
Design of Digital Circuits
Lecture 10: ISA (II)

and Assembly Programming

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zurich
Spring 2018

23 March 2018

Agenda for Today & Next Few Lectures
n LC-3 and MIPS Instruction Set Architectures

n LC-3 and MIPS assembly and programming

n Introduction to microarchitecture and single-cycle
microarchitecture

n Multi-cycle microarchitecture

n Microprogramming

2

Readings
n This week

q Von Neumann Model, LC-3, and MIPS
n P&P, Chapter 4, 5
n H&H, Chapter 6
n P&P, Appendices A and C (ISA and microarchitecture of LC-3)
n H&H, Appendix B (MIPS instructions)

q Programming
n P&P, Chapter 6

q Digital Building Blocks
n H&H, Chapter 5

n Next week
q Introduction to microarchitecture and single-cycle microarchitecture

n P&P, Appendices A and C
n H&H, Chapter 7.1-7.3

q Multi-cycle microarchitecture
n P&P, Appendices A and C
n H&H, Chapter 7.4

q Microprogramming
n P&P, Appendices A and C

3

What Will We Learn Today?
n Instruction Set Architectures: LC-3 and MIPS

q Operate instructions
q Data movement instructions
q Control instructions

n Instruction formats
n Addressing modes

n Assembly Programming
q Programming constructs
q Debugging
q Conditional statements and loops in MIPS assembly
q Arrays in MIPS assembly
q Function calls

n The stack

4

Recall: The Von Neumann Model

5

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

Recall: LC-3: A Von Neumann Machine

6

Scanned by CamScanner

Recall: The Instruction Cycle

q FETCH
q DECODE
q EVALUATE ADDRESS
q FETCH OPERANDS
q EXECUTE
q STORE RESULT

7

Recall: The Instruction Set Architecture
n The ISA is the interface between what the software commands

and what the hardware carries out

n The ISA specifies
q The memory organization

n Address space (LC-3: 216, MIPS: 232)
n Addressability (LC-3: 16 bits, MIPS: 32 bits)
n Word- or Byte-addressable

q The register set
n R0 to R7 in LC-3
n 32 registers in MIPS

q The instruction set
n Opcodes
n Data types
n Addressing modes

8

Microarchitecture
ISA
Program
Algorithm
Problem

Circuits
Electrons

Operate Instructions

9

Operate Instructions
n In LC-3, there are three operate instructions

q NOT is a unary operation (one source operand)
n It executes bitwise NOT

q ADD and AND are binary operations (two source operands)
n ADD is 2’s complement addition
n AND is bitwise SR1 & SR2

n In MIPS, there are many more
q Most of R-type instructions (they are binary operations)

n E.g., add, and, nor, xor…
q I-type versions of the R-type operate instructions
q F-type operations, i.e., floating-point operations

10

n NOT assembly and machine code

NOT in LC-3

11

NOT R3, R5

LC-3 assembly

Field Values

Machine Code

9 3 5 1 1 1 1 1 1

OP DR SR

1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1

OP DR SR

15 12 11 9 8 6 05

5.2 Operate Instructions 121

1616

R0

R1

R2

R3

R4

R5

R6

R7

A

ALU
NOT

B

0101000011110000

1010111100001111

Figure 5.4 Data path relevant to the execution of NOT R3, R5

Figure 5.4 shows the key parts of the data path that are used to perform the
NOT instruction shown here. Since NOT is a unary operation, only the A input
of the ALU is relevant. It is sourced from R5. The control signal to the ALU
directs the ALU to perform the bit-wise complement operation. The output of the
ALU (the result of the operation) is stored into R3.

The ADD (opcode = 0001) and AND (opcode = 0101) instructions both
perform binary operations; they require two 16-bit source operands. The ADD
instruction performs a 2’s complement addition of its two source operands. The
AND instruction performs a bit-wise AND of each pair of bits in its two 16-bit
operands. Like the NOT, the ADD and AND use the register addressing mode for
one of the source operands and for the destination operand. Bits [8:6] specify the
source register and bits [11:9] specify the destination register (where the result
will be written).

The second source operand for both ADD and AND instructions can be
specified by either register mode or as an immediate operand. Bit [5] determines
which is used. If bit [5] is 0, then the second source operand uses a register, and
bits [2:0] specify which register. In that case, bits [4:3] are set to 0 to complete
the specification of the instruction.

Register file

SR

DR

From
FSM

There is no NOT in MIPS. How is it implemented?

Operate Instructions
n We are already familiar with LC-3’s ADD and AND with

register mode (R-type in MIPS)

n Now let us see the versions with one literal (i.e., immediate)
operand

n Subtraction is another necessary operation
q How is it implemented in LC-3 and MIPS?

12

Operate Instr. with one Literal in LC-3
n ADD and AND

q OP = operation
n E.g., ADD = 0001 (same OP as the register-mode ADD)

q DR ← SR1 + sign-extend(imm5)

n E.g., AND = 0101 (same OP as the register-mode AND)
q DR ← SR1 AND sign-extend(imm5)

q SR1 = source register

q DR = destination register

q imm5 = Literal or immediate (sign-extend to 16 bits)

13

OP DR SR1 1 imm5
4 bits 3 bits 3 bits 5 bits

n ADD assembly and machine code

ADD with one Literal in LC-3

14

ADD R1, R4, #-2

LC-3 assembly

Field Values

Machine Code

1 1 4 1 -2

OP DR SR imm5

0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0

OP DR SR imm5

15 12 11 9 8 6 05 4

122 chapter 5 The LC-3

For example, if R4 contains the value 6 and R5 contains the value−18, then
after the following instruction is executed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1

ADD R1 R4 R5

R1 will contain the value −12.
If bit [5] is 1, the second source operand is contained within the instruction.

In fact, the second source operand is obtained by sign-extending bits [4:0] to 16
bits before performing the ADD or AND. Figure 5.5 shows the key parts of the
data path that are used to perform the instruction ADD R1, R4, #−2.

Since the immediate operand in an ADD or AND instruction must fit in
bits [4:0] of the instruction, not all 2’s complement integers can be imme-
diate operands. Which integers are OK (i.e., which integers can be used as
immediate operands)?

