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Readings

 This week

 Introduction to microarchitecture and single-cycle 
microarchitecture

 P&P, Appendices A and C

 H&H, Chapter 7.1-7.3, 7.6

 Next week

 Multi-cycle microarchitecture

 P&P, Appendices A and C 

 H&H, Chapter 7.4

 Microprogramming

 P&P, Appendices A and C 

 Pipelining

 H&H, Chapter 7.5
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Agenda for Today & Next Few Lectures

 Instruction Set Architectures (ISA): LC-3 and MIPS

 Assembly programming: LC-3 and MIPS

 Microarchitecture (principles & single-cycle uarch)

 Multi-cycle microarchitecture

 Microprogramming

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

 Out-of-Order Execution
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Recall: The Von Neumann Model
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CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
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Disk…

OUTPUT

Monitor, 

Printer, 

Disk…



Recall: LC-3: A Von Neumann Machine
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Recall: The Instruction Cycle

 FETCH

 DECODE

 EVALUATE ADDRESS

 FETCH OPERANDS

 EXECUTE

 STORE RESULT
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Recall: The Instruction Set Architecture

 The ISA is the interface between what the software commands 
and what the hardware carries out

 The ISA specifies
 The memory organization

 Address space (LC-3: 216, MIPS: 232)
 Addressability (LC-3: 16 bits, MIPS: 32 bits)
 Word- or Byte-addressable

 The register set
 R0 to R7 in LC-3
 32 registers in MIPS

 The instruction set
 Opcodes
 Data types
 Addressing modes
 Semantics of instructions
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Microarchitecture

 An implementation of the ISA

 How do we implement the ISA?

 We will discuss this for many lectures 

 There can be many implementations of the same ISA

 MIPS R2000, R10000, …

 Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake, 
Coffee Lake, …
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(A Bit More on)

ISA Design and Tradeoffs



The Von Neumann Model/Architecture

 Also called stored program computer (instructions in 
memory). Two key properties:

 Stored program

 Instructions stored in a linear memory array

 Memory is unified between instructions and data

 The interpretation of a stored value depends on the control 
signals

 Sequential instruction processing

 One instruction processed (fetched, executed, and completed) at a 
time

 Program counter (instruction pointer) identifies the current instr.

 Program counter is advanced sequentially except for control transfer 
instructions
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When is a value interpreted as an instruction?



The Von Neumann Model/Architecture

 Recommended reading

 Burks, Goldstein, von Neumann, “Preliminary discussion of the 
logical design of an electronic computing instrument,” 1946.

 Required reading

 Patt and Patel book, Chapter 4, “The von Neumann Model”

 Stored program

 Sequential instruction processing
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The Von Neumann Model (of a Computer)
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The Von Neumann Model (of a Computer)

 Q: Is this the only way that a computer can operate?

 A: No.

 Qualified Answer: But, it has been the dominant way 

 i.e., the dominant paradigm for computing

 for N decades
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The Dataflow Model (of a Computer)

 Von Neumann model: An instruction is fetched and 
executed in control flow order 

 As specified by the instruction pointer

 Sequential unless explicit control flow instruction

 Dataflow model: An instruction is fetched and executed in 
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received

 Potentially many instructions can execute at the same time

 Inherently more parallel
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Von Neumann vs Dataflow

 Consider a Von Neumann program 

 What is the significance of the program order?

 What is the significance of the storage locations?

 Which model is more natural to you as a programmer?
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v <= a + b;   
w <= b * 2;
x <= v - w
y <= v + w
z <= x * y

+ *2

- +

*

a b

z

Sequential

Dataflow



More on Data Flow

 In a data flow machine, a program consists of data flow 
nodes

 A data flow node fires (fetched and executed) when all it 
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation
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Data Flow Nodes
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An Example Data Flow Program
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ISA-level Tradeoff: Instruction Pointer

 Do we need an instruction pointer in the ISA?

 Yes: Control-driven, sequential execution

 An instruction is executed when the IP points to it

 IP automatically changes sequentially (except for control flow 
instructions)

 No: Data-driven, parallel execution

 An instruction is executed when all its operand values are 
available (data flow)

 Tradeoffs: MANY high-level ones

 Ease of programming (for average programmers)?

 Ease of compilation?

 Performance: Extraction of parallelism?

 Hardware complexity?
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ISA vs. Microarchitecture Level Tradeoff

 A similar tradeoff (control vs. data-driven execution) can be 
made at the microarchitecture level

 ISA: Specifies how the programmer sees the instructions to 
be executed

 Programmer sees a sequential, control-flow execution order vs.

 Programmer sees a data-flow execution order

 Microarchitecture: How the underlying implementation 
actually executes instructions 

 Microarchitecture can execute instructions in any order as long 
as it obeys the semantics specified by the ISA when making the 
instruction results visible to software

 Programmer should see the order specified by the ISA
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Let’s Get Back to the Von Neumann Model

 But, if you want to learn more about dataflow…

 Dennis and Misunas, “A preliminary architecture for a basic 
data-flow processor,” ISCA 1974.

 Gurd et al., “The Manchester prototype dataflow 
computer,” CACM 1985.

