Design of Digital Circuits
Lecture 22: GPU Programming

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Spring 2018
18 May 2018




Agenda for Today

GPU as an accelerator

o Program structure
Bulk synchronous programming model

o Memory hierarchy and memory management

o Performance considerations
Memory access
SIMD utilization
Atomic operations
Data transfers



Recommended Readings

= CUDA Programming Guide

o https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html

= Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017




An Example GPU




NVIDIA GeForce GTX 285

NVIDIA-speak:
o 240 stream processors
o “SIMT execution”

Generic speak:
o 30 cores
o 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core” (I)

64 KB of storage
for thread contexts

.

shared across & units

= multiply-add
B = multiply

m = SIMD functional unit, control

(registers)

- = 1nstruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core” (II)

[] [] [] []
] ] ] ] 64 KB of storage

‘ ‘ ‘ ‘ ‘ ‘ for thread contexts
[ ] [ ] [ ] 4i .
(registers)

= Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

= Up to 32 warps are interleaved in an FGMT manner
= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian 7



NVIDIA GeForce GTX 285

[=]=] | [=]=]{[=]=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=[=]{[=]=] [=[=]| [=]=]|

 [=[=]{[=]=]| [=[=]| [=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=[=]{[=]=] [=[=]| [=]=]|

| [T=] [T  [wT=] | [<T]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

[=]=]1{ [=I=]{ [=I=]{ [=]=]|

| [=]=]{[=I=]{[=I=]| [=]=]|

CLirtr--T111]

L1100

CLiitr--T111]

 [=[=]{[=I=]{ [=I=]| [=]=]|

[T | [T | [T=] | [wT]|

[=[=] | (I=] | [S[=] | =[=],

[=[=]| (=[5} [[=]| =[=],

[m]=] | [=[=] | [=[=] | [=]=]|

[=]=]|[=]=]|[=]=]{[=]=]|

INNEEDEEER

| [=]=]{[=]=]{[=I=]| [=]=]|

1] | T=] | T=] | [ST=])

| [T=] [T [wT=] | [<T]|

| [=]=]{[=]=]{[=I=]| [=]=]|

[=1=] | [T=] | [ST=]} ES[=],

| [=T=]) [ST] [wT=] | [ST]]

CLirt--T1111

L1100

CLiit--T111]

[=[=]| [STE]| [ST=] | ST=])

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

[=1=]] [ST=]) ST=]) [S[=])

[=[=]| (STE] | ST=]| [ST=]]

INNEEnEEER

CLLf---TT11]

INNEEnEEER

| [T=] [T  [wT=] | [<T]|

[=]=]{[=I=]| [=I=]| [=]=]|

[==]{[=I=]{[=I=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

CLirtr--T111]

L1100

CLirt---T111]

 [=]=]{[=]=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

L1111

INNEEnEEER

| [=]=]{[=]=]{[=I=]| [=]=]|

1] | T=] | T=] | [ST=])

| [T=] [T [wT=] | [<T]|

[=]=]{[=I=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

INNEENEEER

CLift--T111]

INNNEnEEER

 [=]=]{[=]=]{[=[=]| [=]=]|

[T [T  [T=] | [wT]|

[=[=] | (I=] | [S[=] | (<[=])

 [=[=]{[=I=]{ [=I=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

INREEDEEER

L1111

INNEEnEEER

| [T=] [T  [wT=] | [<T]|

[=]=]1{ [=I=]{ [=I=]{ [=]=]|

| [=]=]{[=I=]{[=I=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

INNNEDEEER

CLift---T1111

INNNEN R

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian




Evolution of NVIDIA GPUs

#Stream Processors

6000

5000

4000

3000

2000

1000

GTX 285
(2009)

GTX 480 GTX 780 GTX980  P100 (2016)
(2010) (2013) (2014)

=fl=Stream Processors

=@=GFLOPS

V100 (2017)

16000

14000

12000

10000

8000

6000

4000

2000

GFLOPS




NVIDIA V100

NVIDIA-speak:
o 5120 stream processors
a “SIMT execution”

Generic speak:
o 80 cores
o 64 SIMD functional units per core

o Specialized Functional Units for Machine Learning (tensor
"cores” in NVIDIA-speak)

