, we contrast the Warp machine with other architectures directed towards computer vision in
Section 8.2.

Our first effort was to develop applications that used Warp for robot navigation. Presently mounted inside of a
robot vehicle for direct use in vehicle control, Warp has been used to perform road following and obstacle
avoidance. We have implemented road following using color classification, obstacle avoidance using stereo vision,
obstacle avoidance using a laser range-finder, and path planning using dynamic programming. We have also
implemented a significant portion (approximately 100 programs) of an image processing library on Warp [30], to
support robot navigation and vision research in general, Some of the library routines are listed in Table 4.

A second interest was in using Warp in signal processing and scientific computing.. Warp's high floating-point
computation rate and systolic structure make it especially attractive for these applications. We have implemented
singular value decomposition (SVD) for adaptive beamforming, fast two-dimensional image correlation using FFT,
successive over-relaxation (SOR) for the solution of elliptic partial differential equations (PDE), as well as
computational geometry algorithms such as convex hull and algorithms for finding the shortest paths in a graph.

8.1 Performance data
Two figures of merit are used to evaluate the performance of Warp. One is overall system performance, and the

other is performance on specific algorithms. Table 3 presents Warp's performance in several systems for robot
navigation, signal processing, scientific computation, and geometric algorithms, while Table 4 presents Warp's
performance on a large number of specific algorithms. Both tables report the performance for the wire-wrapped
Warp prototype with a Sun-3/160 as the master processor. The PC Warp will in general exceed the reported
performance, because of its improved architecture and increased host I/O speed as described earlier. Table 3
includes all system overheads except for initial program memory loading. We compare Warp performance with a
Vax 11/780 with floating-point accelerator, because this computer is widely used and therefore familiar to most
people.

Statistics have been gathered for a collection of 72 W2 programs in the application areas of vision, signal
processing and scientific computing [231. Table 4 presents the utilization of the Warp array for a sample of these
programs. System overheads such as microcode loading and program initialization are not counted. We assume that
the host 1/0 can keep up with the Warp array; this assumption is realistic for most applications with the host of the

18

production Warp machine. Figure 8 shows the performance distribution of the 72 programs. The arithmetic mean is

28 MFLOPS, and the standard deviation is 18 MFLOPS.

25

20

15

Programs

10

5i0

0 10 20 30 40 50 60 70 80 90

MFLOPS

Figure 8: Performance distribution of a set of 72 W2 programs

The Warp cell has several independent functional units, including separate floating-point units for addition and
multiplication. The achievable performance of a program is limited by the most used resource. For example, in a
computation that contains only additions and no multiplications, the maximum achievable performance is only 50
MFLOPS. Table 4 gives an upper bound on the achievable performance and the achieved performance. The upper
bound is obtained by assuming that the floating-point unit that is used more often in the program is the most used
resource, and that it can be kept busy all the time. That is, this upper bound cannot be met even with a perfect
compiler if the most used resource is some other functional unit, such as the memory, or if data dependencies in the
computation prevent the most used resource from being used all the time.

Many of the programs in Tables 3 and 4 are coded without fine tuning the W2 code. Optimizations can often
provide a significant speedup over the times given. First, the W2 code can be optimized, using conventional
programming techniques such as unrolling loops with few iterations, replacing array references by scalars, and so
on. Second, in some cases in Table 3 the external host in the prototype Warp is a bottleneck, and it is possible to
speed up this portion of the Warp machine by recoding the I/O transfer programs generated by the W2 compiler into
MC68020 assembly language. Moreover, the external host for the PC Warp is faster and supports DMA, so that
even with the compiler generated code it will no longer be the bottleneck. Third, since restrictions on using the
Warp cells in a pipeline are removed in PC Warp as explained in Section 4.3.4, it will be possible to implement
many of the vision algorithms in a pipelining fashion. This can lead to a three-fold speedup, since input,
computation, and output will be done at the same time. Fourth, in a few cases we have discovered a better algorithm
for the Warp implementation than what was originally programmed.

In Table 3, the speedup ranges from 60 to 500. With the optimizations we discuss above, all systems listed
should show at least a speedup of about I(X) over the Vax 11/780 with floating-point accelerator.

