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New Course: Bachelor’s Seminar in Comp Arch

Fall 2018
2 credit units

Rigorous seminar on fundamental and cutting-edge
topics in computer architecture

Critical presentation, review, and discussion of seminal
works in computer architecture

o We will cover many ideas & issues, analyze their tradeoffs,
perform critical thinking and brainstorming

Participation, presentation, report and review writing
Stay tuned for more information



Agenda for Today & Next Few Lectures

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

s QOut-of-Order Execution

= Other Execution Paradigms




Readings for Today

Peleg and Weiser, “MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,” IEEE Micro 2008.



Other Approaches to Concurrency
(or Instruction Level Parallelism)




Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

s VLIW

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUs)
= Decoupled Access Execute

= Systolic Arrays




SIMD Processing:
Exploiting Regular (Data) Parallelism




Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

o Array processor
o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
o Multiprocessor

o Multithreaded processor




Recall: SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces

o Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space



Recall: Array vs. Vector Processors

ARRAY PROCESSOR VECTOR PROCESSOR
Instruction Stream Same op @ same time
Diff t ti
LD VR € A[3:0] Lpo| LDt [LD2 Lp3]  Lpp _Terentors@fime
ADD VR <« VR, 1
’ AD2 AD
MUL VR € VR, 2 ADO1 AD1 AD3 LD1| ADO
ST A[3:0] ¢ VR MUO| MU1 |[MU2 MU3 LD2 | AD1 |MUO
STO| ST1 |ST2 ST3 [LD3 AD2 |MU1 STO]
——
Different ops @ same space AD3 |MUZ ST1
v MU3 ST2
Time Same op @ space ST3

€<——Space—> <——Space——
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Recall: Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N parallel accesses if all N go to different banks

0 1 2

MDR| | MAR | | MDR| | MAR | | MDR| | MAR

Bank Bank Bank  |asssssssssssssssssssnnns Bank

Data bus

15
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Address bus

Picture credit: Derek Chiou

CPU
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Some Issues

Stride and banking

o As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

Storage of a matrix

o Row major: Consecutive elements in a row are laid out
consecutively in memory

o Column major: Consecutive elements in a column are laid out
consecutively in memory

2 You need to change the stride when accessing a row versus
column

12



Matrix Multiplication

= A and B, both in row-major order

00O oo >

>

BnBnonn

6 7 8 9 | 10 | 11

A4x6 Bex1o - C4x10

Dot products of rows and columns |
of Aand B

: Load A, into vector register V,
Each time, increment address by one to access the next column

Accesses have a stride of 1

: Load B, into vector register V,

Each time, increment address by 10
Accesses have a stride of 10

14 | 15

16

17

18

19

Different strides can lead
to bank conflicts

\

J

How do we minimize them?

~

J
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Minimizing Bank Conflicts

s More banks

= Better data layout to match the access pattern
o Is this always possible?

= Better mapping of address to bank
o E.g., randomized mapping
o Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.

14



Recall: Questions (II)

What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

o Idea: Use indirection to combine/pack elements into vector
registers

o Called scatter/gather operations

15



Gather/Scatter Operations

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[i] + C[D[1]]

Indexed load instruction (Gather)

LV vD, D # Load indices in D vector
[LVI vC, rC, vD # Load indirect from rC base]
LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add
SV vA, rA # Store result

16



Gather/Scatter Operations

Gather/scatter operations often implemented in hardware
to handle sparse vectors (matrices)

Vector loads and stores use an index vector which is added
to the base register to generate the addresses

Scatter example
Index Vector Data Vector (to Store) Stored Vector (in Memory)
0 3.14 Base+0  3.14
2 6.5 Base+l X
6 71.2 Baset+2 6.5
7 2.71 Base+t3 X
Base+t4 X
Base+5S X
Base+6 71.2

Base+7 2.71
17



Array vs. Vector Processors, Revisited

Array vs. vector processor distinction is a “purist’s”
distinction

Most "modern” SIMD processors are a combination of both
a They exploit data parallelism in both time and space
o GPUs are a prime example we will cover in a bit more detail

