
Design of Digital Circuits

Lecture 11: Microarchitecture

Prof. Onur Mutlu

ETH Zurich

Spring 2018

29 March 2018

Readings

 This week

 Introduction to microarchitecture and single-cycle
microarchitecture

 P&P, Appendices A and C

 H&H, Chapter 7.1-7.3, 7.6

 Next week

 Multi-cycle microarchitecture

 P&P, Appendices A and C

 H&H, Chapter 7.4

 Microprogramming

 P&P, Appendices A and C

 Pipelining

 H&H, Chapter 7.5

2

Agenda for Today & Next Few Lectures

 Instruction Set Architectures (ISA): LC-3 and MIPS

 Assembly programming: LC-3 and MIPS

 Microarchitecture (principles & single-cycle uarch)

 Multi-cycle microarchitecture

 Microprogramming

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

 Out-of-Order Execution

3

Recall: The Von Neumann Model

4

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,

Disk…

OUTPUT

Monitor,

Printer,

Disk…

Recall: LC-3: A Von Neumann Machine

5

Scanned by CamScanner

Recall: The Instruction Cycle

 FETCH

 DECODE

 EVALUATE ADDRESS

 FETCH OPERANDS

 EXECUTE

 STORE RESULT

6

Recall: The Instruction Set Architecture

 The ISA is the interface between what the software commands
and what the hardware carries out

 The ISA specifies
 The memory organization

 Address space (LC-3: 216, MIPS: 232)
 Addressability (LC-3: 16 bits, MIPS: 32 bits)
 Word- or Byte-addressable

 The register set
 R0 to R7 in LC-3
 32 registers in MIPS

 The instruction set
 Opcodes
 Data types
 Addressing modes
 Semantics of instructions

7

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Microarchitecture

 An implementation of the ISA

 How do we implement the ISA?

 We will discuss this for many lectures

 There can be many implementations of the same ISA

 MIPS R2000, R10000, …

 Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake,
Coffee Lake, …

8

(A Bit More on)

ISA Design and Tradeoffs

The Von Neumann Model/Architecture

 Also called stored program computer (instructions in
memory). Two key properties:

 Stored program

 Instructions stored in a linear memory array

 Memory is unified between instructions and data

 The interpretation of a stored value depends on the control
signals

 Sequential instruction processing

 One instruction processed (fetched, executed, and completed) at a
time

 Program counter (instruction pointer) identifies the current instr.

 Program counter is advanced sequentially except for control transfer
instructions

10

When is a value interpreted as an instruction?

The Von Neumann Model/Architecture

 Recommended reading

 Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

 Required reading

 Patt and Patel book, Chapter 4, “The von Neumann Model”

 Stored program

 Sequential instruction processing

11

The Von Neumann Model (of a Computer)

12

CONTROL UNIT

IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT OUTPUT

The Von Neumann Model (of a Computer)

 Q: Is this the only way that a computer can operate?

 A: No.

 Qualified Answer: But, it has been the dominant way

 i.e., the dominant paradigm for computing

 for N decades

13

The Dataflow Model (of a Computer)

 Von Neumann model: An instruction is fetched and
executed in control flow order

 As specified by the instruction pointer

 Sequential unless explicit control flow instruction

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received

 Potentially many instructions can execute at the same time

 Inherently more parallel
14

Von Neumann vs Dataflow

 Consider a Von Neumann program

 What is the significance of the program order?

 What is the significance of the storage locations?

 Which model is more natural to you as a programmer?
15

v <= a + b;
w <= b * 2;
x <= v - w
y <= v + w
z <= x * y

+ *2

- +

*

a b

z

Sequential

Dataflow

More on Data Flow

 In a data flow machine, a program consists of data flow
nodes

 A data flow node fires (fetched and executed) when all it
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation

16

Data Flow Nodes

17

An Example Data Flow Program

18

OUT

ISA-level Tradeoff: Instruction Pointer

 Do we need an instruction pointer in the ISA?

 Yes: Control-driven, sequential execution

 An instruction is executed when the IP points to it

 IP automatically changes sequentially (except for control flow
instructions)

 No: Data-driven, parallel execution

 An instruction is executed when all its operand values are
available (data flow)

 Tradeoffs: MANY high-level ones

 Ease of programming (for average programmers)?

 Ease of compilation?

 Performance: Extraction of parallelism?

 Hardware complexity?

19

ISA vs. Microarchitecture Level Tradeoff

 A similar tradeoff (control vs. data-driven execution) can be
made at the microarchitecture level

 ISA: Specifies how the programmer sees the instructions to
be executed

 Programmer sees a sequential, control-flow execution order vs.

 Programmer sees a data-flow execution order

 Microarchitecture: How the underlying implementation
actually executes instructions

 Microarchitecture can execute instructions in any order as long
as it obeys the semantics specified by the ISA when making the
instruction results visible to software

 Programmer should see the order specified by the ISA
20

Let’s Get Back to the Von Neumann Model

 But, if you want to learn more about dataflow…

 Dennis and Misunas, “A preliminary architecture for a basic
data-flow processor,” ISCA 1974.

 Gurd et al., “The Manchester prototype dataflow
computer,” CACM 1985.