16

1 0

0001 001 100 1 11110

ADD R1 R4 –2

16

5

0000000000000100

AB

ALU

Bit[5]

ADD

IR

1111111111111110

SEXT

R0

R1

R2

R3

R4

R5

R6

R7

0000000000000110

Figure 5.5 Data path relevant to the execution of ADD R1, R4, #-2

Register file

SR

DR

From
FSM

Instruction register

Sign-
extend

Instructions with one Literal in MIPS
n I-type

q 2 register operands and immediate
n Some operate and data movement instructions

q opcode = operation

q rs = source register

q rt =
n destination register in some instructions (e.g., addi, lw)
n source register in others (e.g., sw)

q imm = Literal or immediate

15

opcode rs rt imm
6 bits 5 bits 5 bits 16 bits

n Add immediate

Add with one Literal in MIPS

16

0 17 16 5

op rs rt imm

addi $s0, $s1, 5

MIPS assembly

Field Values

001000 10001 10010 0000 0000 0000 0101

op rs rt imm
Machine Code

0x22300005

rt ← rs + sign-extend(imm)

Subtract in LC-3
n MIPS assembly

n LC-3 assembly

n Tradeoff in LC-3
q More instructions
q But, simpler control logic

17

a = b + c - d; add $t0, $s0, $s1
sub $s3, $t0, $s2

High-level code MIPS assembly

a = b + c - d; ADD R2, R0, R1
NOT R4, R3
ADD R5, R4, #1
ADD R6, R2, R5

High-level code LC-3 assembly

2’s
complement
of R4

Subtract Immediate
n MIPS assembly

n LC-3

18

a = b - 3; subi $s1, $s0, 3

High-level code MIPS assembly

Is subi necessary in MIPS?

addi $s1, $s0, -3

MIPS assembly

a = b - 3; ADD R1, R0, #-3

High-level code LC-3 assembly

Data Movement Instructions
and Addressing Modes

19

Data Movement Instructions
n In LC-3, there are seven data movement instructions

q LD, LDR, LDI, LEA, ST, STR, STI

n Format of load and store instructions
q Opcode (bits [15:12])
q DR or SR (bits [11:9])
q Address generation bits (bits [8:0])
q Four ways to interpret bits, called addressing modes

n PC-Relative Mode
n Indirect Mode
n Base+offset Mode
n Immediate Mode

n In MIPS, there are only Base+offset and immediate modes
for load and store instructions

20

PC-Relative Addressing Mode
n LD (Load) and ST (Store)

q OP = opcode
n E.g., LD = 0010
n E.g., ST = 0011

q DR = destination register in LD
q SR = source register in ST

q LD: DR ← Memory[PC✝ + sign-extend(PCoffset9)]

q ST: Memory[PC✝ + sign-extend(PCoffset9)] ← SR

21

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

n LD assembly and machine code

LD in LC-3

22

LD R2, 0x1AF

LC-3 assembly

Field Values

Machine Code

2 2 0x1AF

OP DR PCoffset9

0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1

OP DR PCoffset9

15 12 11 9 8 0

5.3 Data Movement Instructions 125

16

16

1616

1

R0

R1

R2

R3

R4

R5

R6

R7

0010 010 110101111

15 0

IR[8:0]

PC

IR

0100 0000 0001 1001 SEXT

MAR MDR
MEMORY

0000000000000101

ADD

LD R2 x1AF

1111111110101111

3

2

Figure 5.6 Data path relevant to execution of LD R2, x1AF

incremented PC (x4019) is added to the sign-extended value contained in IR[8:0]
(xFFAF), and the result (x3FC8) is loaded into the MAR. In step 2, memory is
read and the contents of x3FC8 are loaded into theMDR. Suppose the value stored
in x3FC8 is 5. In step 3, the value 5 is loaded into R2, completing the instruction
cycle.

Note that the address of the memory operand is limited to a small range of the
total memory. That is, the address can only be within +256 or−255 locations of
the LD or ST instruction since the PC is incremented before the offset is added.
This is the range provided by the sign-extended value contained in bits [8:0] of
the instruction.

5.3.2 Indirect Mode

LDI (opcode = 1010) and STI (opcode = 1011) specify the indirect address-
ing mode. An address is first formed exactly the same way as with LD and ST.
However, instead of this address being the address of the operand to be loaded or
stored, it contains the address of the operand to be loaded or stored. Hence the
name indirect. Note that the address of the operand can be anywhere in the com-
puter’s memory, not just within the range provided by bits [8:0] of the instruction
as is the case for LD and ST. The destination register for the LDI and the source

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address
calculation

2. Memory
read

3. DR is
loaded

The memory address is only +256 to -255
locations away of the LD or ST instruction

Limitation: The PC-relative addressing mode
cannot address far away from the

instruction

Indirect Addressing Mode
n LDI (Load Indirect) and STI (Store Indirect)

q OP = opcode
n E.g., LDI = 1010
n E.g., STI = 1011

q DR = destination register in LDI
q SR = source register in STI

q LDI: DR ← Memory[Memory[PC✝ + sign-extend(PCoffset9)]]

q STI: Memory[Memory[PC✝ + sign-extend(PCoffset9)]] ← SR

23

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

n LDI assembly and machine code

LDI in LC-3

24

LDI R3, 0x1CC

LC-3 assembly

Field Values

Machine Code

A 3 0x1CC

OP DR PCoffset9

1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0

OP DR PCoffset9

15 12 11 9 8 0

Now the address of the operand can be anywhere in the memory

126 chapter 5 The LC-3

register for STI, like all the other loads and stores, are specified in bits [11:9] of
the instruction.

If the instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0

LDI R3 x1CC

is in x4A1B, and the contents of x49E8 is x2110, execution of this instruction
results in the contents of x2110 being loaded into R3.

Figure 5.7 shows the relevant parts of the data path required to execute this
instruction. As is the case with the LD and ST instructions, the first step consists
of adding the incremented PC (x4A1C) to the sign-extended value contained in
IR[8:0] (xFFCC), and the result (x49E8) loaded into theMAR. In step 2, memory
is read and the contents of x49E8 (x2110) is loaded into theMDR. In step 3, since
x2110 is not the operand, but the address of the operand, it is loaded into theMAR.
In step 4, memory is again read, and the MDR again loaded. This time the MDR
is loaded with the contents of x2110. Suppose the value −1 is stored in memory
location x2110. In step 5, the contents of the MDR (i.e.,−1) are loaded into R3,
completing the instruction cycle.

