Design of Digital Circuits Lecture 1: Introduction and Basics Prof. Onur Mutlu ETH Zurich Spring 2018 22 February 2018 ### Anyone Heard of These? #### This? ## These? (Multi-Core Systems) Multi-Core Chip ## Let's Start with Some Puzzles #### What Is This? #### What About This? #### Another View? #### Another View ## Opposite View ## What It Used to Be (June 1983) ### What It Used to Be (1967) # What Do the Following Have in Common? ## Gare do Oriente, Lisbon (I) #### Gare do Oriente, Lisbon (II) #### Gare do Oriente, Lisbon (III) #### Milwaukee Art Museum ## Athens Olympic Stadium ## City of Arts and Sciences, Valencia #### Florida Polytechnic University (I) ## Florida Polytechnic University (II) #### Oculus, New York City ## What do All Those Have in Common with Bahnhof Stadelhofen? #### Bahnhof Stadelhofen #### Answer: All Designed by a Famous Architect - ETH Alumnus, Civil Engineering - "The train station has several of the features that became signatures of his work; straight lines and right angles are rare." Santiago Calatrava Valls (born 28 July 1951) is a Spanish architect, structural engineer, sculptor and painter, particularly known for his bridges supported by single leaning pylons, and his railway stations, stadiums, and museums, whose sculptural forms often resemble living organisms.^[1] His best-known works include the Milwaukee Art Museum, the Turning Torso tower in Malmo, Sweden, the Margaret Hunt Hill Bridge in Dallas, Texas, and the Museum of Tomorrow in Rio de Janeiro, ### Your First Digital Design Assignment - Go and visit Bahnhof Stadelhofen - Extra credit: Repeat for any other Calatrava building - Appreciate the beauty & out-of-the-box and creative thinking - Think about tradeoffs in the design of the Bahnhof - Strengths, weaknesses, goals of design - Derive principles on your own for good design and innovation - Due date: Any time during this course - Later during the course is better - Apply what you have learned in this course - Think out-of-the-box ## But First, Today's First Assignment ## Find The Differences of This and That #### This #### That #### Many Tradeoffs Between Two Designs You can list them after you complete the first assignment... #### Aside: Evaluation Criteria for the Designs - Functionality (Does it meet the specification?) - Reliability - Space requirement - Cost - Expandability - Comfort level of users - Happiness level of users - Aesthetics - Security - **...** - How to evaluate goodness of design is always a critical question → "Performance" evaluation and metrics #### A Key Question - How was Calavatra able to design especially his key buildings? - Can have many guesses - (Ultra) hard work, perseverance, dedication (over decades) - Experience - Creativity, Out-of-the-box thinking - A good understanding of past designs - Good judgment and intuition - Strong skill combination (math, architecture, art, engineering, ...) - Funding (\$\$\$\$), luck, initiative, entrepreneurialism - Strong understanding of and commitment to fundamentals - Principled design - **...** - (You will be exposed to and hopefully develop/enhance many of these skills in this course) #### Principled Design - "To me, there are two overriding principles to be found in nature which are most appropriate for building: - one is the optimal use of material, - the other the capacity of organisms to change shape, to grow, and to move." - Santiago Calatrava "Calatrava's constructions are inspired by natural forms like plants, bird wings, and the human body." #### Gare do Oriente, Lisbon, Revisited #### A Principled Design #### Zoomorphic architecture From Wikipedia, the free encyclopedia **Zoomorphic architecture** is the practice of using animal forms as the inspirational basis and blueprint for architectural design. "While animal forms have always played a role adding some of the deepest layers of meaning in architecture, it is now becoming evident that a new strand of biomorphism is emerging where the meaning derives not from any specific representation but from a more general allusion to biological processes."^[1] Some well-known examples of Zoomorphic architecture can be found in the TWA Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art Museum by Santiago Calatrava, both inspired by the form of a bird's wings.^[3] #### What Does This Remind You Of? #### The Architect's Answer #### Design [edit] Calatrava said that the Oculus resembles a bird being released from a child's hand. The roof was originally designed to mechanically open to increase light and ventilation to the enclosed space. Herbert Muschamp, architecture critic of *The New York Times*, compared the design to the Bethesda Terrace and Fountain in Central Park, and wrote in 2004: #### Strengths and Praise Santiago Calatrava's design for the World Trade Center PATH station should satisfy those who believe that buildings planned for ground zero must aspire to a spiritual dimension. Over the years, many people have discerned a metaphysical element in Mr. Calatrava's work. I hope New Yorkers will detect its presence, too. With deep appreciation, I congratulate the Port Authority for commissioning Mr. Calatrava, the great Spanish architect and engineer, to design a building with the power to shape the future of New York. It is a pleasure to report, for once, that public officials are not overstating the case when they describe a design as breathtaking.