19

Task Time (ms) Speedup over Vax 11/780
(All images are 512x512. All code compiler generated.) with floating-point accelerator

Quadratic image warping 400 100
Warp array generates addresses using quadratic form in 240 ms.
Host computes output image using addresses generated by Warp.

Road-following 6000 200

Obstacle avoidance using ERIM, a laser range-finder 350 60
Time does not include 500 ms for scanner 1/0.

Minimum-cost path, 512x512 image, one pass 500 60
Host provides feedback.

Detecting lines by Hough Transform 2000 387
Host merges results.

Minimum-cost path, 350-node graph 16000 98
Convex hull, 1,000 random nodes 18 74
Solving elliptic PDE by SOR, 50,625 unknowns (10 iterations) 180 440
Singular value decomposition of 100x 100 matrix 1500 100
FFT on 2D image 2500 300

Warp array takes 600 ms. Remaining time is for data shuffling by host.
Image correlation using FF1' 7000 300

Data shuffling in host.
Image compression with 8x8 discrete cosine transforms 110 500
Mandelbrot image, 256 iterations 6960 100

Table 3: Measured speedups on the wire-wrapped prototype Warp machine

20

8.2 Architectural Alternatives
We discuss the architectural decisions made in Warp by contrasting them with the decisions made in bit-serial

proccssor arrays, such as the Connection Machine [34] and MPP [7]. We chose these architectures because they
have also been used extensively for computer vision and image processing, and because the design choices in these
architectures were made significantly differently than in Warp. These differences help exhibit and clarify thc design
space for the Warp architecture.

We attempt to make our comparison quantitative by using benchmark data from a DARPA Image Understanding
("DARPA IU") workshop held in November 1986 to compare various computers for vision [29]. In this workshop,
benchmarks for low and mid-level computer vision were defined and programmed by researchers on a wide variety
of computers, including Warp and the Connection Machine [25].

We briefly review salient features of the Connection Machine, called CM-1, used in these benchmarks. It is a
SIMD machine, consisting of an array of 64K bit-serial processing elements, each with 4K bits of memory. The
processors are connected by two networks: one connects each processor to four adjacent processors, and the other is
a 12-dimensional hypcrcub, connecting groups of 16 processors. The array is controlled by a host, which is a
Symbolics 3640 Lisp machine. CM-1 is programmed in an extension to Common Lisp called *Lisp [241, in which
references to data objects stored in the CM-I array and objects on the host can be intermixed.

Although our intention is to illustrate architectural decisions made in Warp, not to compare it with the Connection
Machine, we should not cite benchmark performance figures on two different computers without mentioning two
critical factors, namely cost and size. CM-I is approximately one order of magnitude more expensive and larger
than Warp.

8.2.1 Programming model
Bit-serial processor arrays implement a data parallel programming model, in which different processors process

different elements of the data set. In the Connection Machine, the programmer manipulates data objects stored in
the Connection Machine array by the use of primitives in which the effect of a Lisp operator is distributed over a
data object.

In systolic arrays, the systolic processors individually manipulate words of data. In Warp, we have implemented
data parallel programming models through the use of input and output partitioning. We have encapsulated input
partitioning over images in a specialized language called Apply [141. In addition to these models, the high
interprocessor bandwidth of the systolic array allows efficient implementation of pipelining, in which not the data,
but the algorithm is partitioned.

8.2.2 Processor I/O bandwidth and topology
Systolic arrays have high bandwidth between processors, which are organized in a simple topology. In the case of

the Warp array, this is the simplest possible topology, namely a linear array. The interconnection networks in the
Connection Machine allow flexible topology, but low bandwidth between communicating processors.

Bit-serial processing arrays may suffer from a serious bottleneck in I/O with the external world, because of the
difficulty of feeding a large amount of data through a single simple processor. This bottleneck has been addressed
in various ways. MPP uses a "staging memory" in which image data can be placed and distributed to the array
along one dimension. The 1/0 bottleneck has been addressed by a new version of the Connection Machine, called
CM-2 [311. In this computer, a number of disk drives can feed data into various points in the array simultaneously.
The CM-I benchmark figures do not include image I/O: the processing is done on an image which has already been
loaded into the array, and processing is completed with the image still in the array. Otherwise, image I/O would

21

Task Time (ms) MFLOPS MFLOPS
All images are 512x512. All code compiler generated. (Upper bound) (Achieved)

OOxlOO matrix multiplication. 25 100 79

3x3 convolution. 70 94 66

SlIxI 1 symmetric convolution. 367 90 59

Calculate transformation table for non-linear warping. 248 80 57

Generate matrices for plane fit 174 62 49
for obstacle avoidance using ERIM scanner.

