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New Course: Bachelor’s Seminar in Comp Arch

n Fall 2018
n 2 credit units

n Rigorous seminar on fundamental and cutting-edge 
topics in computer architecture

n Critical presentation, review, and discussion of seminal 
works in computer architecture
q We will cover many ideas & issues, analyze their tradeoffs, 

perform critical thinking and brainstorming

n Participation, presentation, report and review writing
n Stay tuned for more information
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Agenda for Today & Next Few Lectures
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms
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Readings for Today
n Peleg and Weiser, “MMX Technology Extension to the Intel 

Architecture,” IEEE Micro 1996.

n Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008.
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Other Approaches to Concurrency 
(or Instruction Level Parallelism)



Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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SIMD Processing:
Exploiting Regular (Data) Parallelism



Recall: Flynn’s Taxonomy of Computers

n Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

n SISD: Single instruction operates on single data element
n SIMD: Single instruction operates on multiple data elements

q Array processor
q Vector processor

n MISD: Multiple instructions operate on single data element
q Closest form: systolic array processor, streaming processor

n MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)
q Multiprocessor
q Multithreaded processor
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Recall: SIMD Processing
n Single instruction operates on multiple data elements

q In time or in space
n Multiple processing elements 

n Time-space duality

q Array processor: Instruction operates on multiple data 
elements at the same time using different spaces

q Vector processor: Instruction operates on multiple data 
elements in consecutive time steps using the same space

9



Recall: Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR ß A[3:0]
ADD  VR ß VR, 1 
MUL  VR ß VR, 2
ST     A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



Recall: Memory Banking
n Memory is divided into banks that can be accessed independently; 

banks share address and data buses (to minimize pin cost)
n Can start and complete one bank access per cycle
n Can sustain N parallel accesses if all N go to different banks
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Address bus

CPU
Picture credit: Derek Chiou



Some Issues
n Stride and banking

q As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, we can 
sustain 1 element/cycle throughput

n Storage of a matrix
q Row major: Consecutive elements in a row are laid out 

consecutively in memory
q Column major: Consecutive elements in a column are laid out 

consecutively in memory
q You need to change the stride when accessing a row versus 

column
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n A and B, both in row-major order

n A: Load A0 into vector register V1
q Each time, increment address by one to access the next column
q Accesses have a stride of 1

n B: Load B0 into vector register V2
q Each time, increment address by 10
q Accesses have a stride of 10

0 1 2 3 4 5

6 7 8 9 10 11

0 1 2 3 4 5

10 11 12 13 14 15

20

30

6 7 8 9

16 17 18 19

40

50

A0 B0

Matrix Multiplication
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A4x6 B6x10 → C4x10

Dot products of rows and columns 
of A and B

Different strides can lead 
to bank conflicts

How do we minimize them?



Minimizing Bank Conflicts
n More banks

n Better data layout to match the access pattern
q Is this always possible?

n Better mapping of address to bank
q E.g., randomized mapping
q Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.
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Recall: Questions (II)
n What if vector data is not stored in a strided fashion in 

memory? (irregular memory access to a vector)
q Idea: Use indirection to combine/pack elements into vector 

registers
q Called scatter/gather operations
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Gather/Scatter Operations

16

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD       # Load indices in D vector
LVI vC, rC, vD  # Load indirect from rC base
LV vB, rB       # Load B vector
ADDV.D vA,vB,vC # Do add
SV vA, rA       # Store result



Gather/Scatter Operations
n Gather/scatter operations often implemented in hardware 

to handle sparse vectors (matrices)
n Vector loads and stores use an index vector which is added 

to the base register to generate the addresses

n Scatter example
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Index Vector                 Data Vector (to Store)            Stored Vector (in Memory)

0 3.14 Base+0      3.14
2 6.5 Base+1      X
6 71.2 Base+2      6.5
7 2.71 Base+3      X

Base+4      X
Base+5      X
Base+6    71.2
Base+7      2.71 



Array vs. Vector Processors, Revisited
n Array vs. vector processor distinction is a “purist’s” 

distinction

n Most “modern” SIMD processors are a combination of both
q They exploit data parallelism in both time and space
q GPUs are a prime example we will cover in a bit more detail
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Recall: Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR ß A[3:0]
ADD  VR ß VR, 1 
MUL  VR ß VR, 2
ST     A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