18



Recall: Array vs. Vector Processors

ARRAY PROCESSOR VECTOR PROCESSOR
Instruction Stream Same op @ same time
Diff t ti
LD VR € A[3:0] Lpo| LDt [LD2 Lp3]  Lpp _Terentors@fime
ADD VR <« VR, 1
’ AD2 AD
MUL VR € VR, 2 ADO1 AD1 AD3 LD1| ADO
ST A[3:0] ¢ VR MUO| MU1 |[MU2 MU3 LD2 | AD1 |MUO
STO| ST1 |ST2 ST3 [LD3 AD2 |MU1 STO]
——
Different ops @ same space AD3 |MUZ ST1
v MU3 ST2
Time Same op @ space ST3

€<——Space—> <——Space——
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Vector Instruction Execution

A[6] B[6]
A[5] B[5]
A[4] B[4]
A[3] B[3]

'
\ /

Gl

\ <

Lo

Time [

C[O0]

Slide credit: Krste Asanovic

Execution using
one pipelined
functional unit

VADD A,B > C

Execution using
four pipelined
functional units

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]

S S SN ST SIS S
N Vi N v V2t S WV O W VA

| cI8) f | o) f | Cr10] f | crui] f

L T
Tme Ty
C[O0] C[1] C[2] C[3]
<€ Space >
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Vector Unit Structure

Partitiondd\_ |

Vector

Functional Unit
/

[

[E— —

Registers

~

Elements O,
4,8, ..

Lane

Elements 1,
5,9, ..

Elements 2,
6, 10, ...

Elements 3,
7,11, ..

v

v

Memory Subsystem

Slide credit: Krste Asanovic
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Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o Example machine has 32 elements per vector register and 8 lanes
o Completes 24 operations/cycle while issuing 1 vector instruction/cycle

Load Unit Multiply Unit Add Unit
ooooof—ﬁﬂ
olooo ol AAA[AA[4LA
time o oloooeedlaala/ala[lidd fm/mm/m/m[nmm
— e e 000060 AlAlAlalalaAaldln/m/mmnnnn
O|0[0|0|0|F===NA A A AAAA AN EEEEEEN
QQQQQ(L—”%HH/AAAAA4..A. HEEEEEEHN
ololololololo]b]alalalalalladd fm[mm[mm[mm =
olololololololojalajalalalalalllm/m/m/mm/mnm
AAAAAAA AN EEEEEENE
Instruction LI LI

issue

Slide credit: Krste Asanovic 22



Automatic Code Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + B[i];
Scalar Sequential Code Vectorized Code

Vector Instruction

: Vectorization is a compile-time reordering of
: operation sequencing
: = requires extensive loop dependence analysis

Slide credit: Krste Asanovic 23



Vector/SIMD Processing Summary

Vector/SIMD machines are good at exploiting regular data-
level parallelism

o Same operation performed on many data elements

o Improve performance, simplify design (no intra-vector
dependencies)

Performance improvement limited by vectorizability of code
o Scalar operations limit vector machine performance

o Remember Amdahl’s Law

o CRAY-1 was the fastest SCALAR machine at its time!

Many existing ISAs include (vector-like) SIMD operations
o Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

24



SIMD Operations in Modern ISAs




SIMD ISA Extensions

Single Instruction Multiple Data (SIMD) extension

instructions

o Single instruction acts on multiple pieces of data at once
o Common application: graphics
o Perform short arithmetic operations (also called packed

arithmetic)

For example: add four 8-bit numbers
Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $sl

32

24 23

16 15

87

0  Bit position

$s0

$s1

$s2
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Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

o A la array processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

63 8 7
{

0

(@)

63 16 15

(b)

63 32 31

(¢)
63

(d)

Figure 1. MMX technology data types: packed byte (a),

packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.
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MMX Example: Image Overlaying (1)

= Goal: Overlay the human in image 1 on top of the background in image 2

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

for (i=0; i<image_size; i++) {

if (x{i] == Blue) new_imageli] =ylil;

else new_imageli] = x[i;