Generate mapping table for affine image warping. 225 67 43

Moravec's interest operator. 82 60 36

3x3 maximum filtering. 280 67 30

Sobel edge detection. 206 77 30

Label color image using quadratic form for road following. 308 87 27

Image magnification using cubic spline interpolation. 8438 66 25

7x7 average gray values in square neighborhood. 1090 51 24

5x5 convolution. 284 52 23

Calculate quadratic form from labelled color image. 134 58 22

Compute gradient using 9x9 Canny operator. 473 92 21

Discrete cosine transform on 8x8 windows. 175 94 21

3x3 Laplacian edge detection. 228 94 20

15x15 Harwood-style symmetric edge preserving smoothing. 32000 50 16

Find zero-crossings. 179 78 16

Calculate (x,y,z) coordinates from ERIM laser range scanner data. 24 75 13

Histogram. 67 50 12

Coarse-to-fine correlation for stereo vision. 12 77 11

3x3 median filter. 448 50 7

Levialdi's binary shrink operation. 180 71 7

31x31 average gray values in square neighborhood. 444 61 5

Convert real image to integer using max, min linear scaling. 249 66 4

Average 512x512 image to produce 256x256. 150 58 3

Table 4: Performance of specific algorithms on the wire-wrapped prototype Warp machine

completely dominate processing time. In many cases it is necessary to process an image which is stored in a frame
buffer or host memory, which is easier in Warp because of the high bandwidth between the Warp array and the
Warp host. All the Warp benchmarks in this section include I/O time from the host.

The high bandwidth connection between processors in the Warp array makes it possible for all processors to see
all data in an image, while achieving useful image processing time. (In fact, because of the linear topology, there is
no time advantage to limit the passage of an image through less than all processors). This is important in global
image computations such as Hough transform, where any input can influence any output. For example, the
transform of a 512x512 image into a 180x512 Hough space took 1.7 seconds on Warp, only 2.5 times as long as on
CM-i. The ratio here is far less than for a simple local computation on a large image, such as Laplacian and zero
crossing.

In some global operations, processing is done separately on different cells, then combined in a series of pairwise
merge operations using a "divide and conquer" approach. This type of computation can be difficult to implement
using limited topology communications as in Warp. For example, in the Warp border following algorithm for a
512x512 image, individual cells trace the borders of different portions of the image, then those borders are
combined in a series of merge operations in the Warp array. The time for border following on Warp is 1100
milliseconds, significantly more than the 100 milliseconds the algorithm takes on CM-I.

8.2.3 Processor number and power
Warp has only ten parallel processing elements in its array, each of which is a powerful 10 MFLOPS processor.

CM- 1, on the other hand, has 64K processing elements, each of which is a simple bit-serial processor. Thus, the two
machines stand at opposite ends of the spectrum of processor number and power.

We find that the small number of processing elements in Warp makes it easier to get good use of the Warp array
in problems where a complex global computation is performed on a moderate sized dataset. In these problems, not
much data parallelism is "available." For example, the DARPA IU benchmarks includ.x the computation of the
two-dimensional convex hull [26] of a set of 1000 points. The CM-I algorithm used a brush-fire expansion
algorithm, which led to an execution time of 200 milliseconds for the complete computation. The same algorithm
was implemented on Warp, and gave the 18 millisecond figure reported in Table 3. Similar ratios are found in the
times for the minimal spanning tree of 1000 points (160 milliseconds on Warp versus 2.2 seconds on CM-I) and a
triangle visibility problem for 1000 three dimensional triangles (400 milliseconds on Warp versus I second on
CM-1).