Vector Instruction Execution

20

VADD A,B à C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time



Vector Unit Structure
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Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements 0, 
4, 8, …

Elements 1, 
5, 9, …

Elements 2, 
6, 10, …

Elements 3, 
7, 11, …

Slide credit: Krste Asanovic



Vector Instruction Level Parallelism
Can overlap execution of multiple vector instructions

q Example machine has 32 elements per vector register and 8 lanes
q Completes 24 operations/cycle while issuing 1 vector instruction/cycle
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load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction 
issue

Slide credit: Krste Asanovic



Automatic Code Vectorization
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of 
operation sequencing
Þ requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Ti
m

e

Slide credit: Krste Asanovic



Vector/SIMD Processing Summary
n Vector/SIMD machines are good at exploiting regular data-

level parallelism
q Same operation performed on many data elements
q Improve performance, simplify design (no intra-vector 

dependencies)

n Performance improvement limited by vectorizability of code
q Scalar operations limit vector machine performance
q Remember Amdahl’s Law
q CRAY-1 was the fastest SCALAR machine at its time!

n Many existing ISAs include (vector-like) SIMD operations
q Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD
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SIMD Operations in Modern ISAs



SIMD ISA Extensions
n Single Instruction Multiple Data (SIMD) extension 

instructions
q Single instruction acts on multiple pieces of data at once
q Common application: graphics
q Perform short arithmetic operations (also called packed 

arithmetic)
n For example: add four 8-bit numbers
n Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a0

0781516232432 Bit position

$s0a1a2a3

b0 $s1b1b2b3

a0 + b0 $s2a1 + b1a2 + b2a3 + b3

+
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Intel Pentium MMX Operations
n Idea: One instruction operates on multiple data elements 

simultaneously
q À la array processing (yet much more limited)
q Designed with multimedia (graphics) operations in mind
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Peleg and Weiser, “MMX Technology
Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register
Opcode determines data type:
8 8-bit bytes
4 16-bit words
2 32-bit doublewords
1 64-bit quadword

Stride is always equal to 1.



MMX Example: Image Overlaying (I)
n Goal: Overlay the human in image 1 on top of the background in image 2

28Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

PMADDWD~ vo I VI I vo I V I  I I v 2  I v3 I v 2  1 v 3  1 
X X X X X X X X 

1 MOO 1 MO1 I M10 I M I 1  I I MO2 I MO3 1 M12 I M13 1 
1 VOxMOO+Vl xMOl I VOxMl O+V1 xM11 I 1 V2xM02+V3xM03 I V2xM12+V3xMl3 I 

1 First result I Second result 1 
P A D D D ~  + / 

Figure 7. Flow diagram of matrix-vector mult iply. 

much like the one in Figure 6. This operation and similar ones 
appear in many multimedia algorithms and applications. 

A multiply-accumulate operation (MAC)-the product of 
two operands added to a third operand (the accumulator)- 
requires two loads (operands of the multiplication opera- 
tion), a multiply, and an add (to the accumulator). MMX does 
not support three-operand instructions, therefore it does not 
have a full MAC capability. On the other hand, MMX does 
define the PMADDWD instruction that performs four multi- 
plies and two 32-bit adds. A following PADDD instruction 
performs the additional two adds. 

We start by looking at a vector dot product, the building 
block of the matrix-vector multiplication. For this perfor- 
mance example, we assume both input vectors are 16 ele- 
ments long, with each element in the vectors being signed 
16 bits. Accumulation takes place in 32-bit precision. A 
Pentium processor microarchitecture, for example, would 
have to process the operations one at a time in sequential 
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi- 
tions, for a total of 63 instructions. Assume we perform four 
MACs (out of the 16) per loop iteration of our code. Then, 
we need to add 12 instructions for loop control (3 instructions 
per iteration, increment, compare, branch) and 1 instruction 
to store the result. Now the total is 76 instructions. 

Assuming all data and instructions are in the on-chip 
caches, and that exiting the loop will incur one branch mis- 
prediction, the integer assembly optimized version of this 
code (using both pipelines) takes just over 200 cycles on a 
Pentium processor microarchitecture. The cycle count is 
dominated by the nonpipelined, 11-cycle integer multiply 
operation. Under the same conditions, but assuming the data 
is in floating-point format, the floating-point optimized 
assembly version executes in 74 cycles. This version is faster 
as the floating-point multiply takes only three cycles to exe- 
cute and executes in a pipelined unit. 