 A later lecture

 If you are really impatient:

 http://www.youtube.com/watch?v=D2uue7izU2c

 http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi
a=onur-740-fall13-module5.2.1-dataflow-part1.ppt

21

http://www.youtube.com/watch?v=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt

The Von-Neumann Model

 All major instruction set architectures today use this model

 x86, ARM, MIPS, SPARC, Alpha, POWER

 Underneath (at the microarchitecture level), the execution
model of almost all implementations (or, microarchitectures)
is very different

 Pipelined instruction execution: Intel 80486 uarch

 Multiple instructions at a time: Intel Pentium uarch

 Out-of-order execution: Intel Pentium Pro uarch

 Separate instruction and data caches

 But, what happens underneath that is not consistent with
the von Neumann model is not exposed to software

 Difference between ISA and microarchitecture

22

What is Computer Architecture?

 ISA+implementation definition: The science and art of
designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

 Traditional (ISA-only) definition: “The term
architecture is used here to describe the attributes of a
system as seen by the programmer, i.e., the conceptual
structure and functional behavior as distinct from the
organization of the dataflow and controls, the logic design,
and the physical implementation.”

Gene Amdahl, IBM Journal of R&D, April 1964

23

ISA vs. Microarchitecture

 ISA

 Agreed upon interface between software
and hardware

 SW/compiler assumes, HW promises

 What the software writer needs to know
to write and debug system/user programs

 Microarchitecture

 Specific implementation of an ISA

 Not visible to the software

 Microprocessor

 ISA, uarch, circuits

 “Architecture” = ISA + microarchitecture
24

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

ISA vs. Microarchitecture

 What is part of ISA vs. Uarch?

 Gas pedal: interface for “acceleration”

 Internals of the engine: implement “acceleration”

 Implementation (uarch) can be various as long as it
satisfies the specification (ISA)

 Add instruction vs. Adder implementation

 Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture (see H&H Chapter 5.2.1)

 x86 ISA has many implementations: 286, 386, 486, Pentium,
Pentium Pro, Pentium 4, Core, Kaby Lake, Coffee Lake, …

 Microarchitecture usually changes faster than ISA

 Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many uarchs

 Why?
25

ISA

 Instructions
 Opcodes, Addressing Modes, Data Types

 Instruction Types and Formats

 Registers, Condition Codes

 Memory
 Address space, Addressability, Alignment

 Virtual memory management

 Call, Interrupt/Exception Handling

 Access Control, Priority/Privilege

 I/O: memory-mapped vs. instr.

 Task/thread Management

 Power and Thermal Management

 Multi-threading support, Multiprocessor support

 …
26

Microarchitecture

 Implementation of the ISA under specific design constraints
and goals

 Anything done in hardware without exposure to software

 Pipelining

 In-order versus out-of-order instruction execution

 Memory access scheduling policy

 Speculative execution

 Superscalar processing (multiple instruction issue?)

 Clock gating

 Caching? Levels, size, associativity, replacement policy

 Prefetching?

 Voltage/frequency scaling?

 Error correction?

27

Property of ISA vs. Uarch?

 ADD instruction’s opcode

 Booth multiplier vs. Wallace-tree multiplier

 Number of general purpose registers

 Number of cycles to execute the MUL instruction

 Number of ports to the register file

 Whether or not the machine employs pipelined instruction
execution

 Remember

 Microarchitecture: Implementation of the ISA under specific
design constraints and goals

28

Design Point

 A set of design considerations and their importance

 leads to tradeoffs in both ISA and uarch

 Example considerations:

 Cost

 Performance

 Maximum power consumption, thermal

 Energy consumption (battery life)

 Availability

 Reliability and Correctness

 Time to Market

 Security, safety, predictability, …

 Design point determined by the “Problem” space
(application space), the intended users/market

29

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Application Space

Dream, and they will appear…

30

Patt, “Requirements, bottlenecks,

and good fortune: agents for

microprocessor evolution,”

Proc. of the IEEE 2001.

Many other workloads:

Genome analysis

Machine learning

Robotics

Web search

Graph analytics

…

Increasingly Demanding Applications

Dream

and, they will come

31

As applications push boundaries, computing platforms will become increasingly strained.

Tradeoffs: Soul of Computer Architecture

 ISA-level tradeoffs

 Microarchitecture-level tradeoffs

 System and Task-level tradeoffs

 How to divide the labor between hardware and software

 Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point

 Why art?

32

Why Is It (Somewhat) Art?

33

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 We do not (fully) know the future (applications, users, market)

Logic

Circuits

Electrons

New demands

from the top

(Look Up)

New issues and

capabilities

at the bottom

(Look Down)

New demands and

personalities of users

(Look Up)

Why Is It (Somewhat) Art?

34

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 And, the future is not constant (it changes)!

Logic

Circuits

Electrons

Changing demands

at the top

(Look Up and Forward)

Changing issues and

capabilities

at the bottom

(Look Down and Forward)

Changing demands and

personalities of users

(Look Up and Forward)

Analogue from Macro-Architecture

 Future is not constant in macro-architecture, either

 Example: Can a mill be later used as a theater + restaurant
+ conference room?