^[43] #### Design Constraints and Criticism However, Calatrava's original soaring spike design was scaled back because of security issues. The *New York Times* observed in 2005: In the name of security, Santiago Calatrava's bird has grown a beak. Its ribs have doubled in number and its wings have lost their interstices of glass.... [T]he main transit hall, between Church and Greenwich Streets, will almost certainly lose some of its delicate quality, while gaining structural expressiveness. It may now evoke a slender stegosaurus more than it does a bird. [45] 99 #### Stegosaurus From Wikipedia, the free encyclopedia For the pachycephalosaurid of a similar name, see Stegoceras. Stegosaurus (/stego'soxres/^[1]) is a genus of armored dinosaur. Fossils of this genus date to the Late Jurassic period, where they are found in Kimmeridgian to early Tithonian aged strata, between 155 and 150 million years ago, in the western United States and Portugal. Several #### Design Constraints: Noone is Immune However, Calatrava's original soaring spike design was scaled back because of security issues. The *New York Times* observed in 2005: In the name of security, Santiago Calatrava's bird has grown a beak. Its ribs have doubled in number and its wings have lost their interstices of glass.... [T]he main transit hall, between Church and Greenwich Streets, will almost certainly lose some of its delicate quality, while gaining structural expressiveness. It may now evoke a slender stegosaurus more than it does a bird.^[45] The design was further modified in 2008 to eliminate the opening and closing roof mechanism because of budget and space constraints.^[46] The Transportation Hub has been dubbed "the world's most expensive transportation hub" for its massive cost for reconstruction—\$3.74 billion dollars. [48][58] By contrast, the proposed two-mile PATH extension 42 # Same Puzzle, Different Example #### What Is This? ## Another View #### Yet Another View #### Answer: Masterpiece of A Famous Architect # Fallingwater From Wikipedia, the free encyclopedia Fallingwater or Kaufmann Residence is a house designed by architect Frank Lloyd Wright in 1935 in rural southwestern Pennsylvania, 43 miles (69 km) southeast of Pittsburgh.^[4] The home was built partly over a waterfall on Bear Run in the Mill Run section of Stewart Township, Fayette County, Pennsylvania, in the Laurel Highlands of the Allegheny Mountains. *Time* cited it after its completion as Wright's "most beautiful job";^[5] it is listed among *Smithsonian's* Life List of 28 places "to visit before you die."^[6] It was designated a National Historic Landmark in 1966.^[3] In 1991, members of the American Institute of Architects named the house the "best all-time work of American architecture" and in 2007, it was ranked twenty-ninth on the list of America's Favorite Architecture according to the AIA. # Find The Differences of This and That #### This Source: http://www.fallingwater.org/ #### That ## Many Tradeoffs Between Two Designs You can list them after you complete the first assignment... #### A Key Question - How was Wright able to design his masterpiece? - Can have many guesses - (Ultra) hard work, perseverance, dedication (over decades) - Experience - Creativity, Out-of-the-box thinking - A good understanding of past designs - Good judgment and intuition - Strong skill combination (math, architecture, art, engineering, ...) - Funding (\$\$\$\$), luck, initiative, entrepreneurialism - Strong understanding of and commitment to fundamentals - Principled design - **-** ... - (You will be exposed to and hopefully develop/enhance many of these skills in this course) #### A Quote from The Architect Himself "architecture [...] based upon principle, and not upon precedent" 53 ## A Principled Design ## Organic architecture From Wikipedia, the free encyclopedia Organic architecture is a philosophy of architecture which promotes harmony between human habitation and the natural world through design approaches so sympathetic and well integrated with its site, that buildings, furnishings, and surroundings become part of a unified, interrelated composition. A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a home on this large site, but chose to place the home directly over the waterfall and creek creating a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of stone masonry with daring cantilevers of colored beige concrete blend with native rock outcroppings and the wooded environment. #### A Key Question - How was Wright able to design his masterpiece? - Can have many guesses - (Ultra) hard work, perseverance, dedication (over decades) - Experience - Creativity, Out-of-the-box thinking - A good understanding of past designs - Good judgment and intuition - Strong skill combination (math, architecture, art, engineering, ...) - Funding (\$\$\$\$), luck, initiative, entrepreneurialism - Strong understanding of and commitment to fundamentals - Principled design - **...** - (You will be exposed to and hopefully develop/enhance many of these skills in this course) # Bahnhof Stadelhofen, Revisited # What It Used to Be (1967) # What It Used to Be (1968) # How It Transformed (1988) # How It Transformed (1988) # How It Transformed (1989) #### The End Result #### Takeaways It all starts from the basic building blocks and design principles And, knowledge of how to use & apply them - Underlying technology might change (e.g., steel vs. wood) - but methods of taking advantage of technology bear resemblance - methods used for design depend on the principles employed ## The Same Applies to Processor Chips There are basic building blocks and and design principles AMD Barcelona 4 cores Core Core Core Core Shared L3 Cache Shared L3 Cache Intel Core i7 8 cores IBM Cell BE 8+1 cores IBM POWER7 8 cores Sun Niagara II 8 cores Nvidia Fermi 448 "cores" Intel SCC 48 cores, networked Tilera TILE Gx 100 cores, networked # The Same Applies to Computing Systems There are basic building blocks and and design principles # The Same Applies to Computing Systems There are basic building blocks and and design principles **Figure 3.