Design of Digital Circuits
Lecture 10: ISA (II)
and Assembly Programming

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Spring 2018
23 March 2018

Agenda for Today & Next Few Lectures

= LC-3 and MIPS Instruction Set Architectures
= LC-3 and MIPS assembly and programming

= Introduction to microarchitecture and single-cycle
microarchitecture

= Multi-cycle microarchitecture

= Microprogramming

Readings

This week

o Von Neumann Model, LC-3, and MIPS
P&P, Chapter 4, 5
H&H, Chapter 6
P&P, Appendices A and C (ISA and microarchitecture of LC-3)
H&H, Appendix B (MIPS instructions)
o Programming
P&P, Chapter 6
o Digital Building Blocks
H&H, Chapter 5

Next week

o Introduction to microarchitecture and single-cycle microarchitecture
P&P, Appendices A and C
H&H, Chapter 7.1-7.3
o Multi-cycle microarchitecture
P&P, Appendices A and C
H&H, Chapter 7.4
o Microprogramming
P&P, Appendices A and C

What Will We Learn Today?

Instruction Set Architectures: LC-3 and MIPS
o Operate instructions

o Data movement instructions

o Control instructions

Instruction formats

Addressing modes

Assembly Programming

o Programming constructs

o Debugging

o Conditional statements and loops in MIPS assembly
o Arrays in MIPS assembly

Q

Function calls
The stack

Recall: The Von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...

Recall: LLC-3: A Von Neumann Machine

PROCESSOR BUS

3 REG
PR=*> FILE

LD.REG —>

s |SR2 SR1| 4
SR2—4> QUT OUT [<7~SR1

e . y
R—>{ FINITE SRZ@
EFP«LD‘.H MACHINE ™ e ’
‘ 2, \e

b

AN
=\
o
..
>
C\
Py
>
-
C
>

CONTROL UNIT PROCESSING
UNIT

GateALU o

=

Py
@
o
D

[~

MEMORY INPUT

OUTPUT
Figure 4.3 The LC-3 as an example of the von Neumann model

Recall: The Instruction Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O o o O O

Recall: The Instruction Set Architecture

= The ISA is the interface between what the software commands
and what the hardware carries out

= The ISA specifies
o The memory organization

Address space (LC-3: 216, MIPS: 232)
Addressability (LC-3: 16 bits, MIPS: 32 bits)
Word- or Byte-addressable

o The register set

RO to R7 in LC-3
32 registers in MIPS

o The instruction set

Opcodes
Data types
Addressing modes

Problem

Algorithm

Program

ISA

Operate Instructions

Operate Instructions

In LC-3, there are three operate instructions

o NOT is a unary operation (one source operand)
It executes bitwise NOT

o ADD and AND are binary operations (two source operands)

ADD is 2's complement addition
AND is bitwise SR1 & SR2

In MIPS, there are many more

o Most of R-type instructions (they are binary operations)
E.g., add, and, nor, xor...

o I-type versions of the R-type operate instructions
o F-type operations, i.e., floating-point operations

10

NOT in LC-3

= NOT assembly and machine code

LC-3 assembly

NOT R3, R5

Field Values
OP DR SR
9 3) 111111
Machine Code
OP DR SR
1001 011 001 111111
% 2 1 9 &8 6 5 5

Register file

RO

R1

R2

A

0101000011110000 DR

1010111100001111 SR

There is no NOT in MIPS. How is it implemented?

11

Operate Instructions

= We are already familiar with LC-3’s ADD and AND with
register mode (R-type in MIPS)

= Now let us see the versions with one literal (i.e., immediate)
operand

= Subtraction is another necessary operation
o How is it implemented in LC-3 and MIPS?

12

Operate Instr. with one Literal in 1.C-3
ADD and AND

OP DR SR1 |1 immS
4 bits 3 bits 3 bits 5 bits

o OP = operation

E.g., ADD = 0001 (same OP as the register-mode ADD)
0 DR <« SR1 + sign-extend(immb5)

E.g., AND = 0101 (same OP as the register-mode AND)
o DR ¢ SR1 AND sign-extend(immb5)

o SR1 = source register
o DR = destination register

o immb5 = Literal or immediate (sign-extend to 16 bits)

13

ADD with one Literal in LLC-3

ADD assembly and machine code

LC-3 assembly

ADD R1, R4, #-2
Field Values
OP DR SR imm5
1 1 4 1 -2
Machine Code
OP DR SR imm>5
0001 001 100 |1 171110
15 12 1 9 8 6 5 4 0

Register file

RO
R1

Instruction register Re
ADD R1 R4

-2 R3

0001

001

100

1{11110 R4

i Sign- e
[5eXT] otend P©

16 R7

.