Simple algorithms at the lowest level of vision, such as edge detection computations, run much faster on large
arrays of processors such as the Connection Machine than Warp. This is because no communication is required
between distant elements of the array, and the large array of processors can be readily mapped onto the large image
array. For example, the computation of an I lxi I Laplacian [151 on a 512x512 image, followed by the detection of
zero crossings, takes only 3 milliseconds on CM-I, as opposed to 400 milliseconds on Warp.

The floating-point processors in Warp aid the programmer in eliminating the need for low-level algorithmic
analysis. For example, the Connection Machine used discrete fixed point approximation to several algorithms.
including Voronoi diagram and convex hull. The use of floating-point made it unnecessary for the Warp
programmer to make assumptions about the data range and distribution.

In conclusion, we see that bit-serial processor arrays excel in the lowest level of vision, such as edge detection.
The CM-I's performance at this level exceeded Warp's by two orders of magnitude. However. specialized
hardware must be used to eliminate a severe I/O bottleneck to actually observe this performance. The use of the

23

router in the Connection Machine allows it to do well also at higher levels of vision, such as border following. We
also see that the more general class of programming models and use of floating-point hardware in Warp give it good
actual performance in a wide range of algorithms, especially including complex global computations on moderate
sized data sets.

9 Conclusions
The Warp computer has achieved high performance in a variety of application areas, including low-level vision,

signal processing and scientific computation. Currently produced by our industrial partner (GE), Warp is much
more powerful and programmable than many other machines of comparable cost.

The effectiveness of the Warp computer results from a balanced effort in architecture, software and applications.
The simple, linear topology of the Warp array naturally supports several useful problem partitioning models; the
Warp cells' high degree of programmability and large local memory make up for the lack of higher dimensional
connectivity. The high computation rate on each cell is matched by an equally high inter- and intra-cell bandwidth.
The host system provides the Warp array with high I/O bandwidth. The optimizing W2 compiler maps programs
from a high-level language to efficient microcode for the Warp array. Integration of the Warp array into u.',x as an
attached processor makes the Warp machine easily accessible to users. A sizable application library has been
implemented to support development of research systems in vision.

The development of a compiler is essential in designing the architecture of a machine. Designing and
implementing a compiler require a thorough study of the functionality of the machine; the systematic analysis of the
machine allows us to uncover problems that may otherwise be undetected by writing sample programs. The
compiler is also an excellent tool for evaluating different architectural alternatives. The development of the W2
compiler has significantly influenced the evolution of the architecture of Warp.

An early identification of an application area is essential for the development of an experimental machine such as
Warp whose architecture is radically different from conventional ones. Including the application users in the early
phase of the project-the vision research group at Carnegie Mellon in our case-helped us focus on the architectural
requirements and provided early feedback.

Prototyping is important for architecture development. An early prototype system gives the designers realistic
feedback about the constraints of the hardware implementation and provides a base for the software and application
developers to test out their ideas. To speed up implementation of the prototype, we used off-the-shelf parts. To
concentrate our efforts on the architecture of the Warp array, we developed the host from industry standard boards.

The Warp machine has demonstrated the feasibility of programmable, high-performance systolic array computers.
The programmability of Warp has substantially extended the machine's application domain. The cost ot
programmability is limited to an increase in the physical size of the machine: it does not incur a loss in performance,
given appropriate architectural support. This is shown by Warp, as it can be programmed to execute many
well-known systolic algorithms as fast as special-purpose arrays built using similar technology.

Acknowledgments

We appreciate the contributions to the Warp project by our colleagues and visitors at Carnegie Mellon:
D. Adams, F. Bitz. C. Bono, N1. Browne. B. Bruegge, C. H. Chang, E. Clune, R. Cohn, R. Conde. J. Deutch.
P. Dew, B. Enderton, L. Hamey, P. K. Hsiung, K. Hughes, T. Kanade, G. Klinker, P. Lieu, P, Maulik. D. Morris,
A. Noaman, T. M. Parng, H. Printz, J. Race, M. Ravishankar, J. Rendas, H. Ribas. C. Sarockv, K. Sarockv. J. Scnko.