 A later lecture

 If you are really impatient:

 http://www.youtube.com/watch?v=D2uue7izU2c

 http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi
a=onur-740-fall13-module5.2.1-dataflow-part1.ppt
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http://www.youtube.com/watch?v=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt


The Von-Neumann Model

 All major instruction set architectures today use this model

 x86, ARM, MIPS, SPARC, Alpha, POWER

 Underneath (at the microarchitecture level), the execution 
model of almost all implementations (or, microarchitectures) 
is very different

 Pipelined instruction execution: Intel 80486 uarch

 Multiple instructions at a time: Intel Pentium uarch

 Out-of-order execution: Intel Pentium Pro uarch

 Separate instruction and data caches

 But, what happens underneath that is not consistent with 
the von Neumann model is not exposed to software

 Difference between ISA and microarchitecture
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What is Computer Architecture?

 ISA+implementation definition: The science and art of 
designing, selecting, and interconnecting hardware 
components and designing the hardware/software interface 
to create a computing system that meets functional, 
performance, energy consumption, cost, and other specific 
goals. 

 Traditional (ISA-only) definition: “The term 
architecture is used here to describe the attributes of a 
system as seen by the programmer, i.e., the conceptual 
structure and functional behavior as distinct from the 
organization of the dataflow and controls, the logic design, 
and the physical implementation.”

Gene Amdahl, IBM Journal of R&D, April 1964
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ISA vs. Microarchitecture

 ISA

 Agreed upon interface between software 
and hardware

 SW/compiler assumes, HW promises

 What the software writer needs to know 
to write and debug system/user programs 

 Microarchitecture

 Specific implementation of an ISA

 Not visible to the software

 Microprocessor

 ISA, uarch, circuits

 “Architecture” = ISA + microarchitecture
24
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ISA vs. Microarchitecture

 What is part of ISA vs. Uarch?

 Gas pedal: interface for “acceleration”

 Internals of the engine: implement “acceleration”

 Implementation (uarch) can be various as long as it 
satisfies the specification (ISA)

 Add instruction vs. Adder implementation

 Bit serial, ripple carry, carry lookahead adders are all part of 
microarchitecture (see H&H Chapter 5.2.1)

 x86 ISA has many implementations: 286, 386, 486, Pentium, 
Pentium Pro, Pentium 4, Core, Kaby Lake, Coffee Lake, …

 Microarchitecture usually changes faster than ISA

 Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many uarchs

 Why?
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ISA

 Instructions
 Opcodes, Addressing Modes, Data Types

 Instruction Types and Formats

 Registers, Condition Codes

 Memory
 Address space, Addressability, Alignment

 Virtual memory management

 Call, Interrupt/Exception Handling

 Access Control, Priority/Privilege 

 I/O: memory-mapped vs. instr.

 Task/thread Management

 Power and Thermal Management

 Multi-threading support, Multiprocessor support

 …
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Microarchitecture

 Implementation of the ISA under specific design constraints 
and goals

 Anything done in hardware without exposure to software

 Pipelining

 In-order versus out-of-order instruction execution

 Memory access scheduling policy

 Speculative execution

 Superscalar processing (multiple instruction issue?)

 Clock gating

 Caching? Levels, size, associativity, replacement policy

 Prefetching?

 Voltage/frequency scaling?

 Error correction?

27



Property of ISA vs. Uarch?

 ADD instruction’s opcode

 Booth multiplier vs. Wallace-tree multiplier

 Number of general purpose registers

 Number of cycles to execute the MUL instruction

 Number of ports to the register file

 Whether or not the machine employs pipelined instruction 
execution

 Remember

 Microarchitecture: Implementation of the ISA under specific
design constraints and goals
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Design Point

 A set of design considerations and their importance 

 leads to tradeoffs in both ISA and uarch

 Example considerations:

 Cost

 Performance

 Maximum power consumption, thermal

 Energy consumption (battery life)

 Availability

 Reliability and Correctness 

 Time to Market

 Security, safety, predictability, …

 Design point determined by the “Problem” space 
(application space), the intended users/market
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Application Space

Dream, and they will appear…

30

Patt, “Requirements, bottlenecks, 

and good fortune: agents for 

microprocessor evolution,” 

Proc. of the IEEE 2001.

Many other workloads:

Genome analysis

Machine learning

Robotics

Web search

Graph analytics

…



Increasingly Demanding Applications

Dream

and, they will come
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As applications push boundaries, computing platforms will become increasingly strained.



Tradeoffs: Soul of Computer Architecture

 ISA-level tradeoffs

 Microarchitecture-level tradeoffs

 System and Task-level tradeoffs

 How to divide the labor between hardware and software

 Computer architecture is the science and art of making the 
appropriate trade-offs to meet a design point

 Why art?
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Why Is It (Somewhat) Art?
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Why Is It (Somewhat) Art?
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 And, the future is not constant (it changes)!
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(Look Up and Forward)
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Analogue from Macro-Architecture

 Future is not constant in macro-architecture, either

 Example: Can a mill be later used as a theater + restaurant 
+ conference room?
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Mühle Tiefenbrunnen

36

 Originally built as a brewery in 1889, part of it was 
converted into a mill in 1913, and the other part into a cold 
store

 Nowadays is a center for a variety of activities: theater, 
conferences, restaurants, shops, museum…

Brewery in 1900

http://www.muehle-tiefenbrunnen.ch/



Another Example (I)
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Another Example (II)
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By Roland zh (Own work) [CC BY-SA 3.0 

(https://creativecommons.org/licenses/by-sa/3.0)],

via Wikimedia Commons

https://creativecommons.org/licenses/by-sa/3.0)


Implementing the ISA: 

Microarchitecture Basics



Now That We Have an ISA

 How do we implement it?

 i.e., how do we design a system that obeys the 
hardware/software interface?

