
Design of Digital Circuits
Lecture 21: SIMD Processors II
and Graphics Processing Units

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zurich
Spring 2018
17 May 2018

New Course: Bachelor’s Seminar in Comp Arch

n Fall 2018
n 2 credit units

n Rigorous seminar on fundamental and cutting-edge
topics in computer architecture

n Critical presentation, review, and discussion of seminal
works in computer architecture
q We will cover many ideas & issues, analyze their tradeoffs,

perform critical thinking and brainstorming

n Participation, presentation, report and review writing
n Stay tuned for more information

2

Agenda for Today & Next Few Lectures
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms

3

Readings for Today
n Peleg and Weiser, “MMX Technology Extension to the Intel

Architecture,” IEEE Micro 1996.

n Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

4

Other Approaches to Concurrency
(or Instruction Level Parallelism)

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

6

SIMD Processing:
Exploiting Regular (Data) Parallelism

Recall: Flynn’s Taxonomy of Computers

n Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

n SISD: Single instruction operates on single data element
n SIMD: Single instruction operates on multiple data elements

q Array processor
q Vector processor

n MISD: Multiple instructions operate on single data element
q Closest form: systolic array processor, streaming processor

n MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
q Multiprocessor
q Multithreaded processor

8

Recall: SIMD Processing
n Single instruction operates on multiple data elements

q In time or in space
n Multiple processing elements

n Time-space duality

q Array processor: Instruction operates on multiple data
elements at the same time using different spaces

q Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space

9

Recall: Array vs. Vector Processors

10

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR ß A[3:0]
ADD VR ß VR, 1
MUL VR ß VR, 2
ST A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Recall: Memory Banking
n Memory is divided into banks that can be accessed independently;

banks share address and data buses (to minimize pin cost)
n Can start and complete one bank access per cycle
n Can sustain N parallel accesses if all N go to different banks

11

Bank
0

Bank
1

MDR MAR

Bank
2

Bank
15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU
Picture credit: Derek Chiou

Some Issues
n Stride and banking

q As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

n Storage of a matrix
q Row major: Consecutive elements in a row are laid out

consecutively in memory
q Column major: Consecutive elements in a column are laid out

consecutively in memory
q You need to change the stride when accessing a row versus

column

12

n A and B, both in row-major order

n A: Load A0 into vector register V1
q Each time, increment address by one to access the next column
q Accesses have a stride of 1

n B: Load B0 into vector register V2
q Each time, increment address by 10
q Accesses have a stride of 10

0 1 2 3 4 5

6 7 8 9 10 11

0 1 2 3 4 5

10 11 12 13 14 15

20

30

6 7 8 9

16 17 18 19

40

50

A0 B0

Matrix Multiplication

13

A4x6 B6x10 → C4x10

Dot products of rows and columns
of A and B

Different strides can lead
to bank conflicts

How do we minimize them?

Minimizing Bank Conflicts
n More banks

n Better data layout to match the access pattern
q Is this always possible?

n Better mapping of address to bank
q E.g., randomized mapping
q Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.

14

Recall: Questions (II)
n What if vector data is not stored in a strided fashion in

memory? (irregular memory access to a vector)
q Idea: Use indirection to combine/pack elements into vector

registers
q Called scatter/gather operations

15

Gather/Scatter Operations

16

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector
ADDV.D vA,vB,vC # Do add
SV vA, rA # Store result

Gather/Scatter Operations
n Gather/scatter operations often implemented in hardware

to handle sparse vectors (matrices)
n Vector loads and stores use an index vector which is added

to the base register to generate the addresses

n Scatter example

17

Index Vector Data Vector (to Store) Stored Vector (in Memory)

0 3.14 Base+0 3.14
2 6.5 Base+1 X
6 71.2 Base+2 6.5
7 2.71 Base+3 X

Base+4 X
Base+5 X
Base+6 71.2
Base+7 2.71

Array vs. Vector Processors, Revisited
n Array vs. vector processor distinction is a “purist’s”

distinction

n Most “modern” SIMD processors are a combination of both
q They exploit data parallelism in both time and space
q GPUs are a prime example we will cover in a bit more detail