MM1 Blue Blue Blue Blue Blue Biue Blue Blue
MMS3 | X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue|X2!=blue | X1=blue | XO=blue
MM1 | 0x0000 | Ox0000 | OxFFFF | OxFFFF | Ox0000 | Ox0000 | OxFFFF | OxFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 28



MMX Example: Image Overlaying (11)

PAND MM4, MM1 _ Y = Blossom image PANDN MM1, MM3 X =Woman'’s image
Mval Y, [ Ye T Ys [ Yol Yo [ Yo Y[ Y, | MM1[0x0000]0x0000]0xFFFF [0xFFFF [0x0000]0~0000]0xFFFF I0xFFFF|

MM1 [0x0000 ] 00000 [ OxFFFF [OxFFFF[0x0000]0x0000[OxFFFF[ONFFFF] MM3] X, [ X [ Xs | Xo [ X3 [ X | X ] Xo |
MM4 [0x0000[0x0000] Vs | Y. [0x0000[0x0000] Yy | Yo [MM1] X, [ X; [0x0000[0x0000] X, [ X, [0x0000[0x0000)

\ POR MM4. MM / :.

MMA] X, | Xo | Y | Ya] Xa | Xo | Y9 | Yo &

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.
Movg ' mm3, memt - /* Load _éight pixels from.
e SR ~ woman'simage -
Movg mm4, mem2  /* Load eight pixels from the
o blossom image
Pcmpegb. mmf, mm3

Pand  mmd, mm1.
Pandn  mmi, mm3

Por mm4, mmt.

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 29




GPUs (Graphics Processing Units)




GPUs are SIMD Engines Underneath

= The instruction pipeline operates like a SIMD pipeline (e.q.,
an array processor)

= However, the programming is done using threads, NOT
SIMD instructions

= To understand this, let's go back to our parallelizable code
example

= But, before that, let’s distinguish between
a Programming Model (Software)
VS.
a Execution Model (Hardware)

31



Programming Model vs. Hardware Execution Model

Programming Model refers to how the programmer expresses
the code

o E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), ...

Execution Model refers to how the hardware executes the
code underneath

o E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, ...

Execution Model can be very different from the Programming
Model

o E.g., von Neumann model implemented by an OoO processor
o E.g., SPMD model implemented by a SIMD processor (a GPU)

32



How Can You Exploit Parallelism Here?

for (i=0; i < N; i++)
Scalar Sequential Code  €[1l = A[1] + B[1];

Let’s examine three programming
options to exploit instruction-level
parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

33



Prog. Model 1: Sequential (SISD) ™™ &1y = ata) + i1

Scalar Sequential Code ™ Can be executed on a:

= Pipelined processor

= QOut-of-order execution processor

o Independent instructions executed
when ready

a Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

o In other words, the loop is dynamically
unrolled by the hardware

= Superscalar or VLIW processor

o Can fetch and execute multiple
instructions per cycle

34



Prog. Model 2: Data Parallel (SIMDJ™ iy = ata) + ati1s

Scalar Sequential Code Vectorized Code

VLD A-> V1

Iter. VLD B> V2

VADD V1+V2->V3

VST V3->C

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)
35




for (i=0; i < N; i++)

Prog. Model 3: Multithreaded Cli] = A[i] + Bl4];

Scalar Sequential Code

" Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

36



i < N; i++)

Prog. Model 3: Multithreaded T elil = At) 4 BLa1s

1 > Realization: Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine

Single Instruction Multiple Thread




A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

o A warp is essentially a SIMD operation formed by hardware!