10



VIDIA V100 Block Diagram

PCI Express 3.0 Host Interface

Memory Controller
Jo10nu05 Asowaw

Memory Controller
Jononuog Aowew

Joflonuon Lowaw

5
3
)
13
o
o
2
e
£
»
=

Memory Controlier
Jojjonuon Aowop

NVLink NVLink

80 cores on the V100

https://devblogs.nvidia.com/inside-volta/




VIDIA V100 Core

e 4l 15.7 TFLOPS Single Precision

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadi/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-tit 7.8 TFLOPS Double Precision
] | [ 125 TFLOPS for Deep Learning (Tensor “cores”)

INT FPa3 FPaz INT FPag PP
INT FP31 ¥R INT FPaI PPRR
INT FPAZ PRS2 TENSOR TENSOR INT 932 FPR2 TENSOR
INT Fisd Fpad | CORE  CORE wr Fe peay | CORE
INT FPI2 rP32 INT
FPO2 FPAY INT
FP3t FPsd 5 wT Sum with
TP YT Lo &t T4 = > FP16 Full precision FP32 Convert to
ST ST ST roosT 1 storage/input product accumulator FP32 result

more products

Dispatch Unlt (32 thread/cik) Dispatch Unit {32 thread/clk) - ‘ ‘ -
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) -I

INT INT FP32 FPa2 5 INT INT PSS PR

INT FPa2 FPiR INT P32 PR
a2 Feay P32 Pl

FRIZFE TENSOR TENSOR PR PR TENSOR TENSOR

FPO2 FPY2 CORE CORE e — CORE CORE

P32 FP32 5 P31 Fat D —

FP3}Y FR3Z FP32 FPI2

P32 PP P32 FPX2
i A G . L o i FP16 or FP32 FP16 FP16 FP16 or FP32

sT ST 57 5 T ST ST

https://devblogs.nvidia.com/inside-volta/

12



GPU Programming




Recall: Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)
++ Vector operations
-- Very inefficient if parallelism is irregular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
Jow-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

14
Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



General Purpose Processing on GPU

Easier programming of SIMD processors with SPMD
o GPUs have democratized High Performance Computing (HPC)
o Great FLOPS/$, massively parallel chip on a commodity PC

Many workloads exhibit inherent parallelism
o Matrices
o Image processing

However, this is not for free

o New programming model

o Algorithms need to be re-implemented and rethought
Still some bottlenecks

o CPU-GPU data transfers (PCIe, NVLINK)

o DRAM memory bandwidth (GDDR5, HBM2)
Data layout

15



CPU vs. GPU

= Different design philosophies
o CPU: A few out-of-order cores
o GPU: Many in-order FGMT cores

CPU

- ==

Slide credit: Hwu & Kirk

16



GPU Computing

Computation is offloaded to the GPU

Three steps

o CPU-GPU data transfer (1)
o GPU kernel execution (2)
o GPU-CPU data transfer (3)

CPU
cores

CPU
memory

Matrix

GPU
memory

Matrix

GPU
cores

17



Traditional Program Structure

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU

o Massively parallel sections on GPU

Serial Code (host)

Parallel Kernel (device)

KernelA<<< nBlk, nThr >>>(args); 2222

Serial Code (host)

D

Parallel Kernel (device)

KernelB<<< nBlk, nThr >>>(args); & AP S

Slide credit: Hwu & Kirk

18



Recall: SPMD

Single procedure/program, multiple data
a This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

19



CUDA/OpenCL Programming Model
SIMT or SPMD

Bulk synchronous programming
o Global (coarse-grain) synchronization between kernels

The host (typically CPU) allocates memory, copies data,
and launches kernels

The device (typically GPU) executes kernels
o Grid (NDRange)
o Block (work-group)
Within a block, shared memory, and synchronization

o Thread (work-item)
20



Transparent Scalability

= Hardware is free to schedule thread blocks

-
T
/ Block2 Block3, \
o| At s
N l Sk Bkt Bz Bkt
_ Each block can execute in any order relative to other blocks.
\ 4

Slide credit: Hwu & Kirk

21



Memory Hierarchy

Block (0, 0)

Block (1, 0)

Shared memory

Shared memory

Registers

Registers

!

!

Registers

Registers

!