 Aside: “System” can be solely hardware or a combination of 
hardware and software

 Remember “Translation of ISAs” (Transmeta example in Lec. 2)

 A virtual ISA can be converted by “software” into an 
implementation ISA

 We will assume “hardware” for most lectures
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How Does a Machine Process Instructions? 

 What does processing an instruction mean?

 We will assume the von Neumann model (for now)

AS = Architectural (programmer visible) state before an 
instruction is processed

Process instruction

AS’ = Architectural (programmer visible) state after an 
instruction is processed

 Processing an instruction: Transforming AS to AS’ according 
to the ISA specification of the instruction
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The Von Neumann Model/Architecture

Stored program

Sequential instruction processing

43



Recall: The Von Neumann Model
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The “Process Instruction” Step
 ISA specifies abstractly what AS’ should be, given an 

instruction and AS

 It defines an abstract finite state machine where

 State = programmer-visible state 

 Next-state logic = instruction execution specification

 From ISA point of view, there are no “intermediate states” 
between AS and AS’ during instruction execution

 One state transition per instruction

 Microarchitecture implements how AS is transformed to AS’

 There are many choices in implementation 

 We can have programmer-invisible state to optimize the speed of 
instruction execution: multiple state transitions per instruction

 Choice 1: AS  AS’ (transform AS to AS’ in a single clock cycle)

 Choice 2: AS  AS+MS1  AS+MS2  AS+MS3  AS’ (take multiple 

clock cycles to transform AS to AS’)
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A Very Basic Instruction Processing Engine

 Each instruction takes a single clock cycle to execute

 Only combinational logic is used to implement instruction 
execution 

 No intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state 

at the beginning of a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state 

at the end of a clock cycle
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A Very Basic Instruction Processing Engine

 Single-cycle machine

 What is the clock cycle time determined by?

 What is the critical path of the combinational logic 
determined by?

47
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Recall: Programmer Visible (Architectural) State
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M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter

memory address
of the current instruction

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state



Single-cycle vs. Multi-cycle Machines

 Single-cycle machines

 Each instruction takes a single clock cycle

 All state updates made at the end of an instruction’s execution

 Big disadvantage: The slowest instruction determines cycle time 

long clock cycle time

 Multi-cycle machines 

 Instruction processing broken into multiple cycles/stages

 State updates can be made during an instruction’s execution

 Architectural state updates made only at the end of an instruction’s 
execution

 Advantage over single-cycle: The slowest “stage” determines cycle time

 Both single-cycle and multi-cycle machines literally follow the 
von Neumann model at the microarchitecture level
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Instruction Processing “Cycle”

 Instructions are processed under the direction of a “control 
unit” step by step. 

 Instruction cycle: Sequence of steps to process an instruction

 Fundamentally, there are six steps:

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

 Not all instructions require all six steps (see P&P Ch. 4)
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Recall: The Instruction Processing “Cycle”

 FETCH

 DECODE

 EVALUATE ADDRESS

 FETCH OPERANDS

 EXECUTE

 STORE RESULT
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Instruction Processing “Cycle” vs. Machine Clock Cycle

 Single-cycle machine: 

 All six phases of the instruction processing cycle take a single 
machine clock cycle to complete

 Multi-cycle machine: 

 All six phases of the instruction processing cycle can take 
multiple machine clock cycles to complete

 In fact, each phase can take multiple clock cycles to complete

52



Instruction Processing Viewed Another Way
 Instructions transform Data (AS) to Data’ (AS’)

 This transformation is done by functional units 
 Units that “operate” on data

 These units need to be told what to do to the data

 An instruction processing engine consists of two components

 Datapath: Consists of hardware elements that deal with and 
transform data signals

 functional units that operate on data

 hardware structures (e.g. wires and muxes) that enable the flow of 
data into the functional units and registers

 storage units that store data (e.g., registers)

 Control logic: Consists of hardware elements that determine 
control signals, i.e., signals that specify what the datapath 
elements should do to the data
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Single-cycle vs. Multi-cycle: Control & Data

 Single-cycle machine:

 Control signals are generated in the same clock cycle as the 
one during which data signals are operated on

 Everything related to an instruction happens in one clock cycle 
(serialized processing)

 Multi-cycle machine:

 Control signals needed in the next cycle can be generated in 
the current cycle

 Latency of control processing can be overlapped with latency 
of datapath operation (more parallelism)

 We will see the difference clearly in microprogrammed 
multi-cycle microarchitectures
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Many Ways of Datapath and Control Design