1111111111111110
I

A,
0000000000000100

0000000000000110

'

Bit[5]

m
FSM

T o/

16

5 A
ADD ALU
Fro

DR

SR

Instructions with one Literal in MIPS

I-type
o 2 register operands and immediate
Some operate and data movement instructions

opcode rs rt imm
6 bits 5 bits 5 bits 16 bits

o opcode = operation
0 S = source register

a rt=
destination register in some instructions (e.g., addi, 1w)
source register in others (e.qg., sw)

o imm = Literal or immediate

Add with one Literal in MIPS

Add immediate

MIPS assembly

addi S$s0, S$sl, 5
Field Values
op rs rt imm
0 17 16 5

Machine Code

op

s

rt

t — rs + sign-extend(imm)

imm

001000

10001

10010

0000 0000 0000 0101

0x22300005

16

Subtract in L.C-3

= MIPS assembly

High-level code

MIPS assembly

a=>b+ c - d;

= LC-3 assembly

High-level code

sub $s3,

add S$t0, $s0, Ssl
St0, S$s2

LC-3 assembly

a=Db+c - d;

= Tradeoff in LC-3
a More instructions
o But, simpler control logic

ADD R2, RO,
NOT R4, R3
ADD R5, R4,
ADD R6, R2,

R1
2’s
complement
#1] of R4

R5

Subtract Immediate

= MIPS assembly

High-level code MIPS assemg

a=>b - 3; subi S$sl,

Is subi necessary in MIPS?

MIPS assembly

addi $sl1l, S$s0, -3

= LC-3
High-level code LC-3 assembly

a=b - 3; ADD R1, RO, #-3

Data Movement Instructions

and Addressing Modes

19

Data Movement Instructions

In LC-3, there are seven data movement instructions
o LD, LDR, LDI, LEA, ST, STR, STI

Format of load and store instructions
o Opcode (bits [15:12])

DR or SR (bits [11:9])

Address generation bits (bits [8:0])

Four ways to interpret bits, called addressing modes
= PC-Relative Mode

= Indirect Mode

s Base+offset Mode

= Immediate Mode

(]

U

L

In MIPS, there are only Base+offset and immediate modes
for load and store instructions

20

PC-Relative Addressing Mode

= LD (Load) and ST (Store)

15 14 13 12 11 10 9

8 7 6 5 4 3 2 1 0

OP DR/SR

PCoffset9

4 bits 3 bits

o OP = opcode
= E.g., LD =0010
= E.g.,, ST =0011

o DR = destination register in LD
o SR = source register in ST

9 bits

a LD: DR ¢« Memory[PC' + sign-extend(PCoffset9)]

a ST: Memory[PC' + sign-extend(PCoffset9)] < SR

T This is the incremented PC

21

LD in LLC-3

= LD assembly and machine code

: - Register file
Instruction register
LC-3 assembly > r o
IR {0010[010| 110101111 R
LD R2, Ox1AF D Rz xIAF R2 | 0000000000000101 |DR
Incremented PC 'R[gfol Re
. pC [0100 0000 0001 1001] [SEXT]ZON R4
Field Values MR
OP DR PCoffset9 1111111110101111 Ej
16
2 2 OX1AF e | .
\ aop / loaded
. 1. Address 1 1° 16 ©
Machine Code calculation | @
OP DR PCoffset9 MAR MEMORY MDR
0010|010 110101111
@2. Memory
15 12 11 9 8 0 read
: Limitation: The PC-relative addressing mode
The memory address is only +256 to -255 cannot address far away from the
locations away of the LD or ST instruction instruction

22

Indirect Addressing Mode

= LDI (Load Indirect) and STI (Store Indirect)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

o OP = opcode
=« E.g., LDI = 1010
= E.g.,, STI = 1011

o DR = destination register in LDI
o SR = source register in STI

a LDI: DR < Memory[Memory[PCT + sign-extend(PCoffset9)]]

a STI: Memory[Memory[PCT + sign-extend(PCoffset9)]] < SR

T This is the incremented PC

I.LDI in 1.C-3

= LDI assembly and machine code

i - Register file
LC-3 assemb|y I&structlon regls(;cer i
IR[1010| 011| 111001100 R
LDI R3, O0xI1CC LDI R3 x1CC R
Incremented PC IR[g:0] R3 [1111111111111111|DR
Sign- R4
. PC[0100 1010 0001 1100| [[SEXTJqyten
Field Values I EZ
OP DR PCoffset9 xFFCC R7
16
A 3 0x1CC - 5 o
16 ®
1. Address 16
Machine Code caleulation | D
[MAR] MEMORY [MDR]
OP DR PCoffset9
3. LoadeCc:|3> o
dd X
1010{011| 111001100 addrese® 2@
to MAR 2. Memory 4. Memory
15 12 11 9 8 0 read read