!

; Thread (0, 0)

; Thread (1, 0)

; Thread (0, 0)

; Thread (1, 0)

22



Traditional Program Structure in CUDA

Function prototypes

float serialFunction(..);

__global  void kernel(..);

main()
o 1) Allocate memory space on the device — cudaMalloc(&d in, bytes);

o 2) Transfer data from host to device — cudaMemCpy (d_in, h in, ..);

o 3) Execution configuration setup: #blocks and #threads e
(]

o 4) Kernel call - kernel<<<execution configuration>>>(args...); &

o 5) Transfer results from device to host — cudaMemCpy (h_out, d out, ..);

N
-

Kernel— global  void kernel(type args,..)
0 Automatic variables transparently assigned to registers
o Shared memory:  shared
o Intra-block synchronization:  syncthreads();

Slide credit: Hwu & Kirk

23

as needed



CUDA Programming [Language

Memory allocation
cudaMalloc( (void**)&d in, #bytes);

Memory copy

cudaMemcpy(d in, h in, #bytes, cudaMemcpyHostToDevice);

Kernel launch

kernel<<< #blocks, #threads >>>(args);

Memory deallocation

cudaFree(d in);

Explicit synchronization

cudaDeviceSynchronize();

24



Indexing and Memory Access

= Images are 2D data structures
o height x width
o Image[j][i], where 0 < j < height, and 0 < i < width

Image[0][1]
\‘0 i 2 3 4 5 6 7

\$

Image[1][2]—

0
1
2
3
4
5
6
7




Image Layout in Memory

= Row-major layout
= Image[j][i] = Image[j x width + i]

| Image[0][1] = Image[0 x 8 + 1]
Stride = width
Image[1][2] = Image[1 x 8 + 2]

26



Indexing and Memory Access: 1D Grid

= One GPU thread per pixel
s Grid of Blocks of Threads

0 gridDim.x, blockDim.x
o blockIdx.x, threadIdx.x

Thread 0
Thread 1
Thread 2
Thread 3

blockIdx.x Block O

threadIdx.x

Block O

6*4+1=25

blockIdx.x * blockDim.x +
threadIdx.x




Indexing and Memory Access: 2D Grid

= 2D blocks

0 gridDim.x, gridDim.y

threadIdx.x
threadIdx.y
Block (0 0)

FH r blockIdx.x
blockIdx.y

Col = blockIdx.x *

blockDim.x + threadIdx.x __....__

Row = blockIdx.y *
blockDim.y + threadIdx.y

o
=

Row=1*2+1=3
Col=0*2+1=1

Image[3][1] = Image[3 * 8 + 1]

28



Briet Review ot GPU Architecture (I)

= Streaming Processor Array
o Tesla architecture (G80/GT200)

| Instruction Fetch/Dispatch

Register File

(2}
<
()
<

Texture Unit

—
—




Briet Review of GPU Architecture (1)

[ Strea m i ng M U Iti p rocesso rS (S M ) Streaming Multiprocessor
o Streaming Processors (SP) | |

| Warp Scheduler || Warp Scheduler |
Dispatch Unit Dispatch Unit
| I |
Register File
I . LD/ST
= Blocks are divided into warps e (|| e (e | 0T
SFU
. LD/ST
o SIMD unit (32 threadS) PSP SRS e
LD/ST
SP | sP SP || SP ot | -
SP | SP SP || SP I—,,%l
Block O’'s warps Block 1's warps Block 2’'s warps LD/ST
| | | SP | sP SP || SP ot |
' ' LD/ST SFU
LD/ST
t0tlt2 ... t31 t0tlt2 ... t31 t0tlt2 ... t31 SRR SR SR SE oSt |
\\\\\\\\\\) ANNNNNNNNNY \\\\\\\\\\)
,\{5‘ > //5 u P ) f\‘ﬁ;( ,)“ SP | SP SP | sP T
- & 4 - &« 4 - < 4 LDIST SFU
SP | SP SP || SP [ LosT |
LD/ST
Shared Memory / L1 Cache

| Constant Cache |

NVIDIA Fermi architecture

30



Briet Review of GPU Architecture (I11)