35

Mühle Tiefenbrunnen

36

 Originally built as a brewery in 1889, part of it was
converted into a mill in 1913, and the other part into a cold
store

 Nowadays is a center for a variety of activities: theater,
conferences, restaurants, shops, museum…

Brewery in 1900

http://www.muehle-tiefenbrunnen.ch/

Another Example (I)

37

Another Example (II)

38

39

By Roland zh (Own work) [CC BY-SA 3.0

(https://creativecommons.org/licenses/by-sa/3.0)],

via Wikimedia Commons

https://creativecommons.org/licenses/by-sa/3.0)

Implementing the ISA:

Microarchitecture Basics

Now That We Have an ISA

 How do we implement it?

 i.e., how do we design a system that obeys the
hardware/software interface?

 Aside: “System” can be solely hardware or a combination of
hardware and software

 Remember “Translation of ISAs” (Transmeta example in Lec. 2)

 A virtual ISA can be converted by “software” into an
implementation ISA

 We will assume “hardware” for most lectures

41

How Does a Machine Process Instructions?

 What does processing an instruction mean?

 We will assume the von Neumann model (for now)

AS = Architectural (programmer visible) state before an
instruction is processed

Process instruction

AS’ = Architectural (programmer visible) state after an
instruction is processed

 Processing an instruction: Transforming AS to AS’ according
to the ISA specification of the instruction

42

The Von Neumann Model/Architecture

Stored program

Sequential instruction processing

43

Recall: The Von Neumann Model

44

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,

Disk…

OUTPUT

Monitor,

Printer,

Disk…

The “Process Instruction” Step
 ISA specifies abstractly what AS’ should be, given an

instruction and AS

 It defines an abstract finite state machine where

 State = programmer-visible state

 Next-state logic = instruction execution specification

 From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution

 One state transition per instruction

 Microarchitecture implements how AS is transformed to AS’

 There are many choices in implementation

 We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction

 Choice 1: AS AS’ (transform AS to AS’ in a single clock cycle)

 Choice 2: AS AS+MS1 AS+MS2 AS+MS3 AS’ (take multiple

clock cycles to transform AS to AS’)
45

A Very Basic Instruction Processing Engine

 Each instruction takes a single clock cycle to execute

 Only combinational logic is used to implement instruction
execution

 No intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state

at the beginning of a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state

at the end of a clock cycle

46

A Very Basic Instruction Processing Engine

 Single-cycle machine

 What is the clock cycle time determined by?

 What is the critical path of the combinational logic
determined by?

47

AS’ ASSequential
Logic
(State)

Combinational
Logic

Recall: Programmer Visible (Architectural) State

48

M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter

memory address
of the current instruction

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state

Single-cycle vs. Multi-cycle Machines

 Single-cycle machines

 Each instruction takes a single clock cycle

 All state updates made at the end of an instruction’s execution

 Big disadvantage: The slowest instruction determines cycle time

long clock cycle time

 Multi-cycle machines

 Instruction processing broken into multiple cycles/stages

 State updates can be made during an instruction’s execution

 Architectural state updates made only at the end of an instruction’s
execution

 Advantage over single-cycle: The slowest “stage” determines cycle time

 Both single-cycle and multi-cycle machines literally follow the
von Neumann model at the microarchitecture level

49

Instruction Processing “Cycle”

 Instructions are processed under the direction of a “control
unit” step by step.

 Instruction cycle: Sequence of steps to process an instruction

 Fundamentally, there are six steps:

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

 Not all instructions require all six steps (see P&P Ch. 4)
50

Recall: The Instruction Processing “Cycle”

 FETCH

 DECODE

 EVALUATE ADDRESS

 FETCH OPERANDS

 EXECUTE

 STORE RESULT

51

Instruction Processing “Cycle” vs. Machine Clock Cycle

 Single-cycle machine:

 All six phases of the instruction processing cycle take a single
machine clock cycle to complete

 Multi-cycle machine:

 All six phases of the instruction processing cycle can take
multiple machine clock cycles to complete

 In fact, each phase can take multiple clock cycles to complete

52

Instruction Processing Viewed Another Way
 Instructions transform Data (AS) to Data’ (AS’)

 This transformation is done by functional units
 Units that “operate” on data

 These units need to be told what to do to the data

 An instruction processing engine consists of two components

 Datapath: Consists of hardware elements that deal with and
transform data signals

 functional units that operate on data

 hardware structures (e.g. wires and muxes) that enable the flow of
data into the functional units and registers

 storage units that store data (e.g., registers)

 Control logic: Consists of hardware elements that determine
control signals, i.e., signals that specify what the datapath
elements should do to the data

53

Single-cycle vs. Multi-cycle: Control & Data

 Single-cycle machine:

 Control signals are generated in the same clock cycle as the
one during which data signals are operated on

 Everything related to an instruction happens in one clock cycle
(serialized processing)

 Multi-cycle machine:

 Control signals needed in the next cycle can be generated in
the current cycle

 Latency of control processing can be overlapped with latency
of datapath operation (more parallelism)

 We will see the difference clearly in microprogrammed
multi-cycle microarchitectures

54

Many Ways of Datapath and Control Design

 There are many ways of designing the data path and
control logic

 Single-cycle, multi-cycle, pipelined datapath and control

 Single-bus vs. multi-bus datapaths

 Hardwired/combinational vs. microcoded/microprogrammed
control

 Control signals generated by combinational logic versus

 Control signals stored in a memory structure

 Control signals and structure depend on the datapath
design

55

Flash-Forward: Performance Analysis

 Execution time of an instruction

 {CPI} x {clock cycle time}

 Execution time of a program

 Sum over all instructions [{CPI} x {clock cycle time}]