16

16

1616
1

2
3 x2110

R0

R1

R2

R3

R4

R5

R6

R7

15 0

IR[8:0]

PC

IR

SEXT

MAR MDR
MEMORY

ADD

1111111111111111

1010 011 111001100

x1CCR3

xFFCC

0100 1010 0001 1100

LDI

4

5

Figure 5.7 Data path relevant to the execution of LDI R3, x1CC

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address
calculation

2. Memory
read

5. DR is
loaded

4. Memory
read

3. Loaded
address
from MDR
to MAR

Base+Offset Addressing Mode
n LDR (Load Register) and STR (Store Register)

q OP = opcode
n E.g., LDR = 0110
n E.g., STR = 0111

q DR = destination register in LDR
q SR = source register in STR

q LDR: DR ← Memory[BaseR + sign-extend(offset6)]

q STR: Memory[BaseR + sign-extend(offset6)] ← SR

25

OP DR/SR offset6
4 bits 3 bits 6 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

BaseR
3 bits

n LDR assembly and machine code

LDR in LC-3

26

LDR R1, R2, 0x1D

LC-3 assembly

The address of the operand can also be anywhere in the memory

1. Address
calculation

2. Memory
read

3. DR is
loaded

Field Values

6 1 0x1D

OP DR offset6

2

BaseR

Machine Code

0 1 1 0 0 0 1 0 1 1 1 0 1

OP DR offset6

15 12 11 9 8 0

0 1 0

BaseR

6 5

5.3 Data Movement Instructions 127

5.3.3 Base+offset Mode

LDR (opcode = 0110) and STR (opcode = 0111) specify the Base+offset
addressing mode. The Base+offset mode is so named because the address of the
operand is obtained by adding a sign-extended 6-bit offset to a base register. The
6-bit offset is literally taken from the instruction, bits [5:0]. The base register is
specified by bits [8:6] of the instruction.

The Base+offset addressing uses the 6-bit value as a 2’s complement integer
between −32 and +31. Thus it must first be sign-extended to 16 bits before it is
added to the base register.

If R2 contains the 16-bit quantity x2345, the instruction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1

LDR R1 R2 x1D
loads R1 with the contents of x2362.

Figure 5.8 shows the relevant parts of the data path required to execute this
instruction. First the contents of R2 (x2345) are added to the sign-extended value
contained in IR[5:0] (x001D), and the result (x2362) is loaded into the MAR.
Second, memory is read, and the contents of x2362 are loaded into the MDR.
Suppose the value stored in memory location x2362 is x0F0F. Third, and finally,
the contents of the MDR (in this case, x0F0F) are loaded into R1.

1616

1

16

2

R0

R1

R2

R3

R4

R5

R6

R7

MAR MDRMEMORY

ADD

0000111100001111

0010001101000101

15 0

IR 1010 011 011

x1D

011101

SEXT

x001D

IR[5:0]

3

LDR R1 R2

Figure 5.8 Data path relevant to the execution of LDR R1, R2, x1D

Register file

DR

Instruction register

Sign-
extend

BaseR
001 0100110

Base+Offset Addressing Mode in MIPS
n In MIPS, lw and sw use base+offset mode (or base

addressing mode)

n imm is the 16-bit offset, which is sign-extended to 32 bits

27

A[2] = a; sw $s3, 8($s0)

High-level code MIPS assembly

Memory[$s0 + 8] ← $s3

43 16 19 8

op rs rt imm
Field Values

An Example Program in MIPS and LC-3

28

a = A[0];
c = a + b - 5;
B[0] = c;

A = $s0
b = $s2
B = $s1

High-level code MIPS registers

LDR R5, R0, #0
ADD R6, R5, R2
ADD R7, R6, #-5
STR R7, R1, #0

LC-3 assembly
lw $t0, 0($s0)
add $t1, $t0, $s2
addi $t2, $t1, -5
sw $t2, 0($s1)

MIPS assembly

A = R0
b = R2
B = R1

LC-3 registers

Immediate Addressing Mode
n LEA (Load Effective Address)

q OP = 1110

q DR = destination register

q LEA: DR ← PC✝ + sign-extend(PCoffset9)

29

OP DR PCoffset9
4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

What is the difference from PC-Relative addressing mode?

Answer: Instructions with PC-Relative mode access memory,
but LEA does not

n LEA assembly and machine code

LEA in LC-3

30

LEA R5, #-3

LC-3 assembly

Field Values

Machine Code

E 5 0x1FD

OP DR PCoffset9

1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1

OP DR PCoffset9

15 12 11 9 8 0

128 chapter 5 The LC-3

Note that the Base+offset addressing mode also allows the address of the
operand to be anywhere in the computer’s memory.

5.3.4 Immediate Mode

The fourth and last addressing mode used by the data movement instructions is
the immediate (or, literal) addressing mode. It is used only with the load effective
address (LEA) instruction. LEA (opcode = 1110) loads the register specified by
bits [11:9] of the instruction with the value formed by adding the incremented
program counter to the sign-extended bits [8:0] of the instruction. The immediate
addressing mode is so named because the operand to be loaded into the desti-
nation register is obtained immediately, that is, without requiring any access of
memory.

The LEA instruction is useful to initialize a register with an address that
is very close to the address of the instruction doing the initializing. If memory
location x4018 contains the instruction LEAR5, #−3, and the PC contains x4018,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1

LEA R5 −3

R5 will contain x4016 after the instruction at x4018 is executed.
Figure 5.9 shows the relevant parts of the data path required to execute the

LEA instruction. Note that no access to memory is required to obtain the value
to be loaded.

16

16

16

R0

R1

R2

R3

R4

R5

R6

R7

15 0

IR[8:0]

PC

IR

0100 0000 0001 1001 SEXT

ADD

1111111111111101

0100000000010110

LEA R5 x1FD

111111101 1011110

Figure 5.9 Data path relevant to the execution of LEA R5, #−3

Register file

DR

Instruction register

Sign-
extend

Incremented PC

Immediate Addressing Mode in MIPS
n In MIPS, lui (load upper immediate) loads a 16-bit

immediate into the upper half of a register and sets the
lower half to 0

n It is used to assign 32-bit constants to a register

31

a = 0x6d5e4f3c; # $s0 = a
lui $s0, 0x6d5e
ori $s0, 0x4f3c

High-level code MIPS assembly

Addressing Example in LC-3
n What is the final value of R3?

32

5.3 Data Movement Instructions 129

Again, LEA is the only load instruction that does not accessmemory to obtain
the information it will load into the DR. It loads into the DR the address formed
from the incremented PC and the address generation bits of the instruction.

5.3.5 An Example

We conclude our study of addressing modes with a comprehensive example.
Assume the contents of memory locations x30F6 through x30FC are as shown in
Figure 5.10, and the PC contains x30F6. We will examine the effects of carrying
out the instruction cycle seven consecutive times.

The PC points initially to location x30F6. That is, the content of the PC is
the address x30F6. Therefore, the first instruction to be executed is the one stored
in location x30F6. The opcode of that instruction is 1110, which identifies the
load effective address instruction (LEA). LEA loads the register specified by bits
[11:9] with the address formed by sign-extending bits [8:0] of the instruction
and adding the result to the incremented PC. The 16-bit value obtained by sign-
extending bits [8:0] of the instruction is xFFFD. The incremented PC is x30F7.
Therefore, at the end of execution of the LEA instruction, R1 contains x30F4,
and the PC contains x30F7.

