
Design of Digital Circuits
Lecture 3: Introduction to 

the Labs and FPGAs

Prof. Onur Mutlu
(Lecture by Hasan Hassan)

ETH Zurich
Spring 2018

1 March 2018

1



Lab Sessions

 Where?

 HG E 19, HG E 26.1, HG E 26.3, HG E 27

 When?

 Tuesday 15:15-17:00 (E 19, E 26.1, E 26.3)

 Wednesday 15:15-17:00 (E 26.1, E 26.3, E 27)

 Friday 08:15-10:00 (E 19, E 26.3, E 27)

 Friday 10:15-12:00 (E 19, E 26.3, E 27)

2



Grading

 10 labs, 30 points in total

 We will put the lab manuals online
 https://safari.ethz.ch/digitaltechnik/doku.php?id=labs

 Grading Policy

 No need to hand in the reports!

 The assistants will check your work and note down your 
grade

 You should finish the labs within 1 week after they are announced

 We want to help you successfully complete all the labs!

 For questions
 Moodle Q&A (preferred) https://moodle-

app2.let.ethz.ch/course/view.php?id=4352

 digitaltechnik@lists.inf.ethz.ch

3

https://safari.ethz.ch/digitaltechnik/doku.php?id=labs
https://moodle-app2.let.ethz.ch/course/view.php?id=4352
mailto:digitaltechnik@lists.inf.ethz.ch


Agenda

 Logistics

 What We Will learn?

 Overview of the Lab Exercises

 Our FPGA Development Board

 FPGA Microarchitecture

 Programming an FPGA

 Tutorial and Demo 

4



What We Will Learn?

5

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

The Transformation Hierarchy

Touch upon 

implementation 

details

Hands-on experience 

in digital circuit design 

and implementation

Understanding how a processor works 
underneath the software layer



What We Will Learn? (2)

6

 Considering the trade-offs between performance and 

area/complexity in your hardware implementation

 Hands-on experience on:

 Hardware Prototyping on FPGA

 Debugging Your Hardware Implementation

 Hardware Description Language (HDL)

 Hardware Design Flow

 Computer-Aided Design (CAD) Tools



Agenda

 Logistics

 What We Will learn?

 Overview of the Lab Exercises

 Our FPGA Development Board

 FPGA Microarchitecture

 Programming an FPGA

 Tutorial and Demo 

7



Basys 3: Our FPGA Board

Switches

LEDs

Seven-segment

displays

microUSB

(power/programming)

Power switch

Video out (VGA)

FPGA chip

Push-buttons

USB

8

https://reference.digilentinc.com/reference/programmable-logic/basys-3/start

https://reference.digilentinc.com/reference/programmable-logic/basys-3/start


High Level Labs Summary

 At the end of the exercises, we will have built a 32-bit 
microprocessor running on the FPGA board

 It will be a small processor, but it will be able to execute small 
programs

 Each week we will have a new exercise

 Not all exercises will require the FPGA board

 You are encouraged to experiment with the board on your 
own

 We may have some extra boards for those who are interested 

 It is not possible 
to destroy the board by programming!

9



Lab 1: Drawing a Basic Circuit

 Comparison is a common operation in 
software programming

 We usually want to know the relation between two variables 
(e.g., <, >, ==, …)

 We will compare two electrical signals (inputs), and find 
whether they are same

 The result (output) is also an electrical signal

 No FPGA programming involved

 We encourage you to try later

10



Lab 2: Mapping Your Circuit to FPGA

 Another common operation in software 
programming?

 Addition

 Design a circuit that adds two 1-bit numbers

 Reuse the 1-bit adder multiple times to perform 4-
bit addition

 Implement the design on the FPGA board

 Input: switches

 Output: LEDs

11



Lab 3: Verilog for Combinatorial Circuits

 Show your results from Lab 2 on a Seven Segment Display

12

https://reference.digilentinc.com/reference/programmable-

logic/basys-3/reference-manual

https://reference.digilentinc.com/reference/programmable-logic/basys-3/reference-manual


Lab 4: Finite State Machines

 Blinking LEDs for a car’s turn signals

 Implement and use memories

 Change the blinking speed

13



Lab 5: Implementing an ALU

 Towards implementing your very first processor

 Implement your own Arithmetic and Logic Unit (ALU)