 {# of instructions} x {Average CPI} x {clock cycle time}

 Single-cycle microarchitecture performance

 CPI = 1

 Clock cycle time = long

 Multi-cycle microarchitecture performance

 CPI = different for each instruction

 Average CPI hopefully small

 Clock cycle time = short
56

Here, we have

two degrees of freedom

to optimize independently

A Single-Cycle Microarchitecture

A Closer Look

Remember…

 Single-cycle machine

58

ASSequential
Logic
(State)

Combinational
Logic

AS’

Let’s Start with the State Elements

 Data and control inputs

59

PC

Instruction

memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

PC

Instruction

memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write
data

Read
data

a. Data memory unit

Address

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register

numbers

a. Registers b. ALU

Zero
5

5

5 3

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

MIPS State Elements
CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WEPCPC'

CLK

32 32
32 32

32

32

32
32

32

32

5

5

5

 Program counter:

32-bit register

 Instruction memory:

Takes input 32-bit address A and reads the 32-bit data (i.e., instruction)
from that address to the read data output RD.

 Register file:

The 32-element, 32-bit register file has 2 read ports and 1 write port

 Data memory:

Has a single read/write port. If the write enable, WE, is 1, it writes data
WD into address A on the rising edge of the clock. If the write enable is 0,
it reads address A onto RD.

This notation is used in H&H single-cycle MIPS implementation (H&H Chapter 7.3)

For Now, We Will Assume

 “Magic” memory and register file

 Combinational read

 output of the read data port is a combinational function of the
register file contents and the corresponding read select port

 Synchronous write

 the selected register is updated on the positive edge clock
transition when write enable is asserted

 Cannot affect read output in between clock edges

 Single-cycle, synchronous memory

 Contrast this with memory that tells when the data is ready

 i.e., Ready bit: indicating the read or write is done

 See P&P Appendix C (LC3-b) for multi-cycle memory
61

Instruction Processing

 5 generic steps (P&H book)

 Instruction fetch (IF)

 Instruction decode and register operand fetch (ID/RF)

 Execute/Evaluate memory address (EX/AG)

 Memory operand fetch (MEM)

 Store/writeback result (WB)

62

Registers

Register #

Data

Register #

Data

memory

Address

Data

Register #

PC Instruction ALU

Instruction

memory

Address

IF

ID/RF
EX/AG

MEM

WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

What Is To Come: The Full MIPS Datapath

63

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32
Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Another Complete Single-Cycle Processor

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

64Single-cycle processor. Harris and Harris, Chapter 7.3.

Single-Cycle Datapath for

Arithmetic and Logical Instructions

 R-type: 3 register operands

 Semantics

R-Type ALU Instructions

66

add $s0, $s1, $s2 #$s0=rd, $s1=rs, $s2=rt

MIPS assembly (e.g., register-register signed addition)

Machine Encoding

if MEM[PC] == add rd rs rt

GPR[rd] GPR[rs] + GPR[rt]

PC PC + 4

0 rs rt rd 0 add (32)

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type

(R-Type) ALU Datapath

67

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Zero

RegWrite

ALU operation
3

1

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADD rd rs rt
GPR[rd] GPR[rs] + GPR[rt]
PC PC + 4

Combinational
state update logic

IF ID EX MEM WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

 ALU operation (F2:0) comes from the control logic

Example: ALU Design

+

2 01

A B

C
out

Y

3

01

F
2

F
1:0

[N-1] S

NN

N

N

N NNN

N

2

Z
e

ro

E
x
te

n
d

 I-type: 2 register operands and 1 immediate

 Semantics

I-Type ALU Instructions

69

addi (0) rs rt immediate

addi $s0, $s1, 5 #$s0=rt, $s1=rs

MIPS assembly (e.g., register-immediate signed addition)

Machine Encoding

if MEM[PC] == addi rs rt immediate
PC PC + 4

GPR[rt] GPR[rs] + sign-extend(immediate)

I-Type
5 bits 5 bits6 bits 16 bits

Datapath for R and I-Type ALU Insts.

70

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

1
ALUSrc

isItype

RegDest

isItype

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADDI rt rs immediate
GPR[rt] GPR[rs] + sign-extend (immediate)
PC PC + 4

Combinational
state update logic

IF ID EX MEM WB

 ADD assembly and machine code

Recall: ADD with one Literal in LC-3

71

ADD R1, R4, #-2

LC-3 assembly

Field Values

Machine Code

1 1 4 1 -2

OP DR SR imm5

0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0

OP DR SR imm5

15 12 11 9 8 6 05 4

Register file

SR

DR

From
FSM

Instruction register

Sign-
extend

Single-Cycle Datapath for

Data Movement Instructions

 Load 4-byte word

 Semantics

Load Instructions

73

lw (35) base rt offset

op rs=base rt imm=offset

lw $s3, 8($s0) #$s0=rs, $s3=rt

MIPS assembly

Machine Encoding

I-Type
15 0162021252631

if MEM[PC] == lw rt offset16 (base)
PC PC + 4

EA = sign-extend(offset) + GPR(base)

GPR[rt] MEM[translate(EA)]