The second instruction to be executed is the one stored in location x30F7.
The opcode 0001 identifies the ADD instruction, which stores the result of adding
the contents of the register specified in bits [8:6] to the sign-extended immediate
in bits [4:0] (since bit [5] is 1) in the register specified by bits [11:9]. Since
the previous instruction loaded x30F4 into R1, and the sign-extended immediate
value is x000E, the value to be loaded into R2 is x3102. At the end of execution of
this instruction, R2 contains x3102, and the PC contains x30F8. R1 still contains
x30F4.

The third instruction to be executed is stored in x30F8. The opcode 0011
specifies the ST instruction, which stores the contents of the register specified by
bits [11:9] of the instruction into the memory location whose address is computed
using the PC-relative addressingmode. That is, the address is computed by adding
the incremented PC to the 16-bit value obtained by sign-extending bits [8:0] of
the instruction. The 16-bit value obtained by sign-extending bits [8:0] of the
instruction is xFFFB. The incremented PC is x30F9. Therefore, at the end of

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1<- PC-3
x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2<- R1+14
x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[x30F4]<- R2
x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2<- 0
x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2<- R2+5
x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14]<- R2
x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 R3<- M[M[x3F04]]

Figure 5.10 Addressing mode example

x30F4

n What is the final value of R3?

n The final value of R3 is 5

5.3 Data Movement Instructions 129

Again, LEA is the only load instruction that does not accessmemory to obtain
the information it will load into the DR. It loads into the DR the address formed
from the incremented PC and the address generation bits of the instruction.

5.3.5 An Example

We conclude our study of addressing modes with a comprehensive example.
Assume the contents of memory locations x30F6 through x30FC are as shown in
Figure 5.10, and the PC contains x30F6. We will examine the effects of carrying
out the instruction cycle seven consecutive times.

The PC points initially to location x30F6. That is, the content of the PC is
the address x30F6. Therefore, the first instruction to be executed is the one stored
in location x30F6. The opcode of that instruction is 1110, which identifies the
load effective address instruction (LEA). LEA loads the register specified by bits
[11:9] with the address formed by sign-extending bits [8:0] of the instruction
and adding the result to the incremented PC. The 16-bit value obtained by sign-
extending bits [8:0] of the instruction is xFFFD. The incremented PC is x30F7.
Therefore, at the end of execution of the LEA instruction, R1 contains x30F4,
and the PC contains x30F7.

The second instruction to be executed is the one stored in location x30F7.
The opcode 0001 identifies the ADD instruction, which stores the result of adding
the contents of the register specified in bits [8:6] to the sign-extended immediate
in bits [4:0] (since bit [5] is 1) in the register specified by bits [11:9]. Since
the previous instruction loaded x30F4 into R1, and the sign-extended immediate
value is x000E, the value to be loaded into R2 is x3102. At the end of execution of
this instruction, R2 contains x3102, and the PC contains x30F8. R1 still contains
x30F4.

The third instruction to be executed is stored in x30F8. The opcode 0011
specifies the ST instruction, which stores the contents of the register specified by
bits [11:9] of the instruction into the memory location whose address is computed
using the PC-relative addressingmode. That is, the address is computed by adding
the incremented PC to the 16-bit value obtained by sign-extending bits [8:0] of
the instruction. The 16-bit value obtained by sign-extending bits [8:0] of the
instruction is xFFFB. The incremented PC is x30F9. Therefore, at the end of

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1<- PC-3
x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2<- R1+14
x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[x30F4]<- R2
x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2<- 0
x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2<- R2+5
x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14]<- R2
x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 R3<- M[M[x3F04]]

Figure 5.10 Addressing mode example

x30F4

Addressing Example in LC-3

33

LEA
ADD
ST
AND
ADD
STR
LDI

-3
14

-5

5
14

-9

0

R3 = M[M[PC✝ – 9]] = M[M[0x30FD – 9]] =

R1 = PC✝ – 3 = 0x30F7 – 3 = 0x30F4
R2 = R1 + 14 = 0x30F4 + 14 = 0x3102

M[PC✝ - 5] = M[0x030F4] = 0x3102
R2 = 0
R2 = R2 + 5 = 5

M[R1 + 14] = M[0x30F4 + 14] = M[0x3102] = 5

M[M[0x30F4]] = M[0x3102] = 5

✝This is the incremented PC

Control Flow Instructions

34

Control Flow Instructions
n Allow a program to execute out of sequence

n Conditional branches and jumps

q Conditional branches are used to make decisions
n E.g., if-else statement

q In LC-3, three condition codes are used

q Jumps are used to implement
n Loops
n Function calls

q JMP in LC-3 and j in MIPS

35

Condition Codes in LC-3
n Each time one GPR (R0-R7) is written, three single-bit registers

are updated

n Each of these condition codes are either set (set to 1) or cleared
(set to 0)

q If the written value is negative
n N is set, Z and P are cleared

q If the written value is zero
n Z is set, N and P are cleared

q If the written value is positive
n P is set, N and P are cleared

n SPARC and x86 are examples of ISAs that use condition codes
36

Conditional Branches in LC-3
n BRz (Branch if Zero)

q n, z, p = which N, Z, and/or P is tested

q PCoffset9 = immediate or constant value

q if ((n AND N) OR (p AND P) OR (z AND Z))
n then PC ← PC✝ + sign-extend(PCoffset9)

q Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp

37

BRz PCoffset9

0000 n PCoffset9
4 bits 9 bits

z p

✝This is the incremented PC

Conditional Branches in LC-3
n BRz

38

BRz 0x0D9

What if n = z = p = 1?
(i.e., BRnzp)

And what if n = z = p = 0?

132 chapter 5 The LC-3

16

SEXT

16 16

PCMUX

ADD

0000000011011001

IR 010

N Z P PCoffset9BR

0000 011011001

9

Yes!

PZN

0 1 0

PC 0100 0000 0010 1000

0100 0001 0000 0001

Figure 5.11 Data path relevant to the execution of BRz x0D9

the instruction flow is changed unconditionally, that is, independent of the data
that is being processed.

For example, if the following instruction,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1

BR n z p x185

located at x507B, is executed, the PC is loaded with x5001.
What happens if all three bits [11:9] in the BR instruction are 0?

5.4.2 An Example

We are ready to show by means of a simple example the value of having control
instructions in the instruction set.

Suppose we know that the 12 locations x3100 to x310B contain integers, and
we wish to compute the sum of these 12 integers.