 There are many ways of designing the data path and 
control logic

 Single-cycle, multi-cycle, pipelined datapath and control

 Single-bus vs. multi-bus datapaths

 Hardwired/combinational vs. microcoded/microprogrammed 
control

 Control signals generated by combinational logic versus

 Control signals stored in a memory structure

 Control signals and structure depend on the datapath 
design
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Flash-Forward: Performance Analysis

 Execution time of an instruction

 {CPI}  x  {clock cycle time} 

 Execution time of a program

 Sum over all instructions [{CPI}  x  {clock cycle time}]

 {# of instructions}  x  {Average CPI}  x  {clock cycle time}

 Single-cycle microarchitecture performance 

 CPI = 1

 Clock cycle time = long

 Multi-cycle microarchitecture performance

 CPI = different for each instruction

 Average CPI  hopefully small

 Clock cycle time = short
56

Here, we have 

two degrees of freedom

to optimize independently



A Single-Cycle Microarchitecture

A Closer Look



Remember…

 Single-cycle machine
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Let’s Start with the State Elements

 Data and control inputs
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RegWrite

Registers
Write 
register
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Read 
register 2

Write 
data

ALU 
result

ALU

Data

Data

Register 

numbers

a. Registers b. ALU

Zero
5

5

5 3

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



MIPS State Elements
CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WEPCPC'

CLK

32 32
32 32

32

32

32
32

32

32

5

5

5

 Program counter: 

32-bit register 

 Instruction memory: 

Takes input 32-bit address A and reads the 32-bit data (i.e., instruction) 
from that address to the read data output RD.

 Register file: 

The 32-element, 32-bit register file has 2 read ports and 1 write port

 Data memory: 

Has a single read/write port. If the write enable, WE, is 1, it writes data 
WD into address A on the rising edge of the clock. If the write enable is 0, 
it reads address A onto RD.

This notation is used in H&H single-cycle MIPS implementation (H&H Chapter 7.3)



For Now, We Will Assume

 “Magic” memory and register file

 Combinational read

 output of the read data port is a combinational function of the 
register file contents and the corresponding read select port

 Synchronous write

 the selected register is updated on the positive edge clock 
transition when write enable is asserted

 Cannot affect read output in between clock edges

 Single-cycle, synchronous memory

 Contrast this with memory that tells when the data is ready

 i.e., Ready bit: indicating the read or write is done

 See P&P Appendix C (LC3-b) for multi-cycle memory
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Instruction Processing

 5 generic steps (P&H book)

 Instruction fetch (IF)

 Instruction decode and register operand fetch (ID/RF)

 Execute/Evaluate memory address (EX/AG)

 Memory operand fetch (MEM)

 Store/writeback result (WB) 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



What Is To Come: The Full MIPS Datapath
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Another Complete Single-Cycle Processor
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64Single-cycle processor. Harris and Harris, Chapter 7.3.



Single-Cycle Datapath for

Arithmetic and Logical Instructions



 R-type: 3 register operands

 Semantics

R-Type ALU Instructions
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add $s0, $s1, $s2  #$s0=rd, $s1=rs, $s2=rt

MIPS assembly (e.g., register-register signed addition)

Machine Encoding

if MEM[PC] == add rd rs rt

GPR[rd]  GPR[rs] + GPR[rt] 

PC  PC + 4

0 rs rt rd 0 add (32)

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type



(R-Type) ALU Datapath
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memory
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Instruction

4

Add

Instruction
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register

Read 
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Read 
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Read 
register 2

Write 
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ALU
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RegWrite
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3
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15:11
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADD rd rs rt
GPR[rd]  GPR[rs] + GPR[rt] 
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



 ALU operation (F2:0) comes from the control logic

Example: ALU Design
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 I-type: 2 register operands and 1 immediate

 Semantics

I-Type ALU Instructions
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addi (0) rs rt immediate

addi $s0, $s1, 5   #$s0=rt, $s1=rs

MIPS assembly (e.g., register-immediate signed addition)

Machine Encoding

if MEM[PC] == addi rs rt immediate
PC  PC + 4

GPR[rt]  GPR[rs] + sign-extend(immediate) 

I-Type
5 bits 5 bits6 bits 16 bits



Datapath for R and I-Type ALU Insts.
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADDI rt rs immediate
GPR[rt]  GPR[rs] + sign-extend (immediate) 
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB



 ADD assembly and machine code 

Recall: ADD with one Literal in LC-3
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ADD R1, R4, #-2

LC-3 assembly

Field Values

Machine Code

1 1 4 1 -2

OP DR SR imm5

0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0

OP DR SR imm5

15 12 11 9 8 6 05 4

Register file

SR

DR

From 
FSM

Instruction register

Sign-
extend



Single-Cycle Datapath for

Data Movement Instructions



 Load 4-byte word

 Semantics

Load Instructions

73

lw (35) base rt offset

op rs=base rt imm=offset

lw $s3, 8($s0)  #$s0=rs, $s3=rt

MIPS assembly

Machine Encoding

I-Type
15 0162021252631

if MEM[PC] == lw rt offset16 (base)
PC  PC + 4

EA = sign-extend(offset) + GPR(base)

GPR[rt]  MEM[ translate(EA) ] 