[Now the address of the operand can be anywhere in the memory]

24

Base+Offset Addressing Mode

= LDR (Load Register) and STR (Store Register)

15 14 13 12 11 10 9

8 7 6

5 4 3 2 1 0

OP DR/SR

BaseR

offsetb

4 bits 3 bits

o OP = opcode
« E.g., LDR = 0110
= E.g., STR = 0111

3 bits

o DR = destination register in LDR

o SR = source register in STR

6 bits

o LDR: DR < Memory[BaseR + sign-extend(offset6)]

o STR: Memory[BaseR + sign-extend(offset6)] < SR

25

LLDR 1n LLC-3

LDR assembly and machine code

Instruction register Register filg
LC-3 assembly 15 0 RO
IR {0110 J001010| 011101 R1| 0000111100001111 | DR
LDR R1, R2, 0x1D DR Rl Rz xiD R2 | 0010001101000101 | BaseR
IR[5:0] R3
- IEE‘E Sign- R4
Field Values | oen A
R6
OP DR BaseR offset6 x001D a7
6 1 2 0x1D L L on
\ ADD / loaded
®
. 1. Add 16 16
MaCh|ne COde calcularcieosﬁ @
OP DR BaseR offset6 [mAR] MEMORY MDR
0110, 001010011101 -
. Memory
15 12 11 9 8 6 5 0 read

The address of the operand can also be anywhere in the memory

26

Base+Oftfset Addressing Mode 1n MIPS

= In MIPS, Iw and sw use base+offset mode (or base

addressing mode)

High-level code

MIPS assembly

A[2] = a; SW $s3, 8($s0)
Memory[$s0 + 8] <« $s3
Field Values
op rs rt imm
43 16 19 8

= imm is the 16-bit offset, which is sign-extended to 32 bits

27

An Example Program in MIPS and 1.C-3

High-level code MIPS registers LC-3 registers
a = A[0]; A = Ss0 A = RO

C = a + b - 5; b = $s2 b = R2
B[0] = c; B = S$sl B = Rl
MIPS assembly LC-3 assembly

lw $t0, 0($s0) LDR R5, RO, #0

add S$tl1l, $t0, Ss2 ADD R6, R5, R2

addi $t2, S$tl, -5 ADD R7, R6, #-5

SW St2, 0(S$sl) STR R7, R1, #0

Immediate Addressing Mode

= LEA (Load Effective Address)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR PCoffset9
4 bits 3 bits 9 bits

o OP = 1110

o DR = destination register

a LEA: DR <« PCT + sign-extend(PCoffset9)

What is the difference from PC-Relative addressing mode?

s
(

Answer: Instructions with PC-Relative mode access memory,
but LEA does not

v
N

T This is the incremented PC

29

LEA in LC-3

LEA assembly and machine code

LC-3 assembly

LEA R5, #-3
Field Values

OP DR PCoffset9

E 5 Ox1FD
Machine Code

OP DR PCoffset9
17110 101 111111101
15 12 11 9 8 0

Instruction register

IR

15 0

1110101} 111111101

LEA R5 x1FD

Incremented PC

PC

A
0100 0000 0001 1001 | [SEXT]

1111111

16

Register file
RO
R1
R2
IR[g:o] R3
Sign- R4
extend s 5 160000000010110
16 iy
111111101

A
ADD /

16

DR

30

Immediate Addressing Mode 1n MIPS

= In MIPS, lui (load upper immediate) loads a 16-bit
Immediate into the upper half of a register and sets the
lower half to 0

= Itis used to assign 32-bit constants to a register

High-level code MIPS assembly

a = 0x6d5edf3c;

lui S$s0, 0x6db5e
ori $s0, 0x4f3c

31

Addressing Example in 1.C-3
What is the final value of R3?

Address 15 14 13

x30F6
x30F7
x30F8
x30F9
x30FA
x30FB
x30FC

12 11 10 9 8 76 543210
I 1.1 0(0 O 1|11 11T1TT1T1O0]I1
O 0 0 170 1T O0/[OO0OT1|1{0O1T 110
O 0 1 170 1T oOoj111111TO0T171
O 1 0 1(]0 1T O0/{0OT10{1{00O0O0®O
o 0 0 10 1 0j010{1{00T1O01
o 1 1 1{0 1T 0j00O0O1|0OO01T1T1O
1 01 00 1 11111 1TO0T1T11

R1<- PC-3

R2<- R1+14
M[x30F4]<- R2
R2<- 0

R2<- R2+5
M[R1+14]<- R2
R3<- M[M[x30F4]]

32

Addressing Example in L.C-3
= What is the final value of R3?