Instruction
register

Program
Counter

Condition
registers

n z p

Conditional Branches in MIPS
n beq (Branch if Equal)

q 4 = opcode

q rs, rt = source registers

q offset = immediate or constant value

q if rs == rt
n then PC ← PC✝ + sign-extend(offset) * 4

q Variations: beq, bne, blez, bgtz

39

4 rs rt offset
6 bits 5 bits 5 bits 16 bits

beq $s0, $s1, offset

✝This is the incremented PC

n This is an example of tradeoff in the instruction set

q The same functionality requires more instructions in LC-3

q But, the control logic requires more complexity in MIPS

beq $s0, $s1, offset

Branch If Equal in MIPS and LC-3

40

LC-3 assemblyMIPS assembly
NOT R2, R1
ADD R3, R2, #1
ADD R4, R3, R0
BRz offset

Subtract
(R0 - R1)

Use of Conditional Branches
for Looping

41

An Algorithm for Adding Integers
n We want to write a program that adds 12 integers

q They are stored in addresses 0x3100 to 0x310B
q Let us take a look at the flowchart of the algorithm

42

5.4 Control Instructions 133

R1 <– x3100�
R3 <– 0�
R2 <– 12

Yes
R2 ? = 0

No

R4 <– M[R1]�
R3 <– R3 + R4�
Increment R1�
Decrement R2

Figure 5.12 An algorithm for adding 12 integers

A flowchart for an algorithm to solve the problem is shown in Figure 5.12.
First, as in all algorithms, we must initialize our variables. That is, we must

set up the initial values of the variables that the computer will use in executing the
program that solves the problem. There are three such variables: the address of
the next integer to be added (assigned to R1), the running sum (assigned to R3),
and the number of integers left to be added (assigned to R2). The three variables
are initialized as follows: The address of the first integer to be added is put in R1.
R3, which will keep track of the running sum, is initialized to 0. R2, which will
keep track of the number of integers left to be added, is initialized to 12. Then
the process of adding begins.

The program repeats the process of loading into R4 one of the 12 integers,
and adding it to R3. Each time we perform the ADD, we increment R1 so it will
point to (i.e., contain the address of) the next number to be added and decrement
R2 so we will know howmany numbers still need to be added.When R2 becomes
zero, the Z condition code is set, and we can detect that we are done.

The 10-instruction program shown in Figure 5.13 accomplishes the task.
The details of the program execution are as follows: The program starts with

PC = x3000. The first instruction (at location x3000) loads R1 with the address
x3100. (The incremented PC is x3001; the sign-extended PCoffset is x00FF.)

The instruction at x3001 clears R3. R3 will keep track of the running sum, so
it must start off with the value 0. As we said previously, this is called initializing
the SUM to zero.

The instructions at x3002 and x3003 set the value of R2 to 12, the number of
integers to be added. R2 will keep track of how many numbers have already been
added. This will be done (by the instruction contained in x3008) by decrementing
R2 after each addition takes place.

The instruction at x3004 is a conditional branch instruction. Note that bit
[10] is a 1. That means that the Z condition code will be examined. If it is set, we

R1: initial address

R3: final result

R2: number of
integers left to be
added

Check if R2
becomes 0

Load integer in R4

Accumulate in R3

Increment address R1
Decrement R2

n We use conditional branch instructions to create a loop

134 chapter 5 The LC-3

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x3000 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 R1<- 3100
x3001 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3 <- 0
x3002 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 <- 0
x3003 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 R2 <- 12
x3004 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 BRz x300A
x3005 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 R4 <- M[R1]
x3006 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 R3 <- R3+R4
x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 <- R1+1
x3008 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 R2 <- R2-1
x3009 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 BRnzp x3004

Figure 5.13 A program that implements the algorithm of Figure 5.12

know R2 must have just been decremented to 0. That means there are no more
numbers to be added and we are done. If it is clear, we know we still have work
to do and we continue.

The instruction at x3005 loads the contents of x3100 (i.e., the first integer)
into R4, and the instruction at x3006 adds it to R3.

The instructions at x3007 and x3008 perform the necessary bookkeeping.
The instruction at x3007 increments R1, so R1 will point to the next location in
memory containing an integer to be added (in this case, x3101). The instruction
at x3008 decrements R2, which is keeping track of the number of integers still to
be added, as we have already explained, and sets the N, Z, and P condition codes.

The instruction at x3009 is an unconditional branch, since bits [11:9] are all 1.
It loads the PC with x3004. It also does not affect the condition codes, so the next
instruction to be executed (the conditional branch at x3004) will be based on the
instruction executed at x3008.

This is worth saying again. The conditional branch instruction at x3004 fol-
lows the instruction at x3009, which does not affect condition codes, which in
turn follows the instruction at x3008. Thus, the conditional branch instruction at
x3004 will be based on the condition codes set by the instruction at x3008. The
instruction at x3008 sets the condition codes depending on the value produced
by decrementing R2. As long as there are still integers to be added, the ADD
instruction at x3008 will produce a value greater than zero and therefore clear
the Z condition code. The conditional branch instruction at x3004 examines the
Z condition code. As long as Z is clear, the PC will not be affected, and the next
instruction cycle will start with an instruction fetch from x3005.

The conditional branch instruction causes the execution sequence to follow:
x3000, x3001, x3002, x3003, x3004, x3005, x3006, x3007, x3008, x3009, x3004,
x3005, x3006, x3007, x3008, x3009, x3004, x3005, and so on until the value inR2
becomes 0. The next time the conditional branch instruction at x3004 is executed,
the PC is loaded with x300A, and the program continues at x300A with its next
activity.

Finally, it is worth noting that we could have written a program to add these
12 integerswithout any control instructions.We still would have needed the LEA

A Program for Adding Integers in LC-3

43

LEA
AND
AND
ADD
BR z
LDR
ADD
ADD
ADD
BR n z p

R1 = PC✝+ 0x00FF = 31000x00FF

5
0

1
-1

-6

R3 = 0
R2 = 0
R2 = R2 + 12
BRz (PC ✝ + 5) = BRz 0x300A
R4 = M[R1 + 0]
R3 = R3 + R4
R1 = R1 + 1
R2 = R2 – 1
BRnzp (PC ✝ – 6) = BRnzp 0x3004

?