LW Datapath
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ALUSrc

if MEM[PC]==LW rt offset16 (base) 
EA = sign-extend(offset) + GPR[base]
GPR[rt] MEM[ translate(EA) ] 
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign 

extend

b. Sign-extension unit

MemRead

MemWrite

Data 

memory
Write 
data

Read 
data

a. Data memory unit

Address

1

add

isItype

RegDest
isItype

1

0



Store Instructions

 Store 4-byte word

 Semantics
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sw $s3, 8($s0) #$s0=rs, $s3=rt

MIPS assembly

sw (43) base rt offset

op rs=base rt imm=offset

Machine Encoding

if Mem[PC] == sw rt offset16 (base)
PC  PC + 4

EA = sign-extend(offset) + GPR(base)

MEM[ translate(EA) ]  GPR[rt]

I-Type
15 0162021252631



SW Datapath
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ALU operation3

if MEM[PC]==SW rt offset16 (base) 
EA = sign-extend(offset) + GPR[base]
MEM[ translate(EA) ]  GPR[rt] 
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign 

extend

b. Sign-extension unit

MemRead

MemWrite

Data 

memory
Write 
data

Read 
data

a. Data memory unit

Address
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Load-Store Datapath
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Address
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!isStore

add
isStore

isLoad

ALUSrc
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RegDest
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]



Datapath for Non-Control-Flow Insts.

78

PC

Instruction 

memory

Read 
address

Instruction

4

Add

Instruction

16 32

Registers
Write 
register

Read 
data 1

Read 
data 2

Read 
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!isStore

isStore

isLoad
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isItype

MemtoReg

isLoad

RegDest
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Single-Cycle Datapath for

Control Flow Instructions



Jump Instruction

 Unconditional branch or jump

 2 = opcode

 immediate (target) = target address

 Semantics

if MEM[PC]== j immediate26

target = { PC ✝[31:28], immediate26, 2’b00 }

PC  target

80

j (2) immediate

6 bits 26 bits

j target

J-Type

✝This is the incremented PC



Unconditional Jump Datapath
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Zero
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MemWrite

RegWrite

ALU operation3

ALUSrc

concat
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isJ

What about JR, JAL, JALR?

?

**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]

0

X
0

0

X

if MEM[PC]==J immediate26
PC = { PC[31:28], immediate26, 2’b00 }



Other Jumps in MIPS
 jal: jump and link (function calls)

 Semantics

if MEM[PC]== jal immediate26

$ra  PC + 4

target = { PC ✝[31:28], immediate26, 2’b00 }

PC  target

 jr: jump register

 Semantics

if MEM[PC]== jr rs

PC  GPR(rs)

 jalr: jump and link register

 Semantics

if MEM[PC]== jalr rs

$ra  PC + 4

PC  GPR(rs)

82✝This is the incremented PC



Aside: MIPS Cheat Sheet

 https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetc
h.php?media=mips_reference_data.pdf

 On the course website

83

https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=mips_reference_data.pdf


Conditional Branch Instructions

 beq (Branch if Equal)

 Semantics (assuming no branch delay slot)

if MEM[PC] == beq rs rt immediate16

target = PC✝+ sign-extend(immediate) x 4 

if GPR[rs]==GPR[rt] then PC  target

else PC  PC + 4

 Variations: beq, bne, blez, bgtz

84

beq (4) rs rt immediate=offset

6 bits 5 bits 5 bits 16 bits

beq $s0, $s1, offset #$s0=rs,$s1=rt

✝This is the incremented PC

I-Type



Conditional Branch Datapath (for you to finish)
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16 32
Sign 

extend

ZeroALU

Sum

Shift 

left 2

To branch 

control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write 
register

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Write 
data

RegWrite

ALU operation
3

PC

Instruction 

memory

Read 
address

Instruction

4

Add

PCSrc

concat

0

sub

How to uphold the delayed branch semantics?

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

watch out



Putting It All Together
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result
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4
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x

Instruction [25– 0] Jump address [31– 0]
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Sign 
extend

16 32
Instruction [15– 0]

1
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x
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x
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1

ALU 
control

Control
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26 28

Address
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bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



We did not cover the following slides in lecture. 

These are for your preparation for the next lecture 



Single-Cycle Control Logic



Single-Cycle Hardwired Control
 As combinational function of Inst=MEM[PC]

 Consider

 All R-type and I-type ALU instructions

 lw and sw

 beq, bne, blez, bgtz

 j, jr, jal, jalr

89

0 rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type
15 0162021252631 11 10 6 5

opcode rs rt immediate I-Type
15 0162021252631

6 bits 5 bits 5 bits 16 bits

opcode immediate

6 bits 26 bits

J-Type
0252631



Single-Bit Control Signals
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When De-asserted When asserted Equation

RegDest
GPR write select 
according to rt, i.e., 
inst[20:16]

GPR write select 
according to rd, i.e., 
inst[15:11]

opcode==0

ALUSrc

2nd ALU input from 2nd

GPR read port
2nd ALU input from sign-
extended 16-bit 
immediate

(opcode!=0) &&

(opcode!=BEQ) &&

(opcode!=BNE)

MemtoReg
Steer ALU result to GPR 
write port

steer memory load to 
GPR wr. port

opcode==LW

RegWrite

GPR write disabled GPR write enabled (opcode!=SW) &&

(opcode!=Bxx) &&

(opcode!=J) &&

(opcode!=JR))