Address 15 14 13 12 11 10
x30F6 [z}
x30F7 ADD

R1 = PC* — 3 = 0x30F7 — 3 = 0x30F4
14 R2=RI1+ 14 = 0x30F4 + 14 = 0x3102

x30F8 [0 M[PC* - 5] = M[0x030F4] = 0x3102
x30F9

x30FA R2=R2+5=5

x30FB 1 + 14] = M[0X30F4 141 ="M[0x3102] = 5

0 8
1 %
00
0k
00 R2=0
0(0
0(0
1 5

Ol O O O O O O

x30FC R3 = M[M[PC1 = 9]] = M[M[0x30FD - 9]] =

M[M[0x30F4]] = M[0x3102] = 5

= The final value of R3 is 5

TThis is the incremented PC 33

Control Flow Instructions

34

Control Flow Instructions

= Allow a program to execute out of sequence

= Conditional branches and jumps

Q

a

Q

Conditional branches are used to make decisions
= E.g., if-else statement

In LC-3, three condition codes are used

Jumps are used to implement
= Loops
= Function calls

JMP in LC-3 and j in MIPS

35

Condition Codes in 1.C-3

Each time one GPR (R0O-R7) is written, three single-bit registers
are updated

Each of these condition codes are either set (set to 1) or cleared
(set to 0)

o If the written value is negative
N is set, Z and P are cleared

o If the written value is zero
Z is set, N and P are cleared

o If the written value is positive
P is set, N and P are cleared

SPARC and x86 are examples of ISAs that use condition codes

36

Conditional Branches in 1.C-3

= BRz (Branch if Zero)

BRz PCoffset9

0000 |njz|p PCoffset9
4 bits 9 bits

a N,z p=which N, Z, and/or P is tested
o PCoffset9 = immediate or constant value

a if ((n AND N) OR (p AND P) OR (z AND 2))
s then PC <& PCT + sign-extend(PCoffset9)

o Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp

T This is the incremented PC

Conditional Branches in 1.C-3

= BRz ‘

Program 164 0001 0000 0001
Counter |

BRz O0x0D9 PC | 0100 0000 0010 1000

Instruction
register BR N Z P PCoffset9

IR | 0000({0(1]{0|011011001

[SEXT]
Coqdltlon o .
registers
N z P 0000000011011001
0 1 0
Y

f Whatifn=z=p = 1? \Hj Hj LXJ

(i.e., BRnzp) -

N\
J\.

And whatifn=z=p =07 %@

Yes!

Conditional Branches in MIPS

= beq (Branch if Equal)

a

beqg $s0, S$sl, offset

4 rs rt offset
6 bits 5bits 5 bits 16 bits
4 = opcode

rs, rt = source registers
offset = immediate or constant value

if rs == rt
= then PC ¢« PC' + sign-extend(offset) * 4

Variations: beq, bne, blez, bgtz

T This is the incremented PC

39

Branch If Equal in MIPS and L.C-3

MIPS assembly LC-3 assembly

beg $s0, $sl, offset

Subtract
(RO - R1)

= This is an example of tradeoff in the instruction set
o The same functionality requires more instructions in LC-3

o But, the control logic requires more complexity in MIPS

40

Use of Conditional Branches
for Looping

An Algorithm for Adding Integers

= We want to write a program that adds 12 integers
o They are stored in addresses 0x3100 to 0x310B
o Let us take a look at the flowchart of the algorithm

$

R1 <—x3100
R3<-0
R2 <—12

R2?7=0

No

R4 <— M[R1]
R3 <-R3 + R4
Increment R1
Decrement R2

l

R1: initial address
R3: final result

R2: number of
integers left to be
added

Check if R2
becomes 0

Load integer in R4
Accumulate in R3

Increment address R1
Decrement R2

42

A Program for Adding Integers in 1.C-3

= We use conditional branch instructions to create a loop

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
x3000 ¥ 0x00 R1 = PC* + 0x00FF = 3100
x3001 110
x3002 00
x3003 0(0 R2 =R2 + 12
x3004 5 BRz (PC * + 5) = BRz 0x300A
x3005 0 R4 = M[R1 + 0]
x3006 0 UEECEIR3 = R3 + R4
x3007 0 Rl1=R1+1
x3008 0 R2=R2-1
x3009 BRnzp (PC ' — 6) = BRnzp 0x3004

TThis is the incremented PC 43

The 1.C-3 Data Path Revisited

The 1.C-3 Data Path

ﬂVe highlight some\

data path
components used in
the execution of the
instructions in the
previous slides (not
shown in the
simplified data

_path)