Streaming Multiprocessors (SM) or Compute Units (CU)
o SIMD pipelines

Streaming Processors (SP) or CUDA “cores”
a Vector lanes

Number of SMs x SPs across generations
o Tesla (2007): 30 x 8

o Fermi (2010): 16 x 32

o Kepler (2012): 15 x 192

o Maxwell (2014): 24 x 128

o Pascal (2016): 56 x 64

o Volta (2017): 80 x 64



Performance Considerations




Performance Considerations

= Main bottlenecks
a Global memory access
o CPU-GPU data transfers
= Memory access

o Latency hiding
= Occupancy

o Memory coalescing
o Data reuse
= Shared memory usage
= SIMD (Warp) Utilization: Divergence
= Atomic operations: Serialization

= Data transfers between CPU and GPU
a Overlap of communication and computation




Memory Access




Latency Hiding

= FGMT can hide long latency operations (e.g., memory accesses)
= Occupancy: ratio of active warps

4 active warps 2 active warps

Instruction 3 Instruction 3

Instruction 2 .
Instruction 2

Warp 0 Warp 0

Instruction 1
Instruction 3

Instruction 4
(Long latency)

Instruction 4

Instruction 1 (Long latency)

Instruction 3

Instruction £

Instruction £

e e e 1 1
"

35



Occupancy

SM resources (typical values)

o Maximum number of warps per SM (64)
o Maximum number of blocks per SM (32)
o Register usage (256KB)

o Shared memory usage (64KB)

Occupancy calculation

o Number of threads per block (defined by the programmer)
o Registers per thread (known at compile time)

o Shared memory per block (defined by the programmer)

36



Memory Coalescing

= When accessing global memory, we want to make sure
that concurrent threads access nearby memory locations

= Peak bandwidth utilization occurs when all threads in a
warp access one cache line

Not coalesced Coalesced

Thread 1
Thread 2

Slide credit: Hwu & Kirk

37



Uncoalesced Memory Accesses

Access
direction
in Kernel
code
Time Period 2
Ty T, T T,
A A A A
Time Period [l
T, T, T T,

I

BN My 1 My 1M 1 M5 1M oM, oM, 5 M5 Mg 3 My sM; 3 M5 5

Slide credit: Hwu & Kirk

38



Coalesced Memory Accesses

Access
direction
in Kernel
code

Time Period 1|| Time Period 2
T, T, T3 Ty|| Ty T, T3 Ty

M
!

MO,O

, MO,I Ml,l IV|2,1 M3,1 MO,Z IV|1,2 IV|2,2 M3,2 IVIO,3 IV|1,3 M2,3 M3,3

Slide credit: Hwu & Kirk

39



AoS vs. SOA

Array of Structures vs. Structure of Arrays

struct foof{
Structure of
(SoA) int d[8];

struct foo{

Array of
Structures
(AOS) int 4d;

} A[8];

40



CPUs Prefer AoS, GPUs Prefer SoA

= Linear and strided accesses

GPU CPU

12.0 . 5.0

11.0 ——GPU | 45 1 ——1CPU ——2CPU —4—4CPU

10.0 \\ 40 »—*
z 9.0 \ z -
8 8.0 \ 8 ’
= = 3.0 o—q
E Zg \ 3, N\ /4/;;0&
< < 7 &
%0 5.0 \>1 %02'0 ﬁ \
£ :g BN £1s d%m

50 W 10 1~

1.0 \EL 0.5

. L 11T+

0.0 T T T T T T T T T T . 0.0 T T T T T T T T T T .

1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024
Stride (Structure size) Stride (Structure size)

AMD Kaveri A10-7850K

Sung+, “DL: A data layout transformation system for heterogeneous computing,” INPAR 2012

41



Data Reuse

= Same memory locations accessed by neighboring threads

O
0

for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];

}

42



Data Reuse: Tiling

= To take advantage of data reuse, we divide the input into tiles
that can be loaded into shared memory

__shared  int 1 data[(L_SIZE+2)*(L _ SIZE+2)];

Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; 1i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][j] * 1 data[(i+l row-1)*(L SIZE+2)+j+1l col-1];
}
}




Shared Memory

Shared memory is an interleaved (banked) memory
o Each bank can service one address per cycle