JAL and JALR require additional RegDest and MemtoReg options 



Single-Bit Control Signals
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When De-asserted When asserted Equation

MemRead
Memory read disabled Memory read port 

return load value
opcode==LW

MemWrite
Memory write disabled Memory write enabled opcode==SW

PCSrc1

According to PCSrc2 next PC is based on 26-
bit immediate jump 
target

(opcode==J) ||

(opcode==JAL)

PCSrc2

next PC = PC + 4 next PC is based on 16-
bit immediate branch 
target

(opcode==Bxx) &&

“bcond is satisfied”

JR and JALR require additional PCSrc options 



ALU Control

 case opcode

‘0’  select operation according to funct

‘ALUi’  selection operation according to opcode

‘LW’  select addition

‘SW’  select addition

‘Bxx’  select bcond generation function

__  don’t care

 Example ALU operations

 ADD, SUB, AND, OR, XOR, NOR, etc.

 bcond on equal, not equal, LE zero, GT zero, etc.
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R-Type ALU
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bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]

1
0

0funct



I-Type ALU
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]

opcode



LW
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]

Add



SW
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]

Add



Branch (Not Taken)
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.]

bcond

Some control signals are dependent

on the processing of data



Branch (Taken)
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]

bcond

Some control signals are dependent

on the processing of data



Jump
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]

X



What is in That Control Box?

 Combinational Logic  Hardwired Control

 Idea: Control signals generated combinationally based on 
instruction

 Necessary in a single-cycle microarchitecture

 Sequential Logic  Sequential/Microprogrammed Control

 Idea: A memory structure contains the control signals 
associated with an instruction

 Control Store

100



Review: Complete Single-Cycle Processor
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bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted



Another Complete Single-Cycle Processor
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102Single-cycle processor. Harris and Harris, Chapter 7.3.



Extended Functionality: j
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Single-cycle processor. Harris and Harris, Chapter 7.3.



 Control signals generated by the decoder in control unit

Control Unit

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0

lw 100011 1 0 1 0 0 1 00 0

sw 101011 0 X 1 0 1 X 00 0

beq 000100 0 X 0 1 0 X 01 0

addi 001000 1 0 1 0 0 0 00 0

j 000010 0 X X X 0 X XX 1

104Single-cycle processor. Harris and Harris, Chapter 7.3.



Another Single-Cycle 

MIPS Processor (from H&H)



Carnegie Mellon
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What to do with the Program Counter?

reg [31:0] PC_p, PC_n;      // Present and next state of PC

// […]

assign PC_n <= PC_p + 4;                   // Increment by 4;

always @ (posedge clk, negedge rst)
begin

if (rst == ‘0’) PC_p <= 32’h00400000; // default
else PC_p <= PC_n;         // when clk

end

 The PC needs to be incremented by 4 during each cycle 
(for the time being). 

 Initial PC value (after reset) is 0x00400000



Carnegie Mellon
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We Need a Register File

 Store 32 registers, each 32-bit
▪ 25 == 32, we need 5 bits to address each

 Every R-type instruction uses 3 register
▪ Two for reading (RS, RT)

▪ One for writing (RD)

 We need a special memory with:
▪ 2 read ports (address x2, data out x2)

▪ 1 write port (address, data in)



Carnegie Mellon
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Register File

input [4:0]   a_rs, a_rt, a_rd;
input [31:0]  di_rd;
input we_rd;
output [31:0] do_rs, do_rt;

reg [31:0] R_arr [31:0]; // Array that stores regs

// Circuit description
assign do_rs = R_arr[a_rs];          // Read RS

assign do_rt = R_arr[a_rt];          // Read RT

always @ (posedge clk)
if (we_rd) R_arr[a_rd] <= di_rd; // write RD
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Register File

input [4:0]   a_rs, a_rt, a_rd;
input [31:0]  di_rd;
input we_rd;
output [31:0] do_rs, do_rt;

reg [31:0] R_arr [31:0]; // Array that stores regs

// Circuit description; add the trick with $0
assign do_rs = (a_rs != 5’b00000)? // is address 0?  

R_arr[a_rs] : 0;     // Read RS or 0

assign do_rt = (a_rt != 5’b00000)? // is address 0?
R_arr[a_rt] : 0;     // Read RT or 0

always @ (posedge clk)
if (we_rd) R_arr[a_rd] <= di_rd; // write RD



Carnegie Mellon

110

Data Memory Example

input [15:0]  addr; // Only 16 bits in this example 
input [31:0]  di;
input we;
output [31:0] do;

reg [65535:0] M_arr [31:0];          // Array for Memory

// Circuit description
assign do = M_arr[addr];             // Read memory

always @ (posedge clk)
if (we) M_arr[addr] <= di;       // write memory

 Will be used to store the bulk of data
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Single-Cycle Datapath: lw fetch

 STEP 1: Fetch instruction

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WEPC
PC'

Instr

CLK

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw register read

 STEP 2: Read source operands from register file

Instr

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PCPC'

25:21

CLK

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw immediate

 STEP 3: Sign-extend the immediate

SignImm
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A RD

Instruction

Memory

A1
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WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