✝This is the incremented PC

The LC-3 Data Path Revisited

44

The LC-3 Data Path

45

142 chapter 5 The LC-3

MDR

MEMORY

MAR

INPUT OUTPUT

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

16

1616

16

16

1616

16

SR2MUX

16
LD.IR

16

16

PC

+

IR

ZEXT

SR2
OUT

SR1
OUT

FILE

[7:0]

2

PCMUX

GatePC

LD.PCMARMUX

ALUK

16 16

16
3

3 3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

ALU

AB

N Z P

LOGIC

LD.CC

R
STATE

LD.MDR

16

MEM.EN, R.W

FINITE

REG

LD.MAR

16
16 16

MACHINE

GateALU

CONTROL

GateMDR

Figure 5.18 The data path of the LC-3

Global bus

MAR
Multiplexer

Adder

Sign
extension
(Address)

Sign
extension
(Operand)

Condition
codes

We highlight some
data path
components used in
the execution of the
instructions in the
previous slides (not
shown in the
simplified data
path)

(Assembly) Programming

46

Programming Constructs
n Programming requires dividing a task, i.e., a unit of work

into smaller units of work

n The goal is to replace the units of work with programming
constructs that represent that part of the task

n There are three basic programming constructs

q Sequential construct

q Conditional construct

q Iterative construct
47

Scanned by CamScanner

Sequential Construct
n The sequential construct is used if the designated task can

be broken down into two subtasks, one following the other

48

Scanned by CamScanner

Scanned by CamScanner

Conditional Construct
n The conditional construct is used if the designated task

consists of doing one of two subtasks, but not both

q Either subtask may be ”do nothing”
q After the correct subtask is completed, the program moves

onward
n E.g., if-else statement, switch-case statement

49

Scanned by CamScanner

Scanned by CamScanner

Iterative Construct
n The iterative construct is used if the designated task

consists of doing a subtask a number of times, but only as
long as some condition is true

n E.g., for loop, while loop, do-while loop

50

Scanned by CamScanner

Scanned by CamScanner

Constructs in an Example Program
n Let us see how to use the programming constructs in an

example program

n The example program counts the number of occurrences of
a character in a text file

n It uses sequential, conditional, and iterative constructs

n We see how to write conditional and iterative constructs
with conditional branches

51

Counting Occurrences of a Character
n We want to write a program

that counts the occurrences
of a character in a file
q Character from the

keyboard (TRAP instr.)
q The file finishes with the

character EOT (End Of Text)
n That is called a sentinel
n In this example, EOT = 4

q Result to the monitor (TRAP
instr.)

52

5.5 Another Example: Counting Occurrences of a Character 139

Initialize pointer�
(R3 <– M[x3012])

Count <– 0�
(R2 <– 0)

Input char from keyboard�
(TRAP x23)

Get char from file�
(R1 <– M[R3])

Yes

No

Done�
(R1 ? = EOT)

Match�
(R1 ? = R0)

Yes No

Get char from file�
(R3 <– R3 +1�
R1 <– M[R3])

Prepare output�
(R0 <– R2 + x30)

Output�
(TRAP x21)

Stop�
(TRAP x25)

Increment count�
(R2 <– R2 +1)

Figure 5.16 An algorithm to count occurrences of a character

R2: counter

R3: initial address

Input char

Read char from file

Increment address
Read char from file

Check if end of file

Is it the searched char?

Increment R2

Move output to R0

Output counter

Halt the program

Scanned by CamScanner

Programming constructs

TRAP Instruction
n TRAP invokes an OS service call

q OP = 1111

q trapvect8 = service call

n 0x23 = Input a character from the keyboard

n 0x21 = Output a character to the monitor

n 0x25 = Halt the program

53

OP 0 0 0 0 trapvect8
4 bits 8 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

TRAP 0x23;

LC-3 assembly Machine Code

n We use conditional branch instructions to create a loops
and if statements

Counting Occurrences of a Char in LC-3

54

140 chapter 5 The LC-3

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x3000 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 <- 0
x3001 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 R3 <- M[x3012]
x3002 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 TRAP x23
x3003 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 <- M[R3]
x3004 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 R4 <- R1-4
x3005 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 BRz x300E
x3006 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R1 <- NOT R1
x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 <- R1 + 1
x3008 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 R1 <- R1 + R0
x3009 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 BRnp x300B
x300A 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2 <- R2 + 1
x300B 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 R3 <- R3 + 1
x300C 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 <- M[R3]
x300D 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 BRnzp x3004
x300E 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 R0 <- M[x3013]
x300F 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 R0 <- R0 + R2
x3010 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 TRAP x21
x3011 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 TRAP x25
x3012 Starting address of file
x3013 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 ASCII TEMPLATE

Figure 5.17 A machine language program that implements the algorithm of Figure 5.16

on the monitor, it is necessary to first convert it to an ASCII code. Since we
have assumed the count is less than 10, we can do this by putting a leading 0011
in front of the 4-bit binary representation of the count. Note in Figure E.2 the
relationship between the binary value of each decimal digit between 0 and 9 and
its corresponding ASCII code. Finally, the count is output to the monitor, and the
program terminates.

Figure 5.17 is a machine language program that implements the flowchart of
Figure 5.16.

First the initialization steps. The instruction at x3000 clears R2 by ANDing it
with x0000; the instruction at x3001 loads the value stored in x3012 into R3. This
is the address of the first character in the file that is to be examined for occurrences
of our character. Again, we note that this file can be anywhere in memory. Prior to
starting execution at x3000, some sequence of instructions must have stored the
first address of this file in x3012. Location x3002 contains the TRAP instruction,
which requests the operating system to perform a service call on behalf of this
program. The function requested, as identified by the 8-bit trapvector 00100011
(or, x23), is to input a character from the keyboard and load it into R0. Table A.2
lists trapvectors for all operating system service calls that can be performed on
behalf of a user program. Note (from Table A.2) that x23 directs the operating
system to perform the service call that reads the next character struck and loads
it into R0. The instruction at x3003 loads the character pointed to by R3 into R1.

Then the process of examining characters begins. We start (x3004) by sub-
tracting 4 (the ASCII code for EOT) from R1, and storing it in R4. If the result

R2 = 0 // initialize counter
R3 = M[0x3012] // initial address
TRAP 0x23 // input char to R0
R1 = M[R3] // char from file
R4 = R1 – 4 // char – EOT
BRz 0x300E // check if end of file
R1 = NOT(R1)
R1 = R1 + 1
R1 = R1 + R0

// subtract char from
file from input char
for comparison

BRnp 0x300B
R2 = R2 + 1 // increment the counter
R3 = R3 + 1 // increment address
R1 = M[R3] // char from file
BRnzp 0x3004
R0 = M[0x3013]
R0 = R0 + R2
TRAP 0x21
TRAP 0x25

// output counter
to monitor with
TRAP

ASCII TEMPLATE

?