J

Global bus

MAR
Multiplexer

GateMARMUX
MARMUX : >
16 16

GatePC

ADDR2MUX

16

3
DR—4>|

LD.REG—>|

3
SR2—4>|

REG

F

SR2
ouT

ILE

SRI | 3
OUT [<SR1

16

Adder <
X 4 4 } 1 f 16
i 16 Afl6 A6 Ai6
S'Qn _ [10:0] 0 N "
extension SEXT |- & SEXT
[4:0 Y
(Operand) fisgr 4@
[5:0] ™ RINITE [~ 16
H ¢ SEXT] STATE & \ 4 \
Sign R MACHIN]~:ﬁ2;‘¥3 AU &
extension >contror| , AMUK
(Address) .
LRI R N|z|p [\LD.CC . 16
Condition i6 LoGIC
COdeS GateALU
GateMDR16 % 16
LD.MDR MDR MAR LD.MAR
16
MEMORY INPUT OUTPUT

MEM.EN, R W

(Assembly) Programming

Programming Constructs

Programming requires dividing a task, i.e., a unit of work
into smaller units of work

The goal is to replace the units of work with programming
constructs that represent that part of the task

There are three basic programming constructs

a Sequential construct ¢
. The task
o Conditional construct to be
decomposed

'

o Iterative construct

47

Sequential Construct

= The sequential construct is used if the designated task can
be broken down into two subtasks, one following the other

J, Sequential
The task ‘L
to be Do first
decomposed - partto
L completion
\
Do second
part to
completion

l

Conditional Construct

The conditional construct is used if the designated task
consists of doing one of two subtasks, but not both

Conditional

\]_/ True False
The task
to be

decomposed

l/ Subtask Subtask
1 2

¢

o Either subtask may be “do nothing”

o After the correct subtask is completed, the program moves
onward

E.qg., if-else statement, switch-case statement

49

[terative Construct

The iterative construct is used if the designated task
consists of doing a subtask a number of times, but only as
long as some condition is true

¢

The task

to be
decomposed False

True

“ lterative

Subtask

¢

E.g., for loop, while loop, do-while loop

Constructs in an Example Program

Let us see how to use the programming constructs in an
example program

The example program counts the number of occurrences of
a character in a text file

It uses sequential, conditional, and iterative constructs

We see how to write conditional and iterative constructs
with conditional branches

51

Counting Occurrences of a Character

= We want to write a program
that counts the occurrences
of a character in a file

o Character from the
keyboard (TRAP instr.)

o The file finishes with the
character EOT (End Of Text)
= Thatis called a sentinel
= In this example, EOT = 4

o Result to the monitor (TRAP
instr.)

Programming constructs

Sequential Conditional “ Iterative
Do first True False
part to
completion
Do second Subtask Subtask
part to ! 2 Subtask
completion l—l(_T

Count <— 0
(R2 <-0)

{

Initialize pointer
(R3 <— M[x3012])

{

Input char from keyboard

(TRAP x23)

{

Get char from file
(R1 <= M[R3])

Yes

Done
(R1?=EOT)

Increment count
(R2 <— R2 +1)

Get char from file
(R3<—R3 +1
R1 <— M[R3])

Prepare output
(RO <— R2 + x30)

Output
(TRAP x21)

Stop
(TRAP x25)

R2: counter

R3: initial address
Input char

Read char from file

Check if end of file

Is it the searched char?

Increment R2

Increment address
Read char from file

Move output to RO

Output counter

Halt the program 52

TRAP Instruction

TRAP invokes an OS service call

LC-3 assembly
TRAP 0x23;

o OP = 1111

a trapvect8 = service call

15 14 13 12

Machine Code

11 10 9 8

7 6 5 4 3 2 1 0

OP

0000

trapvect8

4 bits

0x23 = Input a character from the keyboard

0x21 = Output a character to the monitor

0x25 = Halt the program

8 bits

Counting Occurrences of a Char in L.C-3

= We use conditional branch instructions to create a loops
and if statements

x3000
x3001
x3002
x3003
x3004
x3005
x3006
x3007
x3008
x3009
x300A
x300B
x300C
x300D
x300E
x300F
x3010
x3011
x3012

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0 1 0 1]0 1 0/0 1 0|10 0 0 O O Fsbr—sol/ETaiiE 7= o0l i)
0 01 0]0 1 1/0 000 100 0 0 z&=nfepElohbodi/mlieelli=ss
I 1 1 10 0 0000100 0 1 I [ypazioy@et/Fielisen:lp oo
0 1 1 0]0 0 1|01 1|00 0 0 0 O 88=mY1ERNIeardifelnills
0O 0 O 1|1 0 O[O0 O T1T|1|1 1 1 0 Of = al iRk =018 0
0O 0 O 0|0 1 O[O0 O0OO0O0OT1O0O0 OFf:FzneEs=/Fey=eii=ne aiill TN
AR IR R Y RE=NOT(RL) // subtract char from ‘\
0 0 0 1]0 0 1]00 1]1/0 0 0 O 1 Feal=z8lsasi BilloRicely Wiglolt[aelar-1s |
I N N S RT = RIS RO for comparison 2 |1
0 0 0 0|1 0 100000000 Tl e |
0 0 0 110 1 0/010]1/000 0 1FEeERGESTALEEERGEiEE 4) !
O U U O L T N L R S B N N B R3 = "R3 1 /fincrement address ,’
0 1 1 010 0 1]0 1 1]0 0 0 0 0 O FegE=8 el iReE @ igelnhills /
0 0 0 o]l T 1j1 1 1 1 101 T OFpisneeo /
0 0 T 0[0 0 0[000000 100}l -7
0 0 0 1|0 0 00 0 0[]0J0 0]0 T O 155 @ RACEEEICeilS,
T 1 1 1[0 0 00[0010000 T e Beuluicigiiy
T 1T 1 1|0 0 00|00 1 00T O0 T[] 00 oe TRAP