Typically, 32 banks in NVIDIA GPUs

o Successive 32-bit words are assigned to successive banks
Bank = Address % 32

Bank conflicts are only possible within a warp
o No bank conflicts between different warps

44



Shared Memory Bank Conflicts (I)

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

= Bank conflict free

Linear addressing: stride = 1

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

Bank 15

Random addressing 1:1

Slide credit: Hwu & Kirk

45



Shared Memory Bank Conflicts (II)

= N-way bank conflicts

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread O

Thread 1
Thread 2 ‘.
Thread 3 \

Thread 4 '
Thread 5 ,\
Thread 6 [

Thread 7

Thread 8
Thread 9
Thread 10
Thread 11

x8

Thread 15 Bank 15

2-way bank conflict: stride = 2 8-way bank conflict: stride = 8

Slide credit: Hwu & Kirk

46



Reducing Shared Memory Bank Conflicts

Bank conflicts are only possible within a warp
o No bank conflicts between different warps

If strided accesses are needed, some optimization
techniques can help
o Padding
o Randomized mapping
Rau, “"Pseudo-randomly interleaved memory,” ISCA 1991

o Hash functions

V.d.Braak+, “Configurable XOR Hash Functions for Banked
Scratchpad Memories in GPUs,” IEEE TC, 2016

47



SIMD Utilization




SIMD Utlization

= Intra-warp divergence

Compute
Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){

Do this(threadIdx.x);
}

else{ If
Do that(threadIdx.x);
}
v v v 4 4 v | 4 v

Else

v 14 v 14 14 | 4 | 4 v

49



Increasing SIMD Utlization

= Divergence-free execution

Compute

Compute(threadIdx.x);

if (threadIdx.x < 32){
Do_this(threadIdx.x * 2);

}

else{
Do that((threadIdx.x%32)*2+1);
}

AAAAAAA

Else

YyvvyvvyVvyy

50



Vector Reduction: Naive Mapping (I)

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

iterations
—
W

Slide credit: Hwu & Kirk

51



Vector Reduction: Naive Mapping (1I)

= Program with low SIMD utilization

__shared  float partialSum[ ]
unsigned int t = threadIdx.x;
for (int stride = 1; stride < blockDim.x; stride *= 2) {

__syncthreads();

if (t % (2*stride) == 0)
partialSum[t] += partialSum[t + stride];

52



Divergence-Free Mapping ()

= All active threads belong to the same warp

Thread 0 Thread 1 Thread 2 Thread 14 Thread 15

N

iterations
—
(G0

Slide credit: Hwu & Kirk

53



Divergence-Free Mapping (11)

= Program with high SIMD utilization

__shared  float partialSum[ ]
unsigned int t = threadIdx.x;
for (int stride = blockDim.x; stride > 1; stride >> 1){

__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

54



Atomic Operations




Shared Memory Atomic Operations

Atomic Operations are needed when threads might update the
same memory locations at the same time

CUDA: int atomicAdd(int*, int);
PTX: atom.shared.add.u32 %r25, [%rdl4], %r24;
SASS:

Tesla, Fermi, Kepler Maxwell, Pascal, Volta

/*00a0*/ LDSLK PO, R9, [R8]; /*01£8*/ ATOMS.ADD RZ, [R7], R1l1;
/*00a8*/ @P0 IADD R10, R9, R7;

JeRaTsE GRE ST T, (RE], R0 Native atomic operations for

32-bit integer, and 32-bit and

/*00b8*/ @1P1 0xa0; ' '
Pl BRA 0Oxa 64-bit atomicCAS

56



Atomic Conflicts

= We define the intra-warp conflict degree as the number of
threads in a warp that update the same memory position

= The conflict degree can be between 1 and 32

th1 =
tho th1 tho th1
_tconﬂict
tho th1 tho |
L — L,
0 5 é é base o o é base
0o 1,2 3 o1 2 3.
No atomic conflict = Atomic conflict =

concurrent updates serialized updates

57



Histogram Calculation

Histograms count the number of data instances in disjoint

categories (bins)

for (each pixel i in image TI){

Pixel = I[1i] // Read pixel
Pixel’ = Computation(Pixel) // Optional computation
Histogram[Pixel’ ]++ // Vote in histogram bin
}
Input data
data[n] data[n+1] data[n+2] data[2n-1]
data[0] data[1] data[2] data[n-1]