18

Recall: Array vs. Vector Processors

19

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR ß A[3:0]
ADD VR ß VR, 1
MUL VR ß VR, 2
ST A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Vector Instruction Execution

20

VADD A,B à C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

Vector Unit Structure

21

Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

Slide credit: Krste Asanovic

Vector Instruction Level Parallelism
Can overlap execution of multiple vector instructions

q Example machine has 32 elements per vector register and 8 lanes
q Completes 24 operations/cycle while issuing 1 vector instruction/cycle

22

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

Automatic Code Vectorization

23

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
Þ requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Ti
m

e

Slide credit: Krste Asanovic

Vector/SIMD Processing Summary
n Vector/SIMD machines are good at exploiting regular data-

level parallelism
q Same operation performed on many data elements
q Improve performance, simplify design (no intra-vector

dependencies)

n Performance improvement limited by vectorizability of code
q Scalar operations limit vector machine performance
q Remember Amdahl’s Law
q CRAY-1 was the fastest SCALAR machine at its time!

n Many existing ISAs include (vector-like) SIMD operations
q Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

24

SIMD Operations in Modern ISAs

SIMD ISA Extensions
n Single Instruction Multiple Data (SIMD) extension

instructions
q Single instruction acts on multiple pieces of data at once
q Common application: graphics
q Perform short arithmetic operations (also called packed

arithmetic)
n For example: add four 8-bit numbers
n Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a0

0781516232432 Bit position

$s0a1a2a3

b0 $s1b1b2b3

a0 + b0 $s2a1 + b1a2 + b2a3 + b3

+

26

Intel Pentium MMX Operations
n Idea: One instruction operates on multiple data elements

simultaneously
q À la array processing (yet much more limited)
q Designed with multimedia (graphics) operations in mind

27

Peleg and Weiser, “MMX Technology
Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register
Opcode determines data type:
8 8-bit bytes
4 16-bit words
2 32-bit doublewords
1 64-bit quadword

Stride is always equal to 1.

MMX Example: Image Overlaying (I)
n Goal: Overlay the human in image 1 on top of the background in image 2

28Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

PMADDWD~ vo I VI I vo I V I I I v 2 I v3 I v 2 1 v 3 1
X X X X X X X X

1 MOO 1 MO1 I M10 I M I 1 I I MO2 I MO3 1 M12 I M13 1
1 VOxMOO+Vl xMOl I VOxMl O+V1 xM11 I 1 V2xM02+V3xM03 I V2xM12+V3xMl3 I

1 First result I Second result 1
P A D D D ~ + /

Figure 7. Flow diagram of matrix-vector mult iply.

much like the one in Figure 6. This operation and similar ones
appear in many multimedia algorithms and applications.

A multiply-accumulate operation (MAC)-the product of
two operands added to a third operand (the accumulator)-
requires two loads (operands of the multiplication opera-
tion), a multiply, and an add (to the accumulator). MMX does
not support three-operand instructions, therefore it does not
have a full MAC capability. On the other hand, MMX does
define the PMADDWD instruction that performs four multi-
plies and two 32-bit adds. A following PADDD instruction
performs the additional two adds.

We start by looking at a vector dot product, the building
block of the matrix-vector multiplication. For this perfor-
mance example, we assume both input vectors are 16 ele-
ments long, with each element in the vectors being signed
16 bits. Accumulation takes place in 32-bit precision. A
Pentium processor microarchitecture, for example, would
have to process the operations one at a time in sequential
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi-
tions, for a total of 63 instructions. Assume we perform four
MACs (out of the 16) per loop iteration of our code. Then,
we need to add 12 instructions for loop control (3 instructions
per iteration, increment, compare, branch) and 1 instruction
to store the result. Now the total is 76 instructions.

Assuming all data and instructions are in the on-chip
caches, and that exiting the loop will incur one branch mis-
prediction, the integer assembly optimized version of this
code (using both pipelines) takes just over 200 cycles on a
Pentium processor microarchitecture. The cycle count is
dominated by the nonpipelined, 11-cycle integer multiply
operation. Under the same conditions, but assuming the data
is in floating-point format, the floating-point optimized
assembly version executes in 74 cycles. This version is faster
as the floating-point multiply takes only three cycles to exe-
cute and executes in a pipelined unit.