Starting address of file

ASCII TEMPLATE |

x3013

54

Programming Constructs in L.C-3

s Conditional constructs and iterative constructs

o Let us do some reverse engineering
do

Address 15 14 13 12 11 10 {

x3000
x3001
x3002
x3003
x3004
x3005
x3006
x3007
x3008
x3009
x300A
x300B
x300C
x300D
x300E
x300F
x3010
x3011
x3012
x3013

Jwhile(R1 |= EOT);

R4 = R1 -4 // char — EOT

BRz 0x300E // check if end of file

R1 = NOT(R1) // subtract char from
RLI=R1+1 " file from input char

'R1T=R1+ RO for comparison
BRnp 0x300B

if (R1 == RO)
{

... // increment the counter

¥

— = OO O O O O O O Of = O O O —| O ©
—— O O O = O O O O O O O O +=| k=| O =
— = O = O = O O O O O O O O +=| k=] = O
k| k[e [D O O] pmi| b | O] | pd [| D | D] | O b
OO OO | OO O —=| O O O O —=| O O O ©
OO OO = OO O O O O = O —=| O O =—| O &
OO O OO OO O O O O = = = O O O O W
—_ O O = = O O O O O Of | O m| O O] O Of N
OO = O | O O] O O O Of = O O O = O O =
—— O O O O | = = Of = = O O Of = O O ©

o
= il=l= == === === k= == k=== k= k"s

a—"
—| D | | = O O = O =] =] O O = = O =| O | O] =] n

w
2
=
=

o
O OO O O = =] = O = = = = O O = Of —=| O \O

wn
o g ol ol —=| = —=| —|o| o ol o| o o —| o o —| w

o ;§c>c:<: ol =l =l =l ol o = = —=| o = —| o o o &

Olgg | C| O O O —| O —| = | | O O O —| O] O| | = | —

@)
@)
@)
@)
@)
—
)
(@)
)
(@)

Debugging

Debugging

Debugging is the process of removing errors in programs

It consists of tracing the program, i.e., keeping track of the
seguence of instructions that have been executed and the
results produced by each instruction

A useful technique is to partition the program into parts,
often referred to as modules, and examine the results
computed in each module

High-level language (e.g., C programming language)
debuggers: dbx, gdb, visual studio debugger

Machine code debugging: Elementary interactive debugging
operations

57

Interactive Debugging

When debugging interactively, it is important to be able to

o 1. Deposit values in memory and in registers, in order to test
the execution of a part of a program in isolation

o 2. Execute instruction sequences in a program by using
RUN command: execute until HALT instruction or a breakpoint
STEP command: execute a fixed number of instructions

a 3. Stop execution when desired

SET BREAKPOINT command: stop execution at a specific
instruction in a program

o 4. Examine what is in memory and registers at any point in
the program

58

Example: Multiplying 1in 1.C-3

= A program is necessary to multiply, since LC-3 does not
have multiply instruction

o The following program multiplies R4 and R5

a Initially, R4 = 10 and R5 = 3

o The program produces 40. What went wrong?
a It is useful to annotate each instruction

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

x3200 o 1 O 10 1T 0|0 1 O|1(0 O O O R2 = 0 // initialize register
x3201 o 0 o0 1]0 1 0|0 I O[O0O|O0O O|1 O R2 =R2 + R4

x3202 o 0 o0 1|1 O 1f(1 O 1|11 1 1 1 R5=R5-1

x3203 o o0 o0 o]0 1 11 1 1 1 1 1 1 0 BRzp 0x3201

x3204 11 1 10 0O O 0[]0 O 1 O O 1 O HALT // end program

59

Debugging the Multiply Program

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x3200 0 1 0 1,70 1 0]J]0 1 0]1[0 0 0 0 ORYENVENEIERees
x3201 O 0 O 1[0 1 0[O0 I 0|00 Of1 0O O 5"

x3202 O 0 O 1|1 O 1|1 0 1|11 1 1 1 1§55

x3203 O 0 0 0|0 1 1]1 1 1T 1 1 1 1 0 1ol

x3204 I 1 1 170 0 0 0]J0O 0 1 0 0 1 0 1N NSRRIt

= We examine the contents of all registers after the execution
of each instruction

