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Lab Sessions

 Where?

 HG E 19, HG E 26.1, HG E 26.3, HG E 27

 When?

 Tuesday 15:15-17:00 (E 19, E 26.1, E 26.3)

 Wednesday 15:15-17:00 (E 26.1, E 26.3, E 27)

 Friday 08:15-10:00 (E 19, E 26.3, E 27)

 Friday 10:15-12:00 (E 19, E 26.3, E 27)
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Grading

 10 labs, 30 points in total

 We will put the lab manuals online
 https://safari.ethz.ch/digitaltechnik/doku.php?id=labs

 Grading Policy

 No need to hand in the reports!

 The assistants will check your work and note down your 
grade

 You should finish the labs within 1 week after they are announced

 We want to help you successfully complete all the labs!

 For questions
 Moodle Q&A (preferred) https://moodle-

app2.let.ethz.ch/course/view.php?id=4352

 digitaltechnik@lists.inf.ethz.ch
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Agenda

 Logistics

 What We Will learn?

 Overview of the Lab Exercises

 Our FPGA Development Board

 FPGA Microarchitecture

 Programming an FPGA

 Tutorial and Demo 
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What We Will Learn?
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Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

The Transformation Hierarchy

Touch upon 

implementation 

details

Hands-on experience 

in digital circuit design 

and implementation

Understanding how a processor works 
underneath the software layer



What We Will Learn? (2)
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 Considering the trade-offs between performance and 

area/complexity in your hardware implementation

 Hands-on experience on:

 Hardware Prototyping on FPGA

 Debugging Your Hardware Implementation

 Hardware Description Language (HDL)

 Hardware Design Flow

 Computer-Aided Design (CAD) Tools
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Basys 3: Our FPGA Board

Switches

LEDs

Seven-segment

displays

microUSB

(power/programming)

Power switch

Video out (VGA)

FPGA chip

Push-buttons

USB
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High Level Labs Summary

 At the end of the exercises, we will have built a 32-bit 
microprocessor running on the FPGA board

 It will be a small processor, but it will be able to execute small 
programs

 Each week we will have a new exercise

 Not all exercises will require the FPGA board

 You are encouraged to experiment with the board on your 
own

 We may have some extra boards for those who are interested 

 It is not possible 
to destroy the board by programming!
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Lab 1: Drawing a Basic Circuit

 Comparison is a common operation in 
software programming

 We usually want to know the relation between two variables 
(e.g., <, >, ==, …)

 We will compare two electrical signals (inputs), and find 
whether they are same

 The result (output) is also an electrical signal

 No FPGA programming involved

 We encourage you to try later
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Lab 2: Mapping Your Circuit to FPGA

 Another common operation in software 
programming?

 Addition

 Design a circuit that adds two 1-bit numbers

 Reuse the 1-bit adder multiple times to perform 4-
bit addition

 Implement the design on the FPGA board

 Input: switches

 Output: LEDs
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Lab 3: Verilog for Combinatorial Circuits

 Show your results from Lab 2 on a Seven Segment Display
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https://reference.digilentinc.com/reference/programmable-
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Lab 4: Finite State Machines

 Blinking LEDs for a car’s turn signals

 Implement and use memories

 Change the blinking speed
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Lab 5: Implementing an ALU

 Towards implementing your very first processor

 Implement your own Arithmetic and Logic Unit (ALU)

 An ALU is an important part of the CPU

 Arithmetic operations: add, subtract, multiply, compare, …

 Logic operations: AND, OR, …
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Lab 6: Testing the ALU

 Simulate your design from Lab 5

 Learn how to debug your implementation to resolve 
problems
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Lab 7: Writing Assembly Code

 Programming in assembly language

 MIPS

 Implement a program which you will later use to run on 
your processor

 Image manipulation
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Lab 8: Full System Integration

 Will be covered in two weeks

 Learn how a processor is built

 Complete your first design of a MIPS processor

 Run a “snake” program
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Lab 9: The Performance of MIPS

 Improve the performance of your processor 
from Lab 8 by adding new instructions

 Multiplication

 Bit shifting
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Basys 3: Our FPGA Board

Switches

LEDs

Seven-segment

displays

microUSB

(power/programming)

Power switch

Video out (VGA)

FPGA chip

Push-buttons

USB
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What is an FPGA?

 Field Programmable Gate Array

 FPGA is a reconfigurable substrate

 Reconfigurable functions

 Reconfigurable interconnection of functions

 Reconfigurable input/output (IO)

 …

 FPGAs fill the gap between software and hardware

 Achieves higher performance than software

 Maintains more flexibility than hardware
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FPGA Architecture - Looking Inside an FPGA
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 Two main building blocks:

 Look-Up Tables (LUT) and Switches

Andre DeHon, “The Density Advantage of Configurable Computing”, Computer, 2000



 3-bit input LUT (3-LUT)

How Do We Program LUTs?
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input (3 bits)

output (1 bit)

Data Input

Multiplexer (Mux): 

Selects one of the data input 

corresponding to select input
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Select Input

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3-LUT can implement 

any 3-bit input function



 Let’s implement a function that outputs ‘1’ when there are 
more than one ‘1’ in select inputs

An Example of Programming a LUT

23input (3 bits)

output (1 bit)

Data Input

3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Configuration Memory

0

0

0

1

0

1

1

1



How to Implement Complex Functions?

24Andre DeHon, “The Density Advantage of Configurable Computing”, Computer, 2000

 FPGAs are composed of a large number of LUTs and 
switches FPGA Chip



Modern FPGA Architectures

 Typically 6-LUTs

 Thousands of them

 An order of MB distributed on-chip memory

 Hard-coded special purpose hardware blocks for high-
performance operations

 Memory interface

 Low latency and high bandwidth off-chip I/O

 …

 Even a processor embedded within the FPGA chip
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Xilinx Zynq Ultrascale+
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https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
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Advantages & Disadvantages of FPGAs

 Advantages

 Low development cost

 Short time to market

 Reconfigurable in the field

 Reusability

 An algorithm can be implemented directly in hardware

 No ISA, high specialization

 Disadvantages

 Not as fast and power efficient as application specific 
hardware

 Reconfigurability adds significant area overhead
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Computer-Aided Design (CAD) Tools

 FPGAs have many resources (e.g., LUTs, switches)

 They are hard to program manually

 How can we

 represent a high-level functional description of our hardware 
circuit using the FPGA resources?

 select the resources to map our circuit to?

 optimally configure the interconnect between the selected 
resources?

 generate a final configuration file to properly configure an 
FPGA?
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FPGA Design Flow
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Problem Definition

Hardware Description 

Language (HDL)
Verilog, VHDL

Your task!

Logic Synthesis

Placement and Routing

Bitstream Generation Programming the FPGA

Xilinx Vivado



Vivado

 IDE-like software that helps us throughout the FPGA design 
flow

 Provides tools to simulate our designs

 Validate the correctness of the implementation

 Debugging

 Provides drivers and graphical interface to easily program
the FPGA using a USB cable

 Installed in computer rooms in HG (E 19, E 26.1, E 26.3, E 27)
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Tutorial and Demo

 We will see how to

 use Vivado to write Verilog code

 follow the FPGA design flow steps

 download the bitstream into the FPGA

 PONG Game demo

 An example for a simple hardware that you can easily develop 
by the end of semester
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What We Have Covered Today?

 Logistics

 What We Will learn?

 Overview of the Lab Exercises

 Our FPGA Development Board

 FPGA Microarchitecture

 Programming an FPGA

 Tutorial and Demo 
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