Now, we can look at MMX technology MMX computes 
four elements at a time. This reduces the instruction count to 
eight loads, four PMADDWD instructions, three PADDD 
instructions, one store instruction, and three additional 
instructions (overhead due to packed data types), totaling 19 
instructions. Performing loop unrolling of four PMADDWD 
instructions eliminates the need to insert loop control instruc- 
tions. The four PMADDWDs already perform the 16 required 
MACs. Thus, the MMX instruction count is four times less than 
that for integer or floating-point operations. With the same 
assumptions applied to a Pentium processor microarchitec- 
ture, an MMX-optimized assembly version of the code using 
both pipelines will execute in only 12 cycles. This is a 

speedup of six times over floating- 
point and much more over integer. 

Now, we extend this example to 
a full matrix-vector multiply. We 
assume a 16x16 matrix multiplies a 
16-element vector, an operation built 
of 16 vector dot products. Repeating 
the same exercise as before, and 
assuming a loop unrolling that per- 
forms four vector dot products each 
iteration, the regular Pentium proces- 

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic- 
tions. Using MMX technology will require 4(4x19 + 3) or 316 
instructions. The MMX instruction count is 3.9 times less than 
when using regular operations. The best regular code imple- 
mentation (floating-point optimized version) takes just under 
1;200 cycles to complete in comparison to 207 cycles for the 
MMX code version. This is a speedup of 5.8 times. 

Chroma k e y ~ ~ g  
Chroma keying is an image overlay technique frequently 

referred to as the weatherman example. In this example, we 
use a dark-blue screen to overlay an image of a woman on 
a picture of a spring blossom (see Figure 8). The required C 
code operation is 

for (i=O: i<image-size; i++) i 
if (x[il == Blue) new-image[i] =y[il; 

else new-image[il = x[il; 
1 

arhere x is the image of the woman on a blue blackground, 
and y is the image of the spring blossom. 

Using MMX technology, we load eight pixels from the pic- 
ture with the woman on a blue background. In Figure 9, the 
compare instruction builds a mask for that data. This mask 
is a sequence of byte elements that are all 1s or all Os, rep- 
resenting the Boolean values of true and false. This reflects 
the h"anted" background and what we want to keep. 
Figure 9 shows this result using a black-and-white picture. 

Figure 10 shows this mask being used on the same eight 
pixels from the picture with the woman and the corre- 
sponding eight pixels from the spring blossom. The PANDN 
and PAND instructions use the mask to identify which pix- 
els to keep from the spring blossom and the woman. They 
also turn the unwanted pixels to Os. The POR instruction 
builds the final picture 

The MMX code sequence in Figure 11 processes eight pix- 
els using only six MMX instructions and doing so without 
branches. Being able to process a conditional move without 
using branch instructions or looking up condition codes is 
becoming an important performance issue with the advanced, 
deep-pipeline microarchitectures that use branch prediction. 
A branch based on the result of a compare operation on the 
incoming data is usually difficult to predict, as incoming data 
in many cases can change randomly and thus degrade the pre- 
diction quality. Eliminating branches used for data selection, 
together nTith the parallelism of the MMX instructions, com- 
bines into an important performance enhancement feature. 
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MMX Example: Image Overlaying (II)

29Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image



GPUs (Graphics Processing Units)



GPUs are SIMD Engines Underneath
n The instruction pipeline operates like a SIMD pipeline (e.g., 

an array processor)

n However, the programming is done using threads, NOT 
SIMD instructions

n To understand this, let’s go back to our parallelizable code 
example

n But, before that, let’s distinguish between 
q Programming Model (Software)

vs.
q Execution Model (Hardware)
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Programming Model vs. Hardware Execution Model

n Programming Model refers to how the programmer expresses 
the code
q E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, 

Multi-threaded (MIMD, SPMD), …

n Execution Model refers to how the hardware executes the 
code underneath
q E.g., Out-of-order execution, Vector processor, Array processor, 