LW Datapath

74

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

ALUSrc

if MEM[PC]==LW rt offset16 (base)
EA = sign-extend(offset) + GPR[base]
GPR[rt] MEM[translate(EA)]
PC PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write
data

Read
data

a. Data memory unit

Address

1

add

isItype

RegDest
isItype

1

0

Store Instructions

 Store 4-byte word

 Semantics

75

sw $s3, 8($s0) #$s0=rs, $s3=rt

MIPS assembly

sw (43) base rt offset

op rs=base rt imm=offset

Machine Encoding

if Mem[PC] == sw rt offset16 (base)
PC PC + 4

EA = sign-extend(offset) + GPR(base)

MEM[translate(EA)] GPR[rt]

I-Type
15 0162021252631

SW Datapath

76

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

if MEM[PC]==SW rt offset16 (base)
EA = sign-extend(offset) + GPR[base]
MEM[translate(EA)] GPR[rt]
PC PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write
data

Read
data

a. Data memory unit

Address

0

add

ALUSrc

isItype

RegDest
isItype

0

1

Load-Store Datapath

77

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore

add
isStore

isLoad

ALUSrc

isItype

RegDest

isItype

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

Datapath for Non-Control-Flow Insts.

78

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore

isStore

isLoad

ALUSrc

isItype

MemtoReg

isLoad

RegDest

isItype

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Single-Cycle Datapath for

Control Flow Instructions

Jump Instruction

 Unconditional branch or jump

 2 = opcode

 immediate (target) = target address

 Semantics

if MEM[PC]== j immediate26

target = { PC ✝[31:28], immediate26, 2’b00 }

PC target

80

j (2) immediate

6 bits 26 bits

j target

J-Type

✝This is the incremented PC

Unconditional Jump Datapath

81

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

ALUSrc

concat

PCSrc

isJ

What about JR, JAL, JALR?

?

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

0

X
0

0

X

if MEM[PC]==J immediate26
PC = { PC[31:28], immediate26, 2’b00 }

Other Jumps in MIPS
 jal: jump and link (function calls)

 Semantics

if MEM[PC]== jal immediate26

$ra PC + 4

target = { PC ✝[31:28], immediate26, 2’b00 }

PC target

 jr: jump register

 Semantics

if MEM[PC]== jr rs

PC GPR(rs)

 jalr: jump and link register

 Semantics

if MEM[PC]== jalr rs

$ra PC + 4

PC GPR(rs)

82✝This is the incremented PC

Aside: MIPS Cheat Sheet

 https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetc
h.php?media=mips_reference_data.pdf

 On the course website

83

https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=mips_reference_data.pdf

Conditional Branch Instructions

 beq (Branch if Equal)

 Semantics (assuming no branch delay slot)

if MEM[PC] == beq rs rt immediate16

target = PC✝+ sign-extend(immediate) x 4

if GPR[rs]==GPR[rt] then PC target

else PC PC + 4

 Variations: beq, bne, blez, bgtz

84

beq (4) rs rt immediate=offset

6 bits 5 bits 5 bits 16 bits

beq $s0, $s1, offset #$s0=rs,$s1=rt

✝This is the incremented PC

I-Type

Conditional Branch Datapath (for you to finish)

85

16 32
Sign

extend

ZeroALU

Sum

Shift

left 2

To branch

control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation
3

PC

Instruction

memory

Read
address

Instruction

4

Add

PCSrc

concat

0

sub

How to uphold the delayed branch semantics?

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

watch out

Putting It All Together

86

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32
Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

We did not cover the following slides in lecture.

These are for your preparation for the next lecture

Single-Cycle Control Logic

Single-Cycle Hardwired Control
 As combinational function of Inst=MEM[PC]

 Consider

 All R-type and I-type ALU instructions

 lw and sw

 beq, bne, blez, bgtz

 j, jr, jal, jalr

89

0 rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type
15 0162021252631 11 10 6 5

opcode rs rt immediate I-Type
15 0162021252631

6 bits 5 bits 5 bits 16 bits

opcode immediate

6 bits 26 bits

J-Type
0252631

Single-Bit Control Signals

90

When De-asserted When asserted Equation

RegDest
GPR write select
according to rt, i.e.,
inst[20:16]

GPR write select
according to rd, i.e.,
inst[15:11]

opcode==0

ALUSrc

2nd ALU input from 2nd

GPR read port
2nd ALU input from sign-
extended 16-bit
immediate

(opcode!=0) &&

(opcode!=BEQ) &&

(opcode!=BNE)

MemtoReg
Steer ALU result to GPR
write port

steer memory load to
GPR wr. port

opcode==LW

RegWrite

GPR write disabled GPR write enabled (opcode!=SW) &&

(opcode!=Bxx) &&

(opcode!=J) &&

(opcode!=JR))

JAL and JALR require additional RegDest and MemtoReg options

Single-Bit Control Signals

91

When De-asserted When asserted Equation

MemRead
Memory read disabled Memory read port

return load value
opcode==LW

MemWrite
Memory write disabled Memory write enabled opcode==SW

PCSrc1

According to PCSrc2 next PC is based on 26-
bit immediate jump
target

(opcode==J) ||

(opcode==JAL)

PCSrc2

next PC = PC + 4 next PC is based on 16-
bit immediate branch
target

(opcode==Bxx) &&

“bcond is satisfied”

JR and JALR require additional PCSrc options

ALU Control

 case opcode

‘0’ select operation according to funct

‘ALUi’ selection operation according to opcode

‘LW’ select addition

‘SW’ select addition

‘Bxx’ select bcond generation function

__ don’t care

 Example ALU operations

 ADD, SUB, AND, OR, XOR, NOR, etc.

 bcond on equal, not equal, LE zero, GT zero, etc.