PC | R2 | R4 | RS
x3201 | 0 | 10
x3202 | 10 | 10
x3203 | 10 | 10
x3201 | 10 | 10

4 The branch condition)
x3202 | 20 18 codes were set wrong.
x3203 | 20 | 1 The conditional branch

x3201 | 20 | 10 _
& Correct result should only be taken if R5
< BR should not be taken if R5 = 0 i e

x3201 [30 | 10 | C _ S positive)

10 | 0 : :
,’§§§8§ 38 10 | =1 Correct instruction:

x3204 | 40 | 10 | —1 BRp #-3 // BRp 0x3201

— 40 | 10 | =1
60

— = NN N W W

Faster Debugging with Breakpoints

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

x3200 o 1 O 110 1 0|0 1 O|1]0 O O O R2 = 0 // initialize register
x3201 O 0 0 1 O 1 0j]0 1 O0|0|0O0 Of1 O R2 = R2 + R4

x3202 O 0 0 1 I 0 111 O 1(1]1 1 1 1 R5=R5-1

x3203 o o0 o o0 1 171 1 1 1 1 1 1 O BRzp 0x3201

x3204 1 1 1 1 O O O 0|0 O 1 0 0 1 O HALT // end program

= We could use a breakpoint to save some work

= Setting a breakpoint in 0x3203 (BR) allows us to examine
the results of each iteration of the loop

R4 [RS
PC [R2 - ~
x3203 | 10 | 10 | 2 .
3203 | 20 | 10| 1 One last question:
x3203 | 30 | 10 | O Does this program work if
x3203 | 40 | 10 | —1 the initial value of R5 is 0?
\ J
.
A good test should also consider the corner cases,
i.e., unusual values that the programmer might fail to consider

61

Conditional Statements

and Loops in MIPS Assembly

If Statement

= In MIPS, we create conditional constructs with conditional
branches (e.qg., beq, bne...)

High-level code MIPS assembly

if (i == 7J) bne $s3, $s4, L1
f = g + h; add S$s0, S$sl, S$s2

f =£f — 1i; Ll: sub $s0, S$s0, $s3

[f-Else Statement

We use the unconditional branch (i.e., j) to skip the "else”
subtask if the “if” subtask is the correct one

High-level code MIPS assembly
if (i == 3) bne $s3, $s4, L1
f = g + h; add $s0, S$sl1, Ss2
else J done
f =f — 1i; Ll: sub S$s0, $s0, S$s3

done:

64

While Loop

As in LC-3, the conditional branch (i.e., beq) checks the condition
and the unconditional branch (i.e., j) jumps to the beginning of
the loop

High-level code MIPS assembly
int pow = 1; addi $s0, $0, 1
int x = 0; add $sl1, $0, SO
addi $t0, SO0, 128
while (pow != 128) { while: beqg S$s0, $t0, done
pow = pow * 2; sll S$s0, $s0, 1
X =X + 1; addi Ssl, Ssl1, 1
} j while

done:

65

For Loop

The implementation of the "for” loop is similar to the
"while” loop

High-level code MIPS assembly

addi $sl1, $0, O

int sum = 0; add S$s0, S0, SO
int i; addi s$t0, S0, 10
for (1 = 0; i != 10; i = i+1) for: beq $s0, $t0, done
{ add $sl1, $sl1, S$sO
sum = sum + ij; addi $s0, $s0, 1
} j for
done:

66

For Loop Using SL'T

We use slt (i.e., set less than) for the "less than” comparison

High-level code MIPS assembly
int sum = 0; addi $sl1, $0, O
int 1i; addi $s0, SO0, 1

addi $t0, $0, 101

for (i = @.@) loop: slt $tl, $s0, $tO

{ beq $tl, $0, done
sum = sum + 1i; add $sl1l, $sl1, S$sO
} sll $s0, $s0, 1
J loop
one:

Set less than

Stl = $s0 < $t0 ? 1:0 Shift left logical

67

Arrays 1n MIPS

Arrays

= Accessing an array requires loading the base address into a

register | |
| |
I I
I I
0x12340010 array[4]
0x1234800C array[3]
0x12348008 array[2]
0x12348004 array[1]
0x12348000 array(0]

= In MIPS, this is something we cannot do with one single

immediate operation

= Load upper immediate + OR immediate

lui

ori

$s0,
$s0,

0x1234
$s0, 0x8000

69

Arrays: Code Example

We first load the base address of the array into a register
(e.g., $s0) using lui and ori