24

Y. Shintani, B. Siegcll, H. Sohn, P. Stcenkiste, Y. B. Tsai, P. S. Tseng, R. Wallace, J. K. Wang, I. C. Wu, D. Yam,
and A. Zobel. We thank our industrial partners GE and Honeywell for their contribution towards the construction of

the wire-wrapped prototypes. We appreciate the continued collaboration with GE for the development of the
production Warp machine. In particular, we thank R. Barned, S. Carmel, J. Cokus, J. Condon, D. Crump,

R. A. Field, R. Gaus, N. Gearhart, J. lannuzzi, A. Lock, C. Pickering, A. Pfueller, M. Sarig, S. Sillich, T. Stark,

W. Tates, A. Toll, C. Walrath, and J. Weimar of GE in Syracuse for their efforts.

References

1. Annaratone, M., Arnould, E., Gross, T., Kung, H. T., Lam, M. S., Mcnzilcioglu, 0., Saro ky, K., and Webb, J. A.
Warp Architecture and Implementation. Proceedings of the 13h Annual International Symposium on Computer
Architecture, IEEE/ACM, June, 1986, pp. 346 - 356.

2. Annaratone, M., E. Amould, H.T. Kung, and 0. Menzilcioglu. Using Warp as a Supercomputer in Signal
Processing. Proceedings of ICASSP 86, April, 1986, pp. 2895-2898.

3. Annaratone, M., Bitz, F., Clune E., Kung H. T., Maulik, P., Ribas, H., Tseng, P., and Webb, J. Applications and
Algorithm Partitioning on Warp. Proc. Compcon Spring 87, San Francisco, February, 1987, pp. 272-275.

4. Annaratone, M., Bitz, F., Deutch, J., Hamey, L., Kung, H. T., Maulik P. C., Tseng, P., and Webb, J. A.
Applications Experience on Warp. Proceedings of the 1987 National Computer Conference, AFIPS, Chicago, June,
1987, pp. 149-158.

5. Annaratone, M., Arnould, E., Cohn, R., Gross, T., Kung, H. T., Lam, M., Menzilcioglu, 0., Sarocky, K., Senko,
J., and Webb, J. Architecture of Warp. Proc. Compcon Spring 87, San Francisco, February, 1987, pp. 264-267.

6. Annaratone, M., Arnould, E., Cohn, R., Gross, T., Kung, H. T., Lam, M., Menzilcioglu, 0., Sarocky, K., Senko,
J., and Webb, J. Warp Architecture: From Prototype to Production. Proceedings of the 1987 National Computer
Conference, AFIPS, Chicago, June, 1987, pp. 133-140.

7. Batcher, K. E. "Design of a Massively Parallel Processor". IEEE Trans. on Computers C-29 (1980), 836-840.

8. Bruegge, B., Chang C., Cohn R., Gross T., Lam M., Lieu P., Noaman A., and Yam, D. The Warp Programming
Environment. Proceedings of the 1987 National Computer Conference, AFIPS, Chicago, June, 1987, pp. 141-148.

9. Charlesworth, A. E. "An Approach to Scientific Array Processing: The Architectural Design of the
AP-120B/FPS-164 Family". Computer 14 (September 1981), 18-27.

10. Clune, E., Crisman, J. D., Klinker, G. J., and Webb, J. A. Implementation and Performance of a Complex
Vision System on a Systolic Array Machine. Tech. Rept. CMU-RI-TR-87-16, Robotics Institute, Carnegie Mellon
University, 1987.

11. Fisher, A. L., Kung, H. T. and Sarocky, K. Experience with the CMU Programmable Systolic Chip.
Microarchitecture of VLSI Computers, 1985, pp. 209 -222.

12. Gross, T. and Lam, M. Compilation for a High-performance Systolic Array. Proccedings ot the SIGPLAN So
Symposium on Compiler Construction, ACM SIGPLAN, June, 1986, pp. 27-38.

13. Gross, T., Kung, H. T, Lain, M. and Webb, J. Warp as a Machine for Low-Level Vision. Proceedings ol I 9N5
IEEE International Conference on Robotics and Automation, March, 1985, pp. 790-8W0.

14. Hamey, L. G. C., Webb, J. A., and Wu, I. C. Low-level Vision on Warp and the Apply Programming Model.
In Parallel Computation and Computers for Artificial Intelligence, Kluwer Academic Publishers, 1)T87. Edited b
J. Kowalik.