Now, we can look at MMX technology MMX computes
four elements at a time. This reduces the instruction count to
eight loads, four PMADDWD instructions, three PADDD
instructions, one store instruction, and three additional
instructions (overhead due to packed data types), totaling 19
instructions. Performing loop unrolling of four PMADDWD
instructions eliminates the need to insert loop control instruc-
tions. The four PMADDWDs already perform the 16 required
MACs. Thus, the MMX instruction count is four times less than
that for integer or floating-point operations. With the same
assumptions applied to a Pentium processor microarchitec-
ture, an MMX-optimized assembly version of the code using
both pipelines will execute in only 12 cycles. This is a

speedup of six times over floating-
point and much more over integer.

Now, we extend this example to
a full matrix-vector multiply. We
assume a 16x16 matrix multiplies a
16-element vector, an operation built
of 16 vector dot products. Repeating
the same exercise as before, and
assuming a loop unrolling that per-
forms four vector dot products each
iteration, the regular Pentium proces-

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic-
tions. Using MMX technology will require 4(4x19 + 3) or 316
instructions. The MMX instruction count is 3.9 times less than
when using regular operations. The best regular code imple-
mentation (floating-point optimized version) takes just under
1;200 cycles to complete in comparison to 207 cycles for the
MMX code version. This is a speedup of 5.8 times.

Chroma k e y ~ ~ g
Chroma keying is an image overlay technique frequently

referred to as the weatherman example. In this example, we
use a dark-blue screen to overlay an image of a woman on
a picture of a spring blossom (see Figure 8). The required C
code operation is

for (i=O: i<image-size; i++) i
if (x[il == Blue) new-image[i] =y[il;

else new-image[il = x[il;
1

arhere x is the image of the woman on a blue blackground,
and y is the image of the spring blossom.

Using MMX technology, we load eight pixels from the pic-
ture with the woman on a blue background. In Figure 9, the
compare instruction builds a mask for that data. This mask
is a sequence of byte elements that are all 1s or all Os, rep-
resenting the Boolean values of true and false. This reflects
the h"anted" background and what we want to keep.
Figure 9 shows this result using a black-and-white picture.

Figure 10 shows this mask being used on the same eight
pixels from the picture with the woman and the corre-
sponding eight pixels from the spring blossom. The PANDN
and PAND instructions use the mask to identify which pix-
els to keep from the spring blossom and the woman. They
also turn the unwanted pixels to Os. The POR instruction
builds the final picture

The MMX code sequence in Figure 11 processes eight pix-
els using only six MMX instructions and doing so without
branches. Being able to process a conditional move without
using branch instructions or looking up condition codes is
becoming an important performance issue with the advanced,
deep-pipeline microarchitectures that use branch prediction.
A branch based on the result of a compare operation on the
incoming data is usually difficult to predict, as incoming data
in many cases can change randomly and thus degrade the pre-
diction quality. Eliminating branches used for data selection,
together nTith the parallelism of the MMX instructions, com-
bines into an important performance enhancement feature.

48 IEEEMicro

MMX Example: Image Overlaying (II)

29Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath
n The instruction pipeline operates like a SIMD pipeline (e.g.,

an array processor)

n However, the programming is done using threads, NOT
SIMD instructions

n To understand this, let’s go back to our parallelizable code
example

n But, before that, let’s distinguish between
q Programming Model (Software)

vs.
q Execution Model (Hardware)

31

Programming Model vs. Hardware Execution Model

n Programming Model refers to how the programmer expresses
the code
q E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,

Multi-threaded (MIMD, SPMD), …

n Execution Model refers to how the hardware executes the
code underneath
q E.g., Out-of-order execution, Vector processor, Array processor,

Dataflow processor, Multiprocessor, Multithreaded processor, …

n Execution Model can be very different from the Programming
Model
q E.g., von Neumann model implemented by an OoO processor
q E.g., SPMD model implemented by a SIMD processor (a GPU)

32

How Can You Exploit Parallelism Here?