?

n Conditional constructs and iterative constructs
q Let us do some reverse engineering

Programming Constructs in LC-3

55

140 chapter 5 The LC-3

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x3000 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 <- 0
x3001 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 R3 <- M[x3012]
x3002 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 TRAP x23
x3003 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 <- M[R3]
x3004 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 R4 <- R1-4
x3005 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 BRz x300E
x3006 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R1 <- NOT R1
x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 <- R1 + 1
x3008 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 R1 <- R1 + R0
x3009 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 BRnp x300B
x300A 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2 <- R2 + 1
x300B 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 R3 <- R3 + 1
x300C 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 <- M[R3]
x300D 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 BRnzp x3004
x300E 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 R0 <- M[x3013]
x300F 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 R0 <- R0 + R2
x3010 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 TRAP x21
x3011 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 TRAP x25
x3012 Starting address of file
x3013 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 ASCII TEMPLATE

Figure 5.17 A machine language program that implements the algorithm of Figure 5.16

on the monitor, it is necessary to first convert it to an ASCII code. Since we
have assumed the count is less than 10, we can do this by putting a leading 0011
in front of the 4-bit binary representation of the count. Note in Figure E.2 the
relationship between the binary value of each decimal digit between 0 and 9 and
its corresponding ASCII code. Finally, the count is output to the monitor, and the
program terminates.

Figure 5.17 is a machine language program that implements the flowchart of
Figure 5.16.

First the initialization steps. The instruction at x3000 clears R2 by ANDing it
with x0000; the instruction at x3001 loads the value stored in x3012 into R3. This
is the address of the first character in the file that is to be examined for occurrences
of our character. Again, we note that this file can be anywhere in memory. Prior to
starting execution at x3000, some sequence of instructions must have stored the
first address of this file in x3012. Location x3002 contains the TRAP instruction,
which requests the operating system to perform a service call on behalf of this
program. The function requested, as identified by the 8-bit trapvector 00100011
(or, x23), is to input a character from the keyboard and load it into R0. Table A.2
lists trapvectors for all operating system service calls that can be performed on
behalf of a user program. Note (from Table A.2) that x23 directs the operating
system to perform the service call that reads the next character struck and loads
it into R0. The instruction at x3003 loads the character pointed to by R3 into R1.

Then the process of examining characters begins. We start (x3004) by sub-
tracting 4 (the ASCII code for EOT) from R1, and storing it in R4. If the result

R4 = R1 – 4 // char – EOT
BRz 0x300E // check if end of file
R1 = NOT(R1)
R1 = R1 + 1
R1 = R1 + R0

// subtract char from
file from input char
for comparison

BRnp 0x300B
R2 = R2 + 1 // increment the counter

BRnzp 0x3004

?

?

do
{
...
}while(R1 != EOT);

if (R1 == R0)
{
… // increment the counter
}

Debugging

56

Debugging
n Debugging is the process of removing errors in programs

n It consists of tracing the program, i.e., keeping track of the
sequence of instructions that have been executed and the
results produced by each instruction

n A useful technique is to partition the program into parts,
often referred to as modules, and examine the results
computed in each module

n High-level language (e.g., C programming language)
debuggers: dbx, gdb, visual studio debugger

n Machine code debugging: Elementary interactive debugging
operations

57

Interactive Debugging
n When debugging interactively, it is important to be able to

q 1. Deposit values in memory and in registers, in order to test
the execution of a part of a program in isolation

q 2. Execute instruction sequences in a program by using
n RUN command: execute until HALT instruction or a breakpoint
n STEP command: execute a fixed number of instructions

q 3. Stop execution when desired
n SET BREAKPOINT command: stop execution at a specific

instruction in a program

q 4. Examine what is in memory and registers at any point in
the program

58

Example: Multiplying in LC-3
n A program is necessary to multiply, since LC-3 does not

have multiply instruction
q The following program multiplies R4 and R5
q Initially, R4 = 10 and R5 = 3
q The program produces 40. What went wrong?
q It is useful to annotate each instruction

59

Scanned by CamScanner

R2 = 0 // initialize register
R2 = R2 + R4
R5 = R5 – 1
BRzp 0x3201
HALT // end program

?

Debugging the Multiply Program

n We examine the contents of all registers after the execution
of each instruction

60

Scanned by CamScanner

R2 = 0 // initialize register
R2 = R2 + R4
R5 = R5 – 1
BRzp 0x3201
HALT // end program

Scanned by CamScanner

← Correct result
← BR should not be taken if R5 = 0

The branch condition
codes were set wrong.
The conditional branch

should only be taken if R5
is positive

?

Correct instruction:
BRp #-3 // BRp 0x3201

Easier Debugging with Breakpoints

n We could use a breakpoint to save some work
n Setting a breakpoint in 0x3203 (BR) allows us to examine

the results of each iteration of the loop

61

Scanned by CamScanner

One last question:
Does this program work if
the initial value of R5 is 0?

Scanned by CamScanner

← BR should not be taken if R5 = 0

A good test should also consider the corner cases,
i.e., unusual values that the programmer might fail to consider

R2 = 0 // initialize register
R2 = R2 + R4
R5 = R5 – 1
BRzp 0x3201
HALT // end program

?

Conditional Statements
and Loops in MIPS Assembly

62

n In MIPS, we create conditional constructs with conditional
branches (e.g., beq, bne…)

If Statement

63

if (i == j)
f = g + h;

f = f – i;

$s0 = f, $s1 = g
$s2 = h
$s3 = i, $s4 = j

bne $s3, $s4, L1
add $s0, $s1, $s2

L1: sub $s0, $s0, $s3

High-level code MIPS assembly

n We use the unconditional branch (i.e., j) to skip the ”else”
subtask if the ”if” subtask is the correct one

If-Else Statement

64

if (i == j)
f = g + h;

else
f = f – i;

$s0 = f, $s1 = g,
$s2 = h
$s3 = i, $s4 = j

bne $s3, $s4, L1
add $s0, $s1, $s2
j done

L1: sub $s0, $s0, $s3
done:

High-level code MIPS assembly

n As in LC-3, the conditional branch (i.e., beq) checks the condition
and the unconditional branch (i.e., j) jumps to the beginning of
the loop

While Loop

65

// determines the power
// of 2 equal to 128
int pow = 1;
int x = 0;

while (pow != 128) {
pow = pow * 2;
x = x + 1;

}

$s0 = pow, $s1 = x

addi $s0, $0, 1
add $s1, $0, $0
addi $t0, $0, 128

while: beq $s0, $t0, done
sll $s0, $s0, 1
addi $s1, $s1, 1
j while

done:

High-level code MIPS assembly

n The implementation of the ”for” loop is similar to the
”while” loop

For Loop

66

// add the numbers from 0 to 9

int sum = 0;
int i;
for (i = 0; i != 10; i = i+1)
{
sum = sum + i;