15. Haralick, R. M. "Digital Step Edges from Zero Crossings of Second Directional Derivatives". IEEE
Transactions on Pattern Analysis and Machine Intelligence 6 (1984), 58-68.

16. Hsu, F.H., Kung, H.T., Nishizawa, T. and Sussman, A. Architecture of the Link and Interconnection Chip.
Proceedings of 1985 Chapel Hill Conference on VLSI, Computer Science Department, The University of North
Carolina. May, 1985, pp. 186-195.

25

17. Kanadc, T., and Webb, J. A. End of Year Report for Parallel Vision Algorithm Design and Implementation.
Robotics Institute, Carnegie Mellon University, 198/.

18. Kung, H.T. "Why Systolic Architectures?". Computer Magazine 15, 1 (Jan. 1982), 37-46.

19. Kung, H.T. Systolic Algorithms for the CMU Warp Processor. Proceedings of the Seventh International
Conference on Pattern Recognition, International Association for Pattern Recognition, 1984, pp. 570-577.

20. Kung, H. T. "Memory Requirements for Balanced Computer Architectures". Journal of Complexity 1, 1
(1985), 147-157.

21. Kung, H.T. and Webb, J.A. Global Operations on the CMU Warp Machine. Proceedings of 1985 AIAA
Computers in Aerospace V Conference, American Institute of Aeronautics and Astronautics, October, 1985, pp.
209-218.

22. Kung, H. T. and Webb, J. A. "Mapping Image Processing Operatipns onto a Linear Systolic Machine".

Distributed Computing 1,4 (1986), 246-257.

23. Lam, M. S. A Systolic Array Optimizing Compiler. Ph.D. Th., Carnegie Mellon University, May 1987.

24. Lasser, C. The Complete *Lisp Manual. Thinking Machines Corporation, Cambridge, Massachusetts, 1986.

25. Little, J. J., Glelloch, G., and Cass, T. Parallel Algorithms for Computer Vision on the Connection Machine.
Image Understanding Workshop, DARPA, Feb, 1987, pp. 628-638.

26. Preparata, F. P. and Shamos, M. I.. Computational Geometry - An Introduction. Springer, New York, 1985.

27. Rau, B. R. and Glacser, C. D.. Some Scheduling Techniques and an Easily Schedulable Horizontal
Architecture for High Performance Scientific Computing. Proc. 14th Annual Workshop on Microprogramming,
October, 1981, pp. 183-198.

28. Rau, B. R., Kuekes, P. J. and Glaeser, C. D. A Statically Scheduled VLSI Interconnect for Parallel Processors.
VLSI Systems and Computations, October, 1981, pp. 389-395.

29. Rosenfeld, A. A Report on the DARPA Image Understanding Architectures Workshop. Image Understanding
Workshop, DARPA, Los Angeles, California, February, 1987, pp. 298-301.

30. Tamura, H., Sakane, S., Tomita, F., Yokoya, N., Sakaue, K. and Kaneko, N. SPIDER Users' Manual. Joint
System Development Corp., Tokyo, 1983.

31. Thinking Machines Corporation. Connection Machine Model CM-2 Technical Summary. HA 87-4, Thinking
Machines Corporation, April, 1897.

32. Wallace, R., Stentz, A., Thorpe, C., Whittaker, W. and Kanade, T. First Results in Robot Road-Following.
Proceedings of IJCAI, 1985, pp. 1089-1093.
33. Wallace, R., Matsuzaki, K., Goto, Y., Crisman, J., Webb, J. and Kanade, T. Progress in Robot Road-Following.
Proceedings of 1986 IEEE International Conference on Robotics and Automation, April, 1986, pp. 1615-1621.

34. Waltz, D. L. "Applications of the Connection Machine". IEEE Computer 20. 1 (January 1987), 85-97.

35. Woo, B., Lin, L. and Ware, F. A High-Speed 32 Bit IEEE Floating-Point Chip Set for Digital Signal
Processing. Proceedings of ICASSP 84, IEEE, 1984, pp. 16.6.1-16.6.4.

36. Young, D.. Iterative Solution of Large Linear Systems. Academic Press, New York, 1971.