33

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming
options to exploit instruction-level

parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

Prog. Model 1: Sequential (SISD)

34

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code n Can be executed on a:

n Pipelined processor
n Out-of-order execution processor

q Independent instructions executed
when ready

q Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

q In other words, the loop is dynamically
unrolled by the hardware

n Superscalar or VLIW processor
q Can fetch and execute multiple

instructions per cycle

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

35

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD A à V1

VLD B à V2

VADD V1 + V2 à V3

VST V3 à C

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

36

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

Prog. Model 3: Multithreaded

37

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine
Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine
n Except it is not programmed using SIMD instructions

n It is programmed using threads (SPMD programming model)
q Each thread executes the same code but operates a different

piece of data
q Each thread has its own context (i.e., can be

treated/restarted/executed independently)

n A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware
q A warp is essentially a SIMD operation formed by hardware!

38

Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

39

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:
Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute
the same instruction (i.e., at the same PC)

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model
n SIMD: A single sequential instruction stream of SIMD

instructions à each instruction specifies multiple data inputs
q [VLD, VLD, VADD, VST], VLEN

n SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q [LD, LD, ADD, ST], NumThreads

n Two Major SIMT Advantages:
q Can treat each thread separately à i.e., can execute each thread

independently (on any type of scalar pipeline) à MIMD processing
q Can group threads into warps flexibly à i.e., can group threads

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

41

Multithreading of Warps

42

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Warp 0 at PC X

n Assume a warp consists of 32 threads
n If you have 32K iterations, and 1 iteration/thread à 1K warps
n Warps can be interleaved on the same pipeline à Fine grained

multithreading of warps

Warp 1 at PC X

Iter.
33

Iter.
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2

Warps and Warp-Level FGMT
n Warp: A set of threads that execute the same instruction

(on different data elements) à SIMT (Nvidia-speak)
n All threads run the same code
n Warp: The threads that run lengthwise in a woven fabric …

43

Thread Warp 3
Thread Warp 8

Thread Warp 7
Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

High-Level View of a GPU

44

Latency Hiding via Warp-Level FGMT
n Warp: A set of threads that

execute the same instruction
(on different data elements)

n Fine-grained multithreading
q One instruction per thread in

pipeline at a time (No
interlocking)

q Interleave warp execution to
hide latencies

n Register values of all threads stay
in register file

n FGMT enables long latency
tolerance
q Millions of pixels

45

Decode

RF RFRF

ALU

ALU

ALU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp Execution (Recall the Slide)

46

32-thread warp executing ADD A[tid],B[tid] à C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

47

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure

Warp Instruction Level Parallelism
Can overlap execution of multiple instructions

q Example machine has 32 threads per warp and 8 lanes
q Completes 24 operations/cycle while issuing 1 warp/cycle

48

W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic

n Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp à 4 warps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

48

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 48

Sample GPU Program (Less Simplified)

51Slide credit: Hyesoon Kim

Warp-based SIMD vs. Traditional SIMD
n Traditional SIMD contains a single thread

q Sequential instruction execution; lock-step operations in a SIMD instruction
q Programming model is SIMD (no extra threads) à SW needs to know

vector length
q ISA contains vector/SIMD instructions

n Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)
q Does not have to be lock step
q Each thread can be treated individually (i.e., placed in a different warp)

à programming model not SIMD
n SW does not need to know vector length
n Enables multithreading and flexible dynamic grouping of threads

q ISA is scalar à SIMD operations can be formed dynamically
q Essentially, it is SPMD programming model implemented on SIMD

hardware
52

SPMD
n Single procedure/program, multiple data

q This is a programming model rather than computer organization

n Each processing element executes the same procedure, except on
different data elements
q Procedures can synchronize at certain points in program, e.g. barriers

n Essentially, multiple instruction streams execute the same
program
q Each program/procedure 1) works on different data, 2) can execute a

different control-flow path, at run-time
q Many scientific applications are programmed this way and run on MIMD

hardware (multiprocessors)
q Modern GPUs programmed in a similar way on a SIMD hardware