High-level code MIPS assembly

int array[5]; lui $s0, 0x1234
ori $s0, $s0, 0x8000

array|[0] array[0] * 2; 1w Stl, 0($s0)
sll S$tl1l, stl, 1

SwW $Stl, 0($s0)

array[l] = array[l] * 2; 1w Stl, 4($s0)
sll s$tl1l, stl, 1

SW Stl, 4(S$s0)

Function Calls

Function Calls

Why functions (i.e., procedures)?
o Frequently accessed code
o Make a program more modular and readable

Functions have arguments and return value

void main()

Caller: calling function (
o main() int y;
. y = sum(42, 7);
Callee: called function
o sum() }

int sum(int a, int b)

{

return (a + b);

}

72

Function Calls: Conventions

= Conventions

o Caller
= passes arguments
= jumps to callee

o Callee
= performs the procedure
= returns the result to caller
= returns to the point of call
= must not overwrite registers or memory needed by the caller

73

Function Calls in MIPS and L.C-3
Conventions in MIPS and LC-3

a Call procedure
MIPS: Jump and link (jal)
LC-3: Jump to Subroutine (JSR, JSRR)

a Return from procedure
MIPS: Jump register (jr)
LC-3: Return from Subroutine (RET)

o Argument values
MIPS: $a0 - $a3

o Return value
MIPS: $vO

Function Calls: Simple Example

High-level code MIPS assembly
int main() { 0x00400200 main: jal simple
simple(); 0x00400204 add $s0,S$sl,S$s2

a=>b + c;

}

void simple() { 0x00401020 simple: jr Sra

return;

}

jal jumps to simple() and saves PC+4 in the return address
register ($ra)
o $ra = 0x00400204

o In LC-3, JSR(R) put the return address in R7

jr $ra jumps to address in $ra (LC-3 uses RET instruction)

75

Function Calls: Code Example

High-level code

MIPS assembly Argument values

int main()

{
int y;

y = diffofsums(2, 3, 4, 5);

}

int diffofsums(int £, int g,
int h, int 1)

{
int result;
result = (f + g) - (h + 1i);

return result;

}

Return value

diffofsums:
add $tO,
add $t1,
sub $s0, $tO0,

ad $SOI $0
jr ($ra)

Return address

76

Function Calls: Need for the Stack

MIPS assembly

diffofsums:
add $t0, $a0, $al
add stl, Sa2, Sa3
sub $s0, S$t0, S$tl
add $v0, S$Ss0, SO
jr Sra

What if the main function was using some of those
registers?

o $t0, $t1, $s0

They could be overwritten by the function

We can use the stack to temporarily store registers

The Stack

The stack is a memory area used to save local variables
It is a Last-In-First-Out (LIFO) queue

The stack pointer ($sp) points to the top of the stack
o It grows down in MIPS

Address Data Address Data
Two words
7FFFFFFC | 12345678 |<«—$sp 7FFFFFFC | 12345678 | Pushed on
7FFFFFF8 7FFFFFF8 | AABBCCDD | the stack
7FFFFFF4 7FFFFFF4 | 11223344 |«—3$sp

7FFFFFFO 7FFFFFFO

78

The Stack: Code Example

MIPS assembly

diffofsums:
addi Ssp, Ssp, -12
sw $s0, 8(Ssp)
sw $t0, 4(Ssp)
sw $tl, 0(Ssp)
add $t0, s$a0, Sal
add $tl, Sa2, Sa3
sub $s0, S$t0, $tl
add S$v0, $s0, SO
1w $tl, 0(Ssp)
1w $t0, 4(Ssp)
1w $s0, 8(Ssp)
addi S$sp, Ssp, 12
jr Sra

Saving and restoring all registers requires a lot of effort

In MIPS, there is a convention about temporary registers (i.e.,
$t0-$t9): There is no need to save them

The Stack: Nonpreserved Registers

MIPS assembly

diffofsums:
addi S$sp, Ssp, -4
sw $s0, 0(S$sp)

add $t0, S$a0, Sal
add S$tl, Sa2, Ssa3
sub $s0, $t0, Stl
add S$v0, $s0, SO

1w $s0, 0(Ssp)
addi Ssp, Ssp, 4
jr Sra

Temporary registers $t0-$t9 are nonpreserved registers
Registers $s0-$s/ are preserved (saved) registers

80

Lecture Summary

Instruction Set Architectures: LC-3 and MIPS
o Operate instructions

o Data movement instructions

o Control instructions

Instruction formats

Addressing modes

Assembly Programming

o Programming constructs

o Debugging

o Conditional statements and loops in MIPS assembly
o Arrays in MIPS assembly

Q

Function calls
The stack

81

Design of Digital Circuits
Lecture 10: ISA (II)
and Assembly Programming

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Spring 2018
23 March 2018