}

$s0 = i, $s1 = sum
addi $s1, $0, 0
add $s0, $0, $0
addi $t0, $0, 10

for: beq $s0, $t0, done
add $s1, $s1, $s0
addi $s0, $s0, 1
j for

done:

High-level code MIPS assembly

n We use slt (i.e., set less than) for the ”less than” comparison

For Loop Using SLT

67

// add the powers of 2 from 1
// to 100
int sum = 0;
int i;

for (i = 1; i < 101; i = i*2)
{
sum = sum + i;

}

$s0 = i, $s1 = sum

addi $s1, $0, 0
addi $s0, $0, 1
addi $t0, $0, 101

loop: slt $t1, $s0, $t0
beq $t1, $0, done
add $s1, $s1, $s0
sll $s0, $s0, 1
j loop

done:

High-level code MIPS assembly

Set less than
$t1 = $s0 < $t0 ? 1:0 Shift left logical

Arrays in MIPS

68

Arrays
n Accessing an array requires loading the base address into a

register

n In MIPS, this is something we cannot do with one single
immediate operation

n Load upper immediate + OR immediate

69

array[4]
array[3]
array[2]
array[1]
array[0]0x12348000

0x12348004
0x12348008
0x1234800C
0x12340010

lui $s0, 0x1234
ori $s0, $s0, 0x8000

n We first load the base address of the array into a register
(e.g., $s0) using lui and ori

Arrays: Code Example

70

int array[5];

array[0] = array[0] * 2;

array[1] = array[1] * 2;

array base address = $s0
Initialize $s0 to 0x12348000
lui $s0, 0x1234
ori $s0, $s0, 0x8000

lw $t1, 0($s0)
sll $t1, $t1, 1
sw $t1, 0($s0)
lw $t1, 4($s0)
sll $t1, $t1, 1
sw $t1, 4($s0)

High-level code MIPS assembly

Function Calls

71

Function Calls
n Why functions (i.e., procedures)?

q Frequently accessed code
q Make a program more modular and readable

n Functions have arguments and return value

n Caller: calling function
q main()

n Callee: called function
q sum()

72

void main()
{
int y;
y = sum(42, 7);
...

}

int sum(int a, int b)
{
return (a + b);

}

Function Calls: Conventions
n Conventions

q Caller
n passes arguments
n jumps to callee

q Callee
n performs the procedure
n returns the result to caller
n returns to the point of call
n must not overwrite registers or memory needed by the caller

73

Function Calls in MIPS and LC-3
n Conventions in MIPS and LC-3

q Call procedure
n MIPS: Jump and link (jal)
n LC-3: Jump to Subroutine (JSR, JSRR)

q Return from procedure
n MIPS: Jump register (jr)
n LC-3: Return from Subroutine (RET)

q Argument values
n MIPS: $a0 - $a3

q Return value
n MIPS: $v0

74

n jal jumps to simple() and saves PC+4 in the return address
register ($ra)
q $ra = 0x00400204

q In LC-3, JSR(R) put the return address in R7

n jr $ra jumps to address in $ra (LC-3 uses RET instruction)

Function Calls: Simple Example

75

int main() {
simple();
a = b + c;

}

void simple() {
return;

}

0x00400200 main: jal simple
0x00400204 add $s0,$s1,$s2

...
0x00401020 simple: jr $ra

High-level code MIPS assembly

Function Calls: Code Example

76

$s0 = y
main:

...
addi $a0, $0, 2 # argument 0 = 2
addi $a1, $0, 3 # argument 1 = 3
addi $a2, $0, 4 # argument 2 = 4
addi $a3, $0, 5 # argument 3 = 5
jal diffofsums # call procedure
add $s0, $v0, $0 # y = returned value
...

$s0 = result
diffofsums:

add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result=(f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0
jr $ra # return to caller

int main()
{

int y;
...
// 4 arguments
y = diffofsums(2, 3, 4, 5);
...

}

int diffofsums(int f, int g,
int h, int i)

{
int result;
result = (f + g) - (h + i);
// return value
return result;

}

High-level code MIPS assembly Argument values

Return value

Return address

n What if the main function was using some of those
registers?
q $t0, $t1, $s0

n They could be overwritten by the function
n We can use the stack to temporarily store registers

Function Calls: Need for the Stack

77

diffofsums:
add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result=(f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0
jr $ra # return to caller

MIPS assembly

The Stack
n The stack is a memory area used to save local variables

n It is a Last-In-First-Out (LIFO) queue

n The stack pointer ($sp) points to the top of the stack
q It grows down in MIPS

78

Data

7FFFFFFC 12345678
7FFFFFF8
7FFFFFF4
7FFFFFF0

Address

$sp 7FFFFFFC
7FFFFFF8
7FFFFFF4
7FFFFFF0

Address Data

12345678

$sp
AABBCCDD
11223344

Two words
pushed on
the stack

n Saving and restoring all registers requires a lot of effort
n In MIPS, there is a convention about temporary registers (i.e.,

$t0-$t9): There is no need to save them

The Stack: Code Example

79

diffofsums:
addi $sp, $sp, -12 # allocate space on stack to store 3 registers
sw $s0, 8($sp) # save $s0 on stack
sw $t0, 4($sp) # save $t0 on stack
sw $t1, 0($sp) # save $t1 on stack
add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result=(f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0
lw $t1, 0($sp) # restore $t1 from stack
lw $t0, 4($sp) # restore $t0 from stack
lw $s0, 8($sp) # restore $s0 from stack
addi $sp, $sp, 12 # deallocate stack space
jr $ra # return to caller

MIPS assembly

n Temporary registers $t0-$t9 are nonpreserved registers
n Registers $s0-$s7 are preserved (saved) registers

The Stack: Nonpreserved Registers

80

diffofsums:
addi $sp, $sp, -4 # allocate space on stack to store 1 register
sw $s0, 0($sp) # save $s0 on stack

add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result=(f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0

lw $s0, 0($sp) # restore $s0 from stack
addi $sp, $sp, 4 # deallocate stack space
jr $ra # return to caller

MIPS assembly

Lecture Summary
n Instruction Set Architectures: LC-3 and MIPS

q Operate instructions
q Data movement instructions
q Control instructions

n Instruction formats
n Addressing modes

n Assembly Programming
q Programming constructs
q Debugging
q Conditional statements and loops in MIPS assembly
q Arrays in MIPS assembly
q Function calls

n The stack

81

Design of Digital Circuits
Lecture 10: ISA (II)

and Assembly Programming

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zurich
Spring 2018

23 March 2018

