What We Will Learn?

- Boolean Equations
 - Logic operations with binary numbers
- Logic Gates
 - Basic blocks that are interconnected to form larger units that are needed to construct a computer
Boolean Equations and Logic Gates
Simple Equations: NOT / AND / OR

\(\overline{A} \) (reads “not \(A \)”) is 1 iff \(A \) is 0

<table>
<thead>
<tr>
<th>(A)</th>
<th>(\overline{A})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(A \cdot B \) (reads “\(A \) and \(B \)”) is 1 iff \(A \) and \(B \) are both 1

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A \cdot B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(A + B \) (reads “\(A \) or \(B \)”) is 1 iff either \(A \) or \(B \) is 1

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A + B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Boolean Algebra: Big Picture

- An algebra on 1’s and 0’s
 - with AND, OR, NOT operations

- What you start with
 - **Axioms:** basic stuff about objects and operations you just assume to be true at the start

- What you derive first
 - **Laws and theorems:** allow you to manipulate Boolean expressions
 - ...also allow us to do some simplification on Boolean expressions

- What you derive later
 - More “sophisticated” properties useful for manipulating digital designs represented in the form of Boolean equations
Common Logic Gates

<table>
<thead>
<tr>
<th>Buffer</th>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>Z</td>
<td>A</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inverter</th>
<th>NAND</th>
<th>NOR</th>
<th>XNOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Z</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Boolean Algebra: Axioms

<table>
<thead>
<tr>
<th>Formal version</th>
<th>English version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. B contains at least two elements, 0 and 1, such that $0 \neq 1$</td>
<td>Math formality...</td>
</tr>
</tbody>
</table>
| **2.** Closure $a, b \in B$,
 (i) $a + b \in B$
 (ii) $a \cdot b \in B$ | Result of AND, OR stays in set you start with |
| **3.** Commutative Laws: $a, b \in B$,
 (i)
 (ii) | For primitive AND, OR of 2 inputs, order doesn’t matter |
| **4.** Identities: $0, 1 \in B$
 (i)
 (ii) | There are identity elements for AND, OR, give you back what you started with |
| **5.** Distributive Laws:
 (i)
 (ii) | • distributes over $+$, just like algebra
 …but $+$ distributes over \cdot, also (!!) |
| **6.** Complement:
 (i)
 (ii) | There is a complement element, ANDing, ORing give you an identity |
Boolean Algebra: Duality

- Interesting observation
 - All the axioms come in “dual” form
 - Anything true for an expression also true for its dual
 - So any derivation you could make that is true, can be flipped into dual form, and it stays true

- Duality -- More formally
 - A dual of a Boolean expression is derived by replacing
 - Every AND operation with... an OR operation
 - Every OR operation with... an AND
 - Every constant 1 with... a constant 0
 - Every constant 0 with... a constant 1
 - But don’t change any of the literals or play with the complements!

Example

\[
\begin{align*}
a \cdot (b + c) &= (a \cdot b) + (a \cdot c) \\
\Rightarrow a + (b \cdot c) &= (a + b) \cdot (a + c)
\end{align*}
\]
Boolean Algebra: Useful Laws

Operations with 0 and 1:

1. \(X + 0 = X \)
2. \(X + 1 = 1 \)

Idempotent Law:

1D. \(X \cdot 1 = X \)

Involution Law:

4. \((\bar{X}) = X \)

Laws of Complementarity:

5. \(X + \bar{X} = 1 \)
5D. \(X \cdot \bar{X} = 0 \)

Commutative Law:

6. \(X + Y = Y + X \)
6D. \(X \cdot Y = Y \cdot X \)

Dual: AND, OR with identities:

- gives you back the original variable or the identity

Dual: AND, OR with self = self:

- double complement = no complement

Dual: AND, OR with complement:

- gives you an identity

Just an axiom…
Useful Laws (cont)

Associative Laws:
7. \((X + Y) + Z = X + (Y + Z)\)
 \[= X + Y + Z\]
7D. \((X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)\)
 \[= X \cdot Y \cdot Z\]
 Parenthesis order doesn’t matter

Distributive Laws:
8. \(X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)\)
8D. \(X + (Y \cdot Z) = (X + Y) \cdot (X + Z)\)
 Axiom

Simplification Theorems:
9.
9D.
 Useful for simplifying expressions
10.
10D.
11.
11D.

Actually worth remembering — they show up a lot in real designs…
DeMorgan’s Law

DeMorgan's Law:

12. \(\overline{(X + Y + Z + \cdots)} = \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot \ldots \)

12D. \(\overline{(X \cdot Y \cdot Z \cdot \ldots)} = \overline{X} + \overline{Y} + \overline{Z} + \ldots \)

- Think of this as a transformation
 - Let’s say we have:

\[
F = A + B + C
\]

- Applying DeMorgan’s Law (12), gives us:

\[
F = \overline{(A + B + C)} = \overline{A \cdot B \cdot C}
\]
DeMorgan’s Law (cont.)

Interesting — these are conversions between different types of logic
That’s useful given you don’t always have every type of gate

<table>
<thead>
<tr>
<th>(A = \overline{(X + Y)} = ZX \overline{Y})</th>
<th>X</th>
<th>Y</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{X} \overline{Y})</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\overline{X} \overline{Y})</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\overline{X} \overline{Y})</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\overline{X} \overline{Y})</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NOR is equivalent to AND with inputs complemented

<table>
<thead>
<tr>
<th>(B = \overline{(XY)} = \overline{X} + \overline{Y})</th>
<th>X</th>
<th>Y</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{X} + \overline{Y})</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\overline{X} + \overline{Y})</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\overline{X} + \overline{Y})</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\overline{X} + \overline{Y})</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NAND is equivalent to OR with inputs complemented