 An ALU is an important part of the CPU

 Arithmetic operations: add, subtract, multiply, compare, …

 Logic operations: AND, OR, …

14



Lab 6: Testing the ALU

 Simulate your design from Lab 5

 Learn how to debug your implementation to resolve 
problems

15



Lab 7: Writing Assembly Code

 Programming in assembly language

 MIPS

 Implement a program which you will later use to run on 
your processor

 Image manipulation

16



Lab 8: Full System Integration

 Will be covered in two weeks

 Learn how a processor is built

 Complete your first design of a MIPS processor

 Run a “snake” program

17



Lab 9: The Performance of MIPS

 Improve the performance of your processor 
from Lab 8 by adding new instructions

 Multiplication

 Bit shifting

18



Basys 3: Our FPGA Board

Switches

LEDs

Seven-segment

displays

microUSB

(power/programming)

Power switch

Video out (VGA)

FPGA chip

Push-buttons

USB

19

https://reference.digilentinc.com/reference/programmable-logic/basys-3/start

https://reference.digilentinc.com/reference/programmable-logic/basys-3/start


What is an FPGA?

 Field Programmable Gate Array

 FPGA is a reconfigurable substrate

 Reconfigurable functions

 Reconfigurable interconnection of functions

 Reconfigurable input/output (IO)

 …

 FPGAs fill the gap between software and hardware

 Achieves higher performance than software

 Maintains more flexibility than hardware

20



FPGA Architecture - Looking Inside an FPGA

21

 Two main building blocks:

 Look-Up Tables (LUT) and Switches

Andre DeHon, “The Density Advantage of Configurable Computing”, Computer, 2000



 3-bit input LUT (3-LUT)

How Do We Program LUTs?

22

input (3 bits)

output (1 bit)

Data Input

Multiplexer (Mux): 

Selects one of the data input 

corresponding to select input

3

Select Input

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3-LUT can implement 

any 3-bit input function



 Let’s implement a function that outputs ‘1’ when there are 
more than one ‘1’ in select inputs

An Example of Programming a LUT

23input (3 bits)

output (1 bit)

Data Input

3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Configuration Memory

0

0

0

1

0

1

1

1



How to Implement Complex Functions?

24Andre DeHon, “The Density Advantage of Configurable Computing”, Computer, 2000

 FPGAs are composed of a large number of LUTs and 
switches FPGA Chip



Modern FPGA Architectures

 Typically 6-LUTs

 Thousands of them

 An order of MB distributed on-chip memory

 Hard-coded special purpose hardware blocks for high-
performance operations

 Memory interface

 Low latency and high bandwidth off-chip I/O

 …

 Even a processor embedded within the FPGA chip

25



Xilinx Zynq Ultrascale+

26

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html


Advantages & Disadvantages of FPGAs

 Advantages

 Low development cost

 Short time to market

 Reconfigurable in the field

 Reusability

 An algorithm can be implemented directly in hardware

 No ISA, high specialization

 Disadvantages

 Not as fast and power efficient as application specific 
hardware

 Reconfigurability adds significant area overhead

27



Computer-Aided Design (CAD) Tools

 FPGAs have many resources (e.g., LUTs, switches)

 They are hard to program manually

 How can we

 represent a high-level functional description of our hardware 
circuit using the FPGA resources?

 select the resources to map our circuit to?

 optimally configure the interconnect between the selected 
resources?

 generate a final configuration file to properly configure an 
FPGA?

28



FPGA Design Flow

29

Problem Definition

Hardware Description 

Language (HDL)
Verilog, VHDL

Your task!

Logic Synthesis

Placement and Routing

Bitstream Generation Programming the FPGA

Xilinx Vivado



Vivado

 IDE-like software that helps us throughout the FPGA design 
flow

 Provides tools to simulate our designs

 Validate the correctness of the implementation

 Debugging

 Provides drivers and graphical interface to easily program
the FPGA using a USB cable

 Installed in computer rooms in HG (E 19, E 26.1, E 26.3, E 27)

30



Tutorial and Demo

 We will see how to

 use Vivado to write Verilog code

 follow the FPGA design flow steps

 download the bitstream into the FPGA

 PONG Game demo

 An example for a simple hardware that you can easily develop 
by the end of semester

31

https://github.com/CynicalApe/BASYS3-PONG

https://github.com/CynicalApe/BASYS3-PONG


What We Have Covered Today?

 Logistics

 What We Will learn?

 Overview of the Lab Exercises

 Our FPGA Development Board

 FPGA Microarchitecture

 Programming an FPGA

 Tutorial and Demo 

32



Design of Digital Circuits
Lecture 3: Introduction to 

the Labs and FPGAs

Prof. Onur Mutlu
(Lecture by Hasan Hassan)

ETH Zurich
Spring 2018

1 March 2018

33