92

R-Type ALU

93

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32
Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

1
0

0funct

I-Type ALU

94

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32
Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

1
0

0

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

opcode

LW

95

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32
Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

1
0

1

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Add

SW

96

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32
Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
1

0

XX
bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Add

Branch (Not Taken)

97

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32
Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

XX

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

bcond

Some control signals are dependent

on the processing of data

Branch (Taken)

98

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32
Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

XX

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

bcond

Some control signals are dependent

on the processing of data

Jump

99

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32
Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

XX

X

X

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

X

What is in That Control Box?

 Combinational Logic Hardwired Control

 Idea: Control signals generated combinationally based on
instruction

 Necessary in a single-cycle microarchitecture

 Sequential Logic Sequential/Microprogrammed Control

 Idea: A memory structure contains the control signals
associated with an instruction

 Control Store

100

Review: Complete Single-Cycle Processor

101

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32
Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Another Complete Single-Cycle Processor

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

102Single-cycle processor. Harris and Harris, Chapter 7.3.

Extended Functionality: j

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC
0

1
PC'

Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

0

1

25:0 <<2

27:0 31:28

PCJump

Jump

Single-cycle processor. Harris and Harris, Chapter 7.3.

 Control signals generated by the decoder in control unit

Control Unit

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0

lw 100011 1 0 1 0 0 1 00 0

sw 101011 0 X 1 0 1 X 00 0

beq 000100 0 X 0 1 0 X 01 0

addi 001000 1 0 1 0 0 0 00 0

j 000010 0 X X X 0 X XX 1

104Single-cycle processor. Harris and Harris, Chapter 7.3.

Another Single-Cycle

MIPS Processor (from H&H)

Carnegie Mellon

106

What to do with the Program Counter?

reg [31:0] PC_p, PC_n; // Present and next state of PC

// […]

assign PC_n <= PC_p + 4; // Increment by 4;

always @ (posedge clk, negedge rst)
begin

if (rst == ‘0’) PC_p <= 32’h00400000; // default
else PC_p <= PC_n; // when clk

end

 The PC needs to be incremented by 4 during each cycle
(for the time being).

 Initial PC value (after reset) is 0x00400000

Carnegie Mellon

107

We Need a Register File

 Store 32 registers, each 32-bit
▪ 25 == 32, we need 5 bits to address each

 Every R-type instruction uses 3 register
▪ Two for reading (RS, RT)

▪ One for writing (RD)

 We need a special memory with:
▪ 2 read ports (address x2, data out x2)

▪ 1 write port (address, data in)

Carnegie Mellon

108

Register File

input [4:0] a_rs, a_rt, a_rd;
input [31:0] di_rd;
input we_rd;
output [31:0] do_rs, do_rt;

reg [31:0] R_arr [31:0]; // Array that stores regs

// Circuit description
assign do_rs = R_arr[a_rs]; // Read RS

assign do_rt = R_arr[a_rt]; // Read RT

always @ (posedge clk)
if (we_rd) R_arr[a_rd] <= di_rd; // write RD

Carnegie Mellon

109

Register File

input [4:0] a_rs, a_rt, a_rd;
input [31:0] di_rd;
input we_rd;
output [31:0] do_rs, do_rt;

reg [31:0] R_arr [31:0]; // Array that stores regs

// Circuit description; add the trick with $0
assign do_rs = (a_rs != 5’b00000)? // is address 0?

R_arr[a_rs] : 0; // Read RS or 0

assign do_rt = (a_rt != 5’b00000)? // is address 0?
R_arr[a_rt] : 0; // Read RT or 0

always @ (posedge clk)
if (we_rd) R_arr[a_rd] <= di_rd; // write RD

Carnegie Mellon

110

Data Memory Example

input [15:0] addr; // Only 16 bits in this example
input [31:0] di;
input we;
output [31:0] do;

reg [65535:0] M_arr [31:0]; // Array for Memory

// Circuit description
assign do = M_arr[addr]; // Read memory

always @ (posedge clk)
if (we) M_arr[addr] <= di; // write memory

 Will be used to store the bulk of data

Carnegie Mellon

111

Single-Cycle Datapath: lw fetch

 STEP 1: Fetch instruction

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WEPC
PC'

Instr

CLK

lw $s3, 1($0) # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type

Carnegie Mellon

112

Single-Cycle Datapath: lw register read

 STEP 2: Read source operands from register file

Instr

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PCPC'