53

SIMD vs. SIMT Execution Model
n SIMD: A single sequential instruction stream of SIMD

instructions à each instruction specifies multiple data inputs
q [VLD, VLD, VADD, VST], VLEN

n SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q [LD, LD, ADD, ST], NumThreads

n Two Major SIMT Advantages:
q Can treat each thread separately à i.e., can execute each thread

independently on any type of scalar pipeline à MIMD processing
q Can group threads into warps flexibly à i.e., can group threads

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

54

Threads Can Take Different Paths in Warp-based SIMD

n Each thread can have conditional control flow instructions
n Threads can execute different control flow paths

55

Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT
n A GPU uses a SIMD

pipeline to save area
on control logic
q Groups scalar threads

into warps

n Branch divergence
occurs when threads
inside warps branch to
different execution
paths

56

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

Remember: Each Thread Is Independent
n Two Major SIMT Advantages:

q Can treat each thread separately à i.e., can execute each thread
independently on any type of scalar pipeline à MIMD processing

q Can group threads into warps flexibly à i.e., can group threads
that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

n If we have many threads
n We can find individual threads that are at the same PC
n And, group them together into a single warp dynamically
n This reduces “divergence” à improves SIMD utilization

q SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)

57

Dynamic Warp Formation/Merging
n Idea: Dynamically merge threads executing the same

instruction (after branch divergence)
n Form new warps from warps that are waiting

q Enough threads branching to each path enables the creation
of full new warps

58

Warp X
Warp Y

Warp Z

Dynamic Warp Formation/Merging
n Idea: Dynamically merge threads executing the same

instruction (after branch divergence)

n Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

59

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

60

A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A x/1111
y/1111

B x/1110
y/0011

C x/1000
y/0010 D x/0110

y/0001 F x/0001
y/1100

E x/1110
y/0011

G x/1111
y/1111

A new warp created from scalar
threads of both Warp x and y
executing at Basic Block D

D

Execution of Warp x
at Basic Block A

Execution of Warp y
at Basic Block A

Legend
AA

Baseline

Dynamic
Warp
Formation

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

61

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread
flexibly to any lane?

Design of Digital Circuits
Lecture 21: SIMD Processors II
and Graphics Processing Units

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zurich
Spring 2018
17 May 2018

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

An Example GPU

NVIDIA GeForce GTX 285
n NVIDIA-speak:

q 240 stream processors
q “SIMT execution”

n Generic speak:
q 30 cores
q 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian 65

NVIDIA GeForce GTX 285 “core”

…

= instruction stream decode= SIMD functional unit, control
shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage
for thread contexts
(registers)

Slide credit: Kayvon Fatahalian 66

NVIDIA GeForce GTX 285 “core”

…
64 KB of storage
for thread contexts
(registers)

n Groups of 32 threads share instruction stream (each group is
a Warp)

n Up to 32 warps are simultaneously interleaved
n Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian 67

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian 68

Evolution of NVIDIA GPUs

0

2000

4000

6000

8000

10000

12000

14000

16000

0

1000

2000

3000

4000

5000

6000

GTX	285	
(2009)

GTX	480	
(2010)

GTX	780	
(2013)

GTX	980	
(2014)

P100	
(2016)

V100	
(2017)

GF
LO

PS

#S
tr
ea
m
	P
ro
ce
ss
or
s

Stream	Processors

GFLOPS

69

NVIDIA V100
n NVIDIA-speak:

q 5120 stream processors
q “SIMT execution”

n Generic speak:
q 80 cores
q 64 SIMD functional units per core

q Tensor cores for Machine Learning

70

NVIDIA V100 Block Diagram

80 cores on the V100
https://devblogs.nvidia.com/inside-volta/

71

NVIDIA V100 Core

15.7 TFLOPS Single Precision
7.8 TFLOPS Double Precision
125 TFLOPS for Deep Learning (Tensor cores)

72
https://devblogs.nvidia.com/inside-volta/