CLK

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw address

 STEP 4: Compute the memory address

SignImm
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A RD

Instruction

Memory
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WD3

RD2
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WE3
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CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

SrcB

ALUResult

SrcA Zero

CLK

ALUControl
2:0

A
L
U

010

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw memory read

 STEP 5: Read from memory and write back to register file

A1

A3

WD3

RD2

RD1
WE3

A2

SignImm

CLK

A RD

Instruction

Memory

CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

SrcB
20:16

ALUResult ReadData

SrcA

RegWrite

Zero

CLK

ALUControl
2:0

A
L
U

0101

lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: lw PC increment

 STEP 6: Determine address of next instruction

SignImm
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A RD

Instruction

Memory

+

4

A1
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WD3

RD2

RD1
WE3
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CLK

Sign Extend

Register

File

A RD

Data

Memory

WD

WE
PCPC' Instr

25:21

15:0

SrcB
20:16

ALUResult ReadData

SrcA

PCPlus4

Result

RegWrite

Zero

CLK

ALUControl
2:0

A
L
U
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lw $s3, 1($0)  # read memory word 1 into $s3

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: sw

 Write data in rt to memory

SignImm
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A RD

Instruction

Memory
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A1
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WD3

RD2

RD1
WE3
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CLK

Sign Extend

Register

File

A RD
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Memory

WD
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PCPC' Instr

25:21

20:16

15:0

SrcB
20:16

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

MemWriteRegWrite

Zero

CLK

ALUControl
2:0

A
L
U

10100

sw $t7, 44($0)  # write t7 into memory address 44

op rs rt imm

6 bits 5 bits 5 bits 16 bits

I-Type
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Single-Cycle Datapath: R-type Instructions

 Read from rs and rt,  write ALUResult to register file

SignImm
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WD3

RD2
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WE3

A2

CLK

Sign Extend
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Data
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WD
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1

PCPC' Instr
25:21

20:16

15:0
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15:11
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SrcA

PCPlus4
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4:0

Result

RegDst MemWrite MemtoRegALUSrcRegWrite
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CLK

ALUControl
2:0

A
L
U

0
varies1 001

add t, b, c  # t = b + c

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type
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Single-Cycle Datapath: beq

 Determine whether values in rs and rt are equal
Calculate BTA = (sign-extended immediate << 2) + (PC+4)

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21
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+
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1100 x0x 1

beq $s0, $s1, target  # branch is taken
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Complete Single-Cycle Processor

SignImm
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20:16
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+
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Our MIPS Datapath has Several Options

 ALU inputs
▪ Either RT or Immediate (MUX)

 Write Address of Register File
▪ Either RD or RT (MUX)

 Write Data In of Register File
▪ Either ALU out or Data Memory Out (MUX)

 Write enable of Register File
▪ Not always a register write  (MUX)

 Write enable of Memory
▪ Only when writing to memory (sw) (MUX)

All these options are our control signals
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Control Unit

RegDst

Branch

MemWrite

MemtoReg

ALUSrc
Opcode5:0

Control

Unit

ALUControl2:0Funct5:0

Main

Decoder

ALUOp1:0

ALU

Decoder

RegWrite
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ALU Does the Real Work in a Processor

ALU

N N

N

3

A B

Y

F

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT
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ALU Internals

+

2 01

A B

C
out

Y

3

01

F
2

F
1:0

[N-1] S

NN

N

N

N NNN

N

2

Z
e

ro

E
x
te

n
d

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT
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Control Unit: ALU Decoder

ALUOp1:0 Meaning

00 Add

01 Subtract

10 Look at Funct

11 Not Used

ALUOp1:0 Funct ALUControl2:0

00 X 010 (Add)

X1 X 110 (Subtract)

1X 100000 (add) 010 (Add)

1X 100010 (sub) 110 (Subtract)

1X 100100 (and) 000 (And)

1X 100101 (or) 001 (Or)

1X 101010 (slt) 111 (SLT)

RegDst

Branch

MemWrite

MemtoReg

ALUSrc
Opcode5:0

Control

Unit

ALUControl2:0Funct5:0

Main

Decoder

ALUOp1:0

ALU

Decoder

RegWrite
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Let us Develop our Control Table

Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

▪ RegWrite: Write enable for the register file

▪ RegDst: Write to register RD or RT

▪ AluSrc: ALU input RT or immediate

▪ MemWrite: Write Enable

▪ MemtoReg: Register data in from Memory or ALU

▪ ALUOp: What operation does ALU do
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Let us Develop our Control Table

Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

▪ RegWrite: Write enable for the register file

▪ RegDst: Write to register RD or RT

▪ AluSrc: ALU input RT or immediate

▪ MemWrite: Write Enable

▪ MemtoReg: Register data in from Memory or ALU

▪ ALUOp: What operation does ALU do
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Let us Develop our Control Table

Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

lw 100011 1 0 1 0 1 add

▪ RegWrite: Write enable for the register file

▪ RegDst: Write to register RD or RT

▪ AluSrc: ALU input RT or immediate

▪ MemWrite: Write Enable

▪ MemtoReg: Register data in from Memory or ALU

▪ ALUOp: What operation does ALU do
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Let us Develop our Control Table