Dataflow processor, Multiprocessor, Multithreaded processor, …

n Execution Model can be very different from the Programming 
Model
q E.g., von Neumann model implemented by an OoO processor
q E.g., SPMD model implemented by a SIMD processor (a GPU)
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How Can You Exploit Parallelism Here?
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming 
options to exploit instruction-level 

parallelism present in this sequential 
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)



Prog. Model 1: Sequential (SISD)
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code n Can be executed on a:

n Pipelined processor
n Out-of-order execution processor

q Independent instructions executed 
when ready

q Different iterations are present in the 
instruction window and can execute in 
parallel in multiple functional units

q In other words, the loop is dynamically 
unrolled by the hardware

n Superscalar or VLIW processor
q Can fetch and execute multiple 

instructions per cycle

for (i=0; i < N; i++)
C[i] = A[i] + B[i];



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

35

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD 
instruction to execute the same instruction from 
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD     A à V1

VLD     B à V2

VADD     V1 + V2 à V3

VST     V3 à C



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine



Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine
Single Instruction Multiple Thread



A GPU is a SIMD (SIMT) Machine
n Except it is not programmed using SIMD instructions

n It is programmed using threads (SPMD programming model)
q Each thread executes the same code but operates a different 

piece of data
q Each thread has its own context (i.e., can be 

treated/restarted/executed independently)

n A set of threads executing the same instruction are 
dynamically grouped into a warp (wavefront) by the 
hardware
q A warp is essentially a SIMD operation formed by hardware!
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Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:
Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute
the same instruction (i.e., at the same PC)



Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)



SIMD vs. SIMT Execution Model
n SIMD: A single sequential instruction stream of SIMD 

instructions à each instruction specifies multiple data inputs
q [VLD, VLD, VADD, VST], VLEN

n SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q [LD, LD, ADD, ST], NumThreads

n Two Major SIMT Advantages: 
q Can treat each thread separately à i.e., can execute each thread 

independently (on any type of scalar pipeline) à MIMD processing
q Can group threads into warps flexibly à i.e., can group threads 

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

41



Multithreading of Warps 
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Warp 0 at PC X

n Assume a warp consists of 32 threads
n If you have 32K iterations, and 1 iteration/thread à 1K warps
n Warps can be interleaved on the same pipeline à Fine grained 

multithreading of warps

Warp 1 at PC X

Iter. 
33

Iter. 
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2



Warps and Warp-Level FGMT
n Warp: A set of threads that execute the same instruction 

(on different data elements) à SIMT (Nvidia-speak)
n All threads run the same code
n Warp: The threads that run lengthwise in a woven fabric …
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Thread Warp 3
Thread Warp 8

Thread Warp 7
Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline



High-Level View of a GPU

44



Latency Hiding via Warp-Level FGMT
n Warp: A set of threads that 

execute the same instruction 
(on different data elements)

n Fine-grained multithreading
q One instruction per thread in 

pipeline at a time (No 
interlocking)

q Interleave warp execution to 
hide latencies

n Register values of all threads stay 
in register file

n FGMT enables long latency 
tolerance
q Millions of pixels 
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Decode

RF RFRF

ALU

ALU

ALU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt



Warp Execution (Recall the Slide)
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32-thread warp executing ADD A[tid],B[tid] à C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure



Warp Instruction Level Parallelism
Can overlap execution of multiple instructions

q Example machine has 32 threads per warp and 8 lanes
q Completes 24 operations/cycle while issuing 1 warp/cycle
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W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic



n Same instruction in different threads uses thread id to 
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp à 4 warps 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3
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Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 48



Sample GPU Program (Less Simplified)

51Slide credit: Hyesoon Kim



Warp-based SIMD vs. Traditional SIMD
n Traditional SIMD contains a single thread 

q Sequential instruction execution; lock-step operations in a SIMD instruction
q Programming model is SIMD (no extra threads) à SW needs to know 

vector length
q ISA contains vector/SIMD instructions

n Warp-based SIMD consists of multiple scalar threads executing in a 
SIMD manner (i.e., same instruction executed by all threads)
q Does not have to be lock step
q Each thread can be treated individually (i.e., placed in a different warp) 