25:21

CLK

lw $s3, 1($0) # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type

Carnegie Mellon

113

Single-Cycle Datapath: lw immediate

 STEP 3: Sign-extend the immediate

SignImm

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

CLK

lw $s3, 1($0) # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type

Carnegie Mellon

114

Single-Cycle Datapath: lw address

 STEP 4: Compute the memory address

SignImm

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

SrcB

ALUResult

SrcA Zero

CLK

ALUControl
2:0

A
L
U

010

lw $s3, 1($0) # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type

Carnegie Mellon

115

Single-Cycle Datapath: lw memory read

 STEP 5: Read from memory and write back to register file

A1

A3

WD3

RD2

RD1
WE3

A2

SignImm

CLK

A RD

Instruction

Memory

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

SrcB
20:16

ALUResult ReadData

SrcA

RegWrite

Zero

CLK

ALUControl
2:0

A
L
U

0101

lw $s3, 1($0) # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type

Carnegie Mellon

116

Single-Cycle Datapath: lw PC increment

 STEP 6: Determine address of next instruction

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

SrcB
20:16

ALUResult ReadData

SrcA

PCPlus4

Result

RegWrite

Zero

CLK

ALUControl
2:0

A
L
U

0101

lw $s3, 1($0) # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type

Carnegie Mellon

117

Single-Cycle Datapath: sw

 Write data in rt to memory

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

20:16

15:0

SrcB
20:16

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

MemWriteRegWrite

Zero

CLK

ALUControl
2:0

A
L
U

10100

sw $t7, 44($0) # write t7 into memory address 44

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type

Carnegie Mellon

118

Single-Cycle Datapath: R-type Instructions

 Read from rs and rt, write ALUResult to register file

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PCPC' Instr
25:21

20:16

15:0

SrcB

20:16

15:11

ALUResult ReadData

WriteData

SrcA

PCPlus4
WriteReg

4:0

Result

RegDst MemWrite MemtoRegALUSrcRegWrite

Zero

CLK

ALUControl
2:0

A
L
U

0
varies1 001

add t, b, c # t = b + c

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type

Carnegie Mellon

119

Single-Cycle Datapath: beq

 Determine whether values in rs and rt are equal
Calculate BTA = (sign-extended immediate << 2) + (PC+4)

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

RegDst Branch MemWrite MemtoRegALUSrcRegWrite

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

0
1100 x0x 1

beq $s0, $s1, target # branch is taken

Carnegie Mellon

120

Complete Single-Cycle Processor

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

Carnegie Mellon

121

Our MIPS Datapath has Several Options

 ALU inputs
▪ Either RT or Immediate (MUX)

 Write Address of Register File
▪ Either RD or RT (MUX)

 Write Data In of Register File
▪ Either ALU out or Data Memory Out (MUX)

 Write enable of Register File
▪ Not always a register write (MUX)

 Write enable of Memory
▪ Only when writing to memory (sw) (MUX)

All these options are our control signals

Carnegie Mellon

122

Control Unit

RegDst

Branch

MemWrite

MemtoReg

ALUSrc
Opcode5:0

Control

Unit

ALUControl2:0Funct5:0

Main

Decoder

ALUOp1:0

ALU

Decoder

RegWrite

Carnegie Mellon

123

ALU Does the Real Work in a Processor

ALU

N N

N

3

A B

Y

F

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT

Carnegie Mellon

124

ALU Internals

+

2 01

A B

C
out

Y

3

01

F
2

F
1:0

[N-1] S

NN

N

N

N NNN

N

2

Z
e

ro

E
x
te

n
d

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT

Carnegie Mellon

125

Control Unit: ALU Decoder

ALUOp1:0 Meaning

00 Add

01 Subtract

10 Look at Funct

11 Not Used

ALUOp1:0 Funct ALUControl2:0

00 X 010 (Add)

X1 X 110 (Subtract)

1X 100000 (add) 010 (Add)

1X 100010 (sub) 110 (Subtract)

1X 100100 (and) 000 (And)

1X 100101 (or) 001 (Or)

1X 101010 (slt) 111 (SLT)

RegDst

Branch

MemWrite

MemtoReg

ALUSrc
Opcode5:0

Control

Unit

ALUControl2:0Funct5:0

Main

Decoder

ALUOp1:0

ALU

Decoder

RegWrite

Carnegie Mellon

126

Let us Develop our Control Table

Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

▪ RegWrite: Write enable for the register file

▪ RegDst: Write to register RD or RT

▪ AluSrc: ALU input RT or immediate

▪ MemWrite: Write Enable

▪ MemtoReg: Register data in from Memory or ALU

▪ ALUOp: What operation does ALU do

Carnegie Mellon

127

Let us Develop our Control Table

Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

▪ RegWrite: Write enable for the register file

▪ RegDst: Write to register RD or RT

▪ AluSrc: ALU input RT or immediate

▪ MemWrite: Write Enable

▪ MemtoReg: Register data in from Memory or ALU

▪ ALUOp: What operation does ALU do

Carnegie Mellon

128

Let us Develop our Control Table

Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

lw 100011 1 0 1 0 1 add

▪ RegWrite: Write enable for the register file

▪ RegDst: Write to register RD or RT

▪ AluSrc: ALU input RT or immediate

▪ MemWrite: Write Enable

▪ MemtoReg: Register data in from Memory or ALU

▪ ALUOp: What operation does ALU do

Carnegie Mellon

129

Let us Develop our Control Table

Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

lw 100011 1 0 1 0 1 add

sw 101011 0 X 1 1 X add

▪ RegWrite: Write enable for the register file

▪ RegDst: Write to register RD or RT

▪ AluSrc: ALU input RT or immediate

▪ MemWrite: Write Enable

▪ MemtoReg: Register data in from Memory or ALU

▪ ALUOp: What operation does ALU do

Carnegie Mellon

130

More Control Signals

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 0 funct

lw 100011 1 0 1 0 0 1 add

sw 101011 0 X 1 0 1 X add

beq 000100 0 X 0 1 0 X sub

 New Control Signal

▪ Branch: Are we jumping or not ?