** TPU Printed Circuit Board. It can be inserted in the slot for an SATA disk in a server, but the card uses PCIe Gen3 x16. **Figure 4.** Systolic data flow of the Matrix Multiply Unit. Software has the illusion that each 256B input is read at once, and they instantly update one location of each of 256 accumulator RAMs. Jouppi et al., "In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA 2017. ## Basic Building Blocks - Electrons - Transistors - Logic Gates - Combinational Logic Circuits - Sequential Logic Circuits - Storage Elements and Memory - ... - Cores - Caches - Interconnect - Memories - ... ## Reading Assignments for This Week Chapter 1 in Harris & Harris Chapters 1-2 in Patt and Patel Supplementary Lecture Slides on Binary Numbers ## Major High-Level Goals of This Course - In Digital Circuits & Computer Architecture - Understand the basics - Understand the principles (of design) - Understand the precedents - Based on such understanding: - learn how a modern computer works underneath - evaluate tradeoffs of different designs and ideas - implement a principled design (a simple microprocessor) - learn to systematically debug increasingly complex systems - Hopefully enable you to develop novel, out-of-the-box designs - The focus is on basics, principles, precedents, and how to use them to create/implement good designs ### Why These Goals? - Because you are here for a Computer Science degree - Regardless of your future direction, learning the principles of digital design & computer architecture will be useful to - design better hardware - design better software - design better systems - make better tradeoffs in design - understand why computers behave they do - solve problems better - think "in parallel" - think critically - **...** # Why Do We Have Computers? # Why Do We Do Computing? # To Solve Problems # To Gain Insight # To Enable a Better Life & Future # How Does a Computer Solve Problems? # Orchestrating Electrons In today's dominant technologies # How Do Problems Get Solved by Electrons? ## The Transformation Hierarchy Computer Architecture (expanded view) Computer Architecture (narrow view) ### Levels of Transformation "The purpose of computing is [to gain] insight" (*Richard Hamming*) We gain and generate insight by solving problems How do we ensure problems are solved by electrons? #### Algorithm Step-by-step procedure that is guaranteed to terminate where each step is precisely stated and can be carried out by a computer - Finiteness - Definiteness - Effective computability Many algorithms for the same problem Microarchitecture An implementation of the ISA **Problem** Algorithm Program/Language Runtime System (VM, OS, MM) ISA (Architecture) Microarchitecture Logic Devices Electrons ISA (Instruction Set Architecture) Interface/contract between SW and HW. What the programmer assumes hardware will satisfy. Digital logic circuits Building blocks of micro-arch (e.g., gates) ## Aside: A Famous Work By Hamming - Hamming, "Error Detecting and Error Correcting Codes," Bell System Technical Journal 1950. - Introduced the concept of Hamming distance - number of locations in which the corresponding symbols of two equal-length strings is different - Developed a theory of codes used for error detection and correction - Also see: - Hamming, "You and Your Research," Talk at Bell Labs, 1986. - http://www.cs.virginia.edu/~robins/YouAndYourResearch.html # Design of Digital Circuits Lecture 1: Introduction and Basics Prof. Onur Mutlu ETH Zurich Spring 2018 22 February 2018 # We Did Not Cover the Following Slides in Lecture 1 ### Levels of Transformation, Revisited A user-centric view: computer designed for users The entire stack should be optimized for user ### The Power of Abstraction #### Levels of transformation create abstractions - Abstraction: A higher level only needs to know about the interface to the lower level, not how the lower level is implemented - E.g., high-level language programmer does not really need to know what the ISA is and how a computer executes instructions - Abstraction improves productivity - No need to worry about decisions made in underlying levels - E.g., programming in Java vs. C vs. assembly vs. binary vs. by specifying control signals of each transistor every cycle - Then, why would you want to know what goes on underneath or above? ## Crossing the Abstraction Layers As long as everything goes well, not knowing what happens underneath (or above) is not a problem. #### What if - The program you wrote is running slow? - The program you wrote does not run correctly? - The program you wrote consumes too much energy? - Your system just shut down and you have no idea why? - Someone just compromised your system and you have no idea how? #### What if - The hardware you designed is too hard to program? - The hardware you designed is too slow because it does not provide the right primitives to the software? #### What if You want to design a much more efficient and higher performance system? ## Crossing the Abstraction Layers - Two goals of this course (especially the second half) are - to understand how a processor works underneath the software layer and how decisions made in hardware affect the software/programmer - to enable you to be comfortable in making design and optimization decisions that cross the boundaries of different layers and system components # Some Example "Mysteries"