38



for (i=0; i < N; i++)

SPMD on SIMT MﬂChiﬂ@ C[i],= A[i] + B[i];

(i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:

Single Instruction Multiple Thread




Graphics Processing Units

SIMD not

“xposed to Programmer (SIMT)




SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions -
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently (on any type of scalar pipeline) > MIMD processing

o Can group threads Into warps flexibly = I.e., can group threads
that are supposed to truly execute the same instruction >

dynamically obtain and maximize benefits of SIMD processing
41



. . for (i=0; i < N; i++)
Multithreading of Warps CLil = ALi] + BIil;

= Assume a warp consists of 32 threads
= If you have 32K iterations, and 1 iteration/thread - 1K warps

= Warps can be interleaved on the same pipeline = Fine grained
multithreading of warps

Warp 20 at PC X+2

42



Warps and Warp-Level FGMT

Warp: A set of threads that execute the same instruction

(on different data elements) - SIMT (Nvidia-speak)

All threads run the same code
Warp: The threads that run lengthwise in a woven fabric ...

Thread Warp 3

Thread Warp

Common PC

Scalar
Threac

W

Scalar
Thread

X

Scalar

Thread-e « -

Thread Warp 8

Y

Scalar
Thread

ThreadIWarp !

A 2

Z

SIMD Pipeline
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High-Level View ot a GPU

(PC, Mask) H

[-Cache

Shader | | Shader| Shader| ,,, | Shader v

Core Core Core Core
Decode

bt ¢ NS o o ot o
. \ l
Interconnection Network \ : S_? & S_? S_? |
t t t \ | 2 2 2 2 '
\ |
Memory @ | Memory Memory | | :§ g --ag -f?' l
Controller| |Controller Controller] \ | '[&[|&| &S],
$ $ 4 3] (13]13][3]
I SIMD Execution !
GDDR3 GDDR3 GDDR3| | - === ====-=--
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Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No
interlocking)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

FGMT enables long latency
tolerance

o Millions of pixels

Slide credit: Tor Aamodt

2
Thread Warp 3

Thread Warp 8

| ThreadIWarp 7 |

Warps available
for scheduling

SIMD Pipeline

A 4

|-Fetch
L 2

Decode
v

<NV ¢ I (€
<«NNV <€ 4

NV ¢ 3 €

D-Cache

v

: n Thread Warp 1
Al H't?l | Data Thread Warp 2

Writeback

Warps accessing

memory hierarchy
Miss?

| Thread Warp 6 |
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Warp Execution (Recall the Slide)

32-thread warp executing ADD A[tid],B[tid] = C[tid]

A[6] B[6]
A[5] B[5]
A[4] B[4]
A[3] B[3]

'
\ /

Gl

\ <

Lo

Time [

C[O0]

Slide credit: Krste Asanovic

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]

S S SN ST SIS S
N Vi N v V2t S WV O W VA

| cI8) f | o) f | Cr10] f | crui] f
| em]  asi] e[ el
e
C[0] Cl1] CI2] CI3]
<€ Space >
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SIMD Execution Unit Structure

Registers
for each
Thread

Functional Unit
/

Lane

1 (- 1 (- 1 (- 1 =
Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,4,8, .. 1,5,9, .. 2,6, 10, .. 3,7, 11, ...

A A A A A

A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4
i Ve ) ) [ e Vi O [ Vi B [ e Vi
L L L L
AN AN AN AN

| Yy | | |
A 4 A 4 A 4 A

Memory Subsystem

Slide credit: Krste Asanovic
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Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
oooooq‘vﬁjﬂ
.....‘-—-—-{AAAAA
time oooeeeeblaaaaa/iV /fmm/m/mEnn=
s Jeleeeeee AAAAAAALAEEEEE EEE
ClO[O[O[O[F i NAlAlAAAAA AN EEEEEN
QQQQQ(L--E--KAAAAA4-+ EEEEEEER
ololololo]ololblalalalalaliVs Am/m/mim/E[E/E =
Olojo|0]0|0|0|0O]|A|A A A A A ARLEEEEEEER
AAAAAAAAINEEE EEEE
EEEEEEER

I Warp issue >

Slide credit: Krste Asanovic 48



SIMT Memory Access

= Same instruction in different threads uses thread id to
index and access different data elements

Let’s assume N=16, 4 threads per warp > 4 warps

10 11 12 13 14 15 Threads

10 11 12 13 14 15 Data elements

Slide credit: Hyesoon Kim 48



Sample GPU SIMT Code (Simplified)