Instruction Op5:0 RegWrite RegDst AluSrc MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 funct

lw 100011 1 0 1 0 1 add

sw 101011 0 X 1 1 X add

▪ RegWrite: Write enable for the register file

▪ RegDst: Write to register RD or RT

▪ AluSrc: ALU input RT or immediate

▪ MemWrite: Write Enable

▪ MemtoReg: Register data in from Memory or ALU

▪ ALUOp: What operation does ALU do
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More Control Signals

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 0 funct

lw 100011 1 0 1 0 0 1 add

sw 101011 0 X 1 0 1 X add

beq 000100 0 X 0 1 0 X sub

 New Control Signal

▪ Branch: Are we jumping or not ?
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Control Unit: Main Decoder

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+
ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U
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Single-Cycle Datapath Example: or

SignImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK
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15:0
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15:11
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+

ALUResult ReadData

WriteData
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PCPlus4

PCBranch

WriteReg
4:0

Result
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MemWrite
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ALUSrc

RegWrite
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Unit
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PCSrc

CLK

ALUControl
2:0

A
L
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0
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0

0
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0
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Extended Functionality: addi

SignImm
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A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3
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CLK

Sign Extend

Register

File

0

1
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1

A RD

Data

Memory
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0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

 No change to datapath
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Control Unit: addi

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

addi 001000 1 0 1 0 0 0 00
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Extended Functionality: j

SignImm
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Control Unit: Main Decoder

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0

lw 100011 1 0 1 0 0 1 00 0

sw 101011 0 X 1 0 1 X 00 0

beq 000100 0 X 0 1 0 X 01 0

j 000100 0 X X X 0 X XX 1



Review: Complete Single-Cycle Processor (H&H)
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A Bit More on

Performance Analysis
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Processor Performance

 How fast is my program?
▪ Every program consists of a series of instructions

▪ Each instruction needs to be executed.
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Processor Performance

 How fast is my program?
▪ Every program consists of a series of instructions

▪ Each instruction needs to be executed.

 So how fast are my instructions ?
▪ Instructions are realized on the hardware

▪ They can take one or more clock cycles to complete

▪ Cycles per Instruction = CPI
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Processor Performance

 How fast is my program?
▪ Every program consists of a series of instructions

▪ Each instruction needs to be executed.

 So how fast are my instructions ?
▪ Instructions are realized on the hardware

▪ They can take one or more clock cycles to complete

▪ Cycles per Instruction = CPI

 How much time is one clock cycle?
▪ The critical path determines how much time  one cycle requires = 

clock period.

▪ 1/clock period = clock frequency = how many cycles can be done 
each second.



Performance Analysis

 Execution time of an instruction

 {CPI}  x  {clock cycle time} 

 Execution time of a program

 Sum over all instructions [{CPI}  x  {clock cycle time}]

 {# of instructions}  x  {Average CPI}  x  {clock cycle time}

142
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Processor Performance

 Now as a general formula
▪ Our program consists of executing N instructions.

▪ Our processor needs CPI cycles for each instruction.

▪ The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f
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Processor Performance

 Now as a general formula
▪ Our program consists of executing N instructions.

▪ Our processor needs CPI cycles for each instruction.

▪ The maximum clock speed of the processor is f,
and the clock period is therefore T=1/f

 Our program will execute in 

N x CPI x (1/f) = N x CPI x T seconds
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How can I Make the Program Run Faster?

N x CPI x (1/f)
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How can I Make the Program Run Faster?

N x CPI x (1/f)

 Reduce the number of instructions
▪ Make instructions that ‘do’ more (CISC)

▪ Use better compilers
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How can I Make the Program Run Faster?

N x CPI x (1/f)

 Reduce the number of instructions
▪ Make instructions that ‘do’ more (CISC)

▪ Use better compilers

 Use less cycles to perform the instruction
▪ Simpler instructions (RISC)

▪ Use multiple units/ALUs/cores in parallel
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How can I Make the Program Run Faster?

N x CPI x (1/f)

 Reduce the number of instructions
▪ Make instructions that ‘do’ more (CISC)

▪ Use better compilers

 Use less cycles to perform the instruction
▪ Simpler instructions (RISC)

▪ Use multiple units/ALUs/cores in parallel

 Increase the clock frequency
▪ Find a ‘newer’ technology to manufacture

▪ Redesign time critical components

▪ Adopt pipelining
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Single-Cycle Performance

 TC is limited by the critical path (lw)
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Single-Cycle Performance

 Single-cycle critical path:

▪ Tc = tpcq_PC + tmem + max(tRFread, tsext + tmux) + tALU + tmem + tmux + tRFsetup

 In most implementations, limiting paths are: 

▪ memory, ALU, register file. 

▪ Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup
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Single-Cycle Performance Example

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Tc =
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Single-Cycle Performance Example

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

= [30 + 2(250) + 150 + 25 + 200 + 20] ps

= 925 ps
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Single-Cycle Performance Example

 Example:

For a program with 100 billion instructions executing on a single-cycle 
MIPS processor:
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Single-Cycle Performance Example

 Example:

For a program with 100 billion instructions executing on a single-cycle 
MIPS processor:

Execution Time = # instructions x CPI x TC

= (100 × 109)(1)(925  × 10-12 s)

= 92.5 seconds
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