Lo i
W

g alal e Atomic additions

Histogram

58



Histogram Calculation of Natural Images

= Frequent conflicts in natural images

59



Optimizing Histogram Calculation

= Privatization: Per-block sub-histograms in shared memory

Shared memory

Block 0's sub-histo Block 1's sub-histo  Block 2’s sub-histo

Block 3’s sub-histo

bO | b1 [ b2 | b3 bO | b1 [ b2 | b3

b0

b1

b2

b3

bO | b1 [ b2 | b3

[

b0 | b1

b2

Final histogram

b3 | Global memory

Gomez-Luna+, "Performance Modeling of Atomic Additions on GPU Scratchpad

Memory,” IEEE TPDS, 2013.

60



Data Transfers
between CPU and GPU




Data Transfers

= Synchronous and asynchronous transfers
= Streams (Command queues)

a Sequence of operations that are performed in order
= CPU-GPU data transfer

= Kernel execution
o D input data instances, B blocks
= GPU-CPU data transfer

o Default stream

copydata

Execute ]

62



Asynchronous Transfers

= Computation divided into nStreams
o D input data instances, B blocks

a hStreams
= D/nStreams data instances
= B/nStreams blocks

- |
Copydata [ ¢
- £ >
Execute ]
Copydata [ N N
Execute I R R e
o Estimates tp + tr +
nStreams nStreams

t- >= t; (dominant kernel) t; > tz (dominant transfers)

63



Overlap of Communication and Computation

Applications with independent computation on different data
instances can benefit from asynchronous transfers

For instance, video processing

Non- A sequence of 6 frames is transferred to device
streamed
execution 6 x b blocks compute on the sequence of frames
(OO0 (e (oo (e e et
[Ejx XA Jf Rjxjaja] [l uwwwwwg ORI pTpIm [ ORI BIpTpIpIpTpIs
i [ e o e e i i ) g il i i o o o e i i | o o o o o o e o e o o o 0o0|0dddododdo
Streamed A chunk of 2 frames is
execution transferred to device
////////////////
ERRENRRA [SSISNNNA] 2 x b blocks compute
"’_,‘ Y| on the chunk, while the
uuuuuuuuu ghddd second chunk is being
Eﬁ transferred
(00 Qele (eeeeeey Execution time saved
rrrrriiceizz|  thanks to streams
doododddo|doddoodoo
13
Gomez-Luna+, "Performance models for asynchronous data transfers on consumer 64

Graphics Processing Units,” JPDC, 2012.



Summary

GPU as an accelerator

o Program structure
Bulk synchronous programming model

o Memory hierarchy and memory management

o Performance considerations

Memory access

0 Latency hiding: occupancy (TLP)
2 Memory coalescing

o Data reuse: shared memory

SIMD utilization
Atomic operations
Data transfers

65



PUMPS+AI Summer School, Barcelona, July 16-20

= https://pumps.bsc.es/2018/

Find your HPC course at
PUMPS+AI

VIEW THE PROGRAM

Y |' [ ‘| ANARANANRRRR

< 1 oy || A W |

b === §

PUMPS+AI Summer School, 2018, July 16-20

The Barcelona Supercomputing Center (BSC) in association with Universitat Politecnica de Catalunya (UPC) has been awarded by NVIDIA as a GPU Center of
Excellence. BSC and UPC currently offer a number of courses covering CUDA architecture and programming languages for parallel computing. Please contact
us for possible collaborations.

The ninth edition of the Programming and Tuning Massively Parallel Systems + Artificial Intelligence summer school (PUMPS+AI) is aimed at enriching the
skills of researchers, graduate students and teachers with cutting-edge technique and hands-on experience in developing applications for many-core
processors with massively parallel computing resources like GPU accelerators.

@ Summer School Co-Directors: Mateo Valero (BSC and UPC) and Wen-mei Hwu (University of Illinois at Urbana-Champaign)
e Local Organizers: Antonio J. Pefia (responsible, BSC and UPC), and Pau Farre (BSC)
e Dates:

Applications due: May 31, 2018

66



Design of Digital Circuits
Lecture 22: GPU Programming

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Spring 2018
18 May 2018