CPU code

for (ii = 0; ii < 100000; ++ii) {
[C[ii] = A[ii] + BIii]; J

¥
CUDA code I

[// there are 100000 threads \
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockIdx.x + threadldx.x;
int varA = aa[tid];
int varB = bb[tid];

C[tid] = varA + varB;

\J J

Slide credit: Hyesoon Kim
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Sample GPU Program (LLess Simplified)

CPU Program GPU Program

__global__ add_matrix

( float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int j = blockldx.y * blockDim.y + threadldx.y;
Intindex =1 + J*N;
if i<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock( blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>( a, b, c, N);

}

Slide credit: Hyesoon Kim 51



Warp-based SIMD vs. Traditional SIMD

Traditional SIMD contains a single thread
o Sequential instruction execution; lock-step operations in a SIMD instruction

o Programming model is SIMD (no extra threads) - SW needs to know
vector length

o ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different warp)
- programming model not SIMD

SW does not need to know vector length
Enables multithreading and flexible dynamic grouping of threads
o ISA is scalar > SIMD operations can be formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD

hardware
52



SPMD

Single procedure/program, multiple data
a This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

53



SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions -
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to truly execute the same instruction >

dynamically obtain and maximize benefits of SIMD processing




Threads Can Take Different Paths in Warp-based SIMD

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Slide credit: Tor Aamodt

Thread Warp

Common PC

Thread

1

Thread
2

Thread
3

Thread
4
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Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1 v

o Groups scalar threads

into warps Brangh 1 1 1 1 1 1 Ve

Patnal| | | | |
Branch divergence
occurs when threads Path\Ej I
inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

Slide credit: Tor Aamodt 56



Remember: Each Thread Is Independent

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to truly execute the same instruction >

dynamically obtain and maximize benefits of SIMD processing

If we have many threads

We can find individual threads that are at the same PC
And, group them together into a single warp dynamically
This reduces “divergence” = improves SIMD utilization

a SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)
57



Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

Form new warps from warps that are waiting

o Enough threads branching to each path enables the creation
of full new warps

WapX ¢ {4 1 - yLd il bl wapz
Warp Y | I

58



Dynamic Warp Formation/Merging

= Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

RN RE
F EREERRY

RN

EERERRE

TNXIE bibdd 4y

W oy T ! '

Path B

= Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.
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Dynamic Warp Formation Example
v

/1111
A V1111

A A
x/1110 a £
B y/0011 | __:_i Execut.ion of Warp x | i_i Execu?ion of Warp y
| >, at Basic Block A | >, at Basic Block A
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Hardware Constraints Limit Flexibility of Warp Grouping

Registers
for each
Thread

Functional Unit
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Can you move any thread \é
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Memory Subsystem

Slide credit: Krste Asanovic

61



Design of Digital Circuits
Lecture 21: SIMD Processors 11
and Graphics Processing Units

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Spring 2018
17 May 2018




We did not cover the following slides in lecture.
These are for your preparation for the next lecture.




An Example GPU




NVIDIA GeForce GTX 285

NVIDIA-speak:
o 240 stream processors
o “SIMT execution”

Generic speak:
o 30 cores
o 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian
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NVIDIA GeForce GTX 285 “core”

64 KB of storage
for thread contexts

.

shared across & units

= multiply-add
B = multiply

m = SIMD functional unit, control

(registers)

- = 1nstruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian
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NVIDIA GeForce GTX 285 “core’”

-

64 KB of storage
for thread contexts
(registers)

= Groups of 32 threads share instruction stream (each group is

a Warp)

= Up to 32 warps are simultaneously interleaved

= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian
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NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian
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Evolution of NVIDIA GPUs
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NVIDIA V100

NVIDIA-speak:
o 5120 stream processors
a “SIMT execution”

Generic speak:
o 80 cores
o 64 SIMD functional units per core

o Tensor cores for Machine Learning
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NVIDIA V100 Block Diagram

PCI Express 3.0 Host Interface

Memory Controller
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80 cores on the V100

https://devblogs.nvidia.com/inside-volta/




NVIDIA V100 Core
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