à programming model not SIMD
n SW does not need to know vector length
n Enables multithreading and flexible dynamic grouping of threads

q ISA is scalar à SIMD operations can be formed dynamically
q Essentially, it is SPMD programming model implemented on SIMD 

hardware
52



SPMD
n Single procedure/program, multiple data 

q This is a programming model rather than computer organization

n Each processing element executes the same procedure, except on 
different data elements
q Procedures can synchronize at certain points in program, e.g. barriers

n Essentially, multiple instruction streams execute the same 
program
q Each program/procedure 1) works on different data, 2) can execute a 

different control-flow path, at run-time
q Many scientific applications are programmed this way and run on MIMD 

hardware (multiprocessors)
q Modern GPUs programmed in a similar way on a SIMD hardware
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SIMD vs. SIMT Execution Model
n SIMD: A single sequential instruction stream of SIMD 

instructions à each instruction specifies multiple data inputs
q [VLD, VLD, VADD, VST], VLEN

n SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q [LD, LD, ADD, ST], NumThreads

n Two Major SIMT Advantages: 
q Can treat each thread separately à i.e., can execute each thread 

independently on any type of scalar pipeline à MIMD processing
q Can group threads into warps flexibly à i.e., can group threads 

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing
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Threads Can Take Different Paths in Warp-based SIMD

n Each thread can have conditional control flow instructions
n Threads can execute different control flow paths
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Control Flow Problem in GPUs/SIMT
n A GPU uses a SIMD 

pipeline to save area 
on control logic
q Groups scalar threads 

into warps

n Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths
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Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution. 
Recall the Vector Mask and Masked Vector Operations?



Remember: Each Thread Is Independent
n Two Major SIMT Advantages: 

q Can treat each thread separately à i.e., can execute each thread 
independently on any type of scalar pipeline à MIMD processing

q Can group threads into warps flexibly à i.e., can group threads 
that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

n If we have many threads
n We can find individual threads that are at the same PC
n And, group them together into a single warp dynamically
n This reduces “divergence” à improves SIMD utilization

q SIMD utilization: fraction of SIMD lanes executing a useful 
operation (i.e., executing an active thread)
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Dynamic Warp Formation/Merging
n Idea: Dynamically merge threads executing the same 

instruction (after branch divergence)
n Form new warps from warps that are waiting

q Enough threads branching to each path enables the creation 
of full new warps
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Warp X
Warp Y

Warp Z



Dynamic Warp Formation/Merging
n Idea: Dynamically merge threads executing the same 

instruction (after branch divergence)

n Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007.
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Dynamic Warp Formation Example
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A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A x/1111
y/1111

B x/1110
y/0011

C x/1000
y/0010 D x/0110

y/0001 F x/0001
y/1100

E x/1110
y/0011

G x/1111
y/1111

A new warp created from scalar 
threads of both Warp x and y 
executing at Basic Block D

D

Execution of Warp x
at Basic Block A

Execution of Warp y
at Basic Block A

Legend
AA

Baseline

Dynamic
Warp
Formation

Slide credit: Tor Aamodt



Hardware Constraints Limit Flexibility of Warp Grouping
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread 
flexibly to any lane?
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We did not cover the following slides in lecture. 
These are for your preparation for the next lecture. 



An Example GPU



NVIDIA GeForce GTX 285
n NVIDIA-speak:

q 240 stream processors
q “SIMT execution”

n Generic speak:
q 30 cores
q 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian 65



NVIDIA GeForce GTX 285 “core”

…

= instruction stream decode= SIMD functional unit, control 
shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 
for thread contexts 
(registers)

Slide credit: Kayvon Fatahalian 66



NVIDIA GeForce GTX 285 “core”

…
64 KB of storage 
for thread contexts 
(registers)

n Groups of 32 threads share instruction stream (each group is 
a Warp)

n Up to 32 warps are simultaneously interleaved
n Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian 67



NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads
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Evolution of NVIDIA GPUs
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NVIDIA V100
n NVIDIA-speak:

q 5120 stream processors
q “SIMT execution”

n Generic speak:
q 80 cores
q 64 SIMD functional units per core

q Tensor cores for Machine Learning
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NVIDIA V100 Block Diagram

80 cores on the V100
https://devblogs.nvidia.com/inside-volta/
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NVIDIA V100 Core

15.7 TFLOPS Single Precision
7.8 TFLOPS Double Precision
125 TFLOPS for Deep Learning (Tensor cores)
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