Carnegie Mellon

131

Control Unit: Main Decoder

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+
ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

Carnegie Mellon

132

Single-Cycle Datapath Example: or

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

001
0

0
1

0

0

1

0

Carnegie Mellon

133

Extended Functionality: addi

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

 No change to datapath

Carnegie Mellon

134

Control Unit: addi

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

addi 001000 1 0 1 0 0 0 00

Carnegie Mellon

135

Extended Functionality: j

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC
0

1
PC'

Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

0

1

25:0 <<2

27:0 31:28

PCJump

Jump

Carnegie Mellon

136

Control Unit: Main Decoder

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0

lw 100011 1 0 1 0 0 1 00 0

sw 101011 0 X 1 0 1 X 00 0

beq 000100 0 X 0 1 0 X 01 0

j 000100 0 X X X 0 X XX 1

Review: Complete Single-Cycle Processor (H&H)

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

137

A Bit More on

Performance Analysis

Carnegie Mellon

139

Processor Performance

 How fast is my program?
▪ Every program consists of a series of instructions

▪ Each instruction needs to be executed.

Carnegie Mellon

140

Processor Performance

 How fast is my program?
▪ Every program consists of a series of instructions

▪ Each instruction needs to be executed.

 So how fast are my instructions ?
▪ Instructions are realized on the hardware

▪ They can take one or more clock cycles to complete

▪ Cycles per Instruction = CPI

Carnegie Mellon

141

Processor Performance

 How fast is my program?
▪ Every program consists of a series of instructions

▪ Each instruction needs to be executed.

 So how fast are my instructions ?
▪ Instructions are realized on the hardware

▪ They can take one or more clock cycles to complete

▪ Cycles per Instruction = CPI

 How much time is one clock cycle?
▪ The critical path determines how much time one cycle requires =

clock period.

▪ 1/clock period = clock frequency = how many cycles can be done
each second.

Performance Analysis

 Execution time of an instruction

 {CPI} x {clock cycle time}

 Execution time of a program

 Sum over all instructions [{CPI} x {clock cycle time}]

 {# of instructions} x {Average CPI} x {clock cycle time}

142

Carnegie Mellon

143

Processor Performance

 Now as a general formula
▪ Our program consists of executing N instructions.

▪ Our processor needs CPI cycles for each instruction.

▪ The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

Carnegie Mellon

144

Processor Performance

 Now as a general formula
▪ Our program consists of executing N instructions.

▪ Our processor needs CPI cycles for each instruction.

▪ The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

 Our program will execute in

N x CPI x (1/f) = N x CPI x T seconds

Carnegie Mellon

145

How can I Make the Program Run Faster?

N x CPI x (1/f)

Carnegie Mellon

146

How can I Make the Program Run Faster?

N x CPI x (1/f)

 Reduce the number of instructions
▪ Make instructions that ‘do’ more (CISC)

▪ Use better compilers

Carnegie Mellon

147

How can I Make the Program Run Faster?

N x CPI x (1/f)

 Reduce the number of instructions
▪ Make instructions that ‘do’ more (CISC)

▪ Use better compilers

 Use less cycles to perform the instruction
▪ Simpler instructions (RISC)

▪ Use multiple units/ALUs/cores in parallel

Carnegie Mellon

148

How can I Make the Program Run Faster?

N x CPI x (1/f)

 Reduce the number of instructions
▪ Make instructions that ‘do’ more (CISC)

▪ Use better compilers

 Use less cycles to perform the instruction
▪ Simpler instructions (RISC)

▪ Use multiple units/ALUs/cores in parallel

 Increase the clock frequency
▪ Find a ‘newer’ technology to manufacture

▪ Redesign time critical components

▪ Adopt pipelining

Carnegie Mellon

149

Single-Cycle Performance

 TC is limited by the critical path (lw)

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

1

010
0

1

0

1

0 0

Carnegie Mellon

150

Single-Cycle Performance

 Single-cycle critical path:

▪ Tc = tpcq_PC + tmem + max(tRFread, tsext + tmux) + tALU + tmem + tmux + tRFsetup

 In most implementations, limiting paths are:

▪ memory, ALU, register file.

▪ Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

1

010
0

1

0

1

0 0

Carnegie Mellon

151

Single-Cycle Performance Example

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Tc =

Carnegie Mellon

152

Single-Cycle Performance Example

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

= [30 + 2(250) + 150 + 25 + 200 + 20] ps

= 925 ps

Carnegie Mellon

153

Single-Cycle Performance Example

 Example:

For a program with 100 billion instructions executing on a single-cycle
MIPS processor:

Carnegie Mellon

154

Single-Cycle Performance Example

 Example:

For a program with 100 billion instructions executing on a single-cycle
MIPS processor:

Execution Time = # instructions x CPI x TC

= (100 × 109)(1)(925 × 10-12 s)

= 92.5 seconds

Design of Digital Circuits

Lecture 11: Microarchitecture

Prof. Onur Mutlu

ETH Zurich

Spring 2018

29 March 2018

