
Name: SOLUTIONS Student ID:

Final Exam

Design of Digital Circuits (252-0028-00L)

ETH Zürich, Spring 2018
Prof. Onur Mutlu

Problem 1 (30 Points): Potpourri

Problem 2 (30 Points): Verilog

Problem 3 (15 Points): Boolean Algebra

Problem 4 (50 Points): Finite State Machine

Problem 5 (45 Points): ISA and Microarchitecture

Problem 6 (35 Points): Pipelining

Problem 7 (45 Points): Out-of-order Execution

Problem 8 (40 Points): Vector Processing

Problem 9 (45 Points): GPUs and SIMD

Problem 10 (40 Points): Memory Hierarchy

Problem 11 (35 Points): Dataflow Meets Logic

Problem 12 (BONUS: 40 Points): Branch Prediction

Total (450 (410 + 40 bonus) Points):

Examination Rules:

1. Written exam, 180 minutes in total.

2. No books, no calculators, no computers or communication devices. 6 pages of handwritten notes are
allowed.

3. Write all your answers on this document, space is reserved for your answers after each question. Blank
pages are available at the end of the exam.

4. Clearly indicate your final answer for each problem. Answers will only be evaluated if they are readable.

5. Put your Student ID card visible on the desk during the exam.

6. If you feel disturbed, immediately call an assistant.

7. Write with a black or blue pen (no pencil, no green or red color).

8. Show all your work. For some questions, you may get partial credit even if the end result is wrong due
to a calculation mistake.

9. Please write your initials at the top of every page.

Tips:
• Be cognizant of time. Do not spend too much time on one question.
• Be concise. You may be penalized for verbosity.
• Show work when needed. You will receive partial credit at the instructors’ discretion.
• Write legibly. Show your final answer.

Initials: Solutions Design of Digital Circuits August 18th, 2018

This page intentionally left blank

Final Exam Page 1 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

1 Potpourri [30 points]

1.1 Microarchitecture or ISA? [10 points]

Based on your knowledge of a basic MIPS design and the computer architecture techniques you learned
throughout this course, put an “X” in the box corresponding to whether each of the following design
characteristics is better classified as “microarchitecture” or “ISA”:

Characteristic Microarchitecture ISA

General purpose register $29 is the stack pointer X

Maximum bandwidth between the L2 and the L3 cache X

Maximum reservation station capacity X

Hardware floating point exception support X

Instruction issue width X

Vector instruction support X

Memory-mapped I/O Port Address X

Arithmetic and Logic Unit (ALU) critical path X

CPU endianness X

Virtual page size X

Final Exam Page 2 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

1.2 Single-Cycle Processor Datapath [10 points]

Modify the single-cycle processor datapath to include a version of the lw instruction, called lw2, that
adds two registers to obtain the effective address. The datapath that you will modify is provided below.
Your job is to implement the necessary data and control signals to support the new lw2 instruction,
which we define to have the following semantics:

lw2: Rd ← Memory[Rs + Rt]
PC ← PC + 4

Add to the datapath any necessary data and control signals (if necessary) to implement the lw2
instruction. Draw and label all components and wires very clearly (give control signals meaningful
names; if selecting a subset of bits from many, specify exactly which bits are selected; and so on).

PC

Instruct ion
memory

Read
address

Instruction
[31–0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

ALU opcode Operation
00 Add
01 Subtract
10 Controlled by funct
11 Not used

There is no need for new components and wires. The main difference is that the ALU must use "Read
data 2", instead of the output of the sign extend unit. The new lw2 will be R-type, not I-type.
The values of the control signals need to be:
RegDst = 1;
ALUScr = 0;
MemtoReg = 1;
RegWrite = 1;
MemRead = 1;
MemWrite = 0;
ALUop = 00;
Branch = 0.

Final Exam Page 3 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

1.3 Performance Evaluation [10 points]

The execution time of a given benchmark is 100 ms on a 500 MHz processor. An ETH alumnus,
designing the next generation of the processor, notices that a new implementation enables the processor
to run at 750 MHz. However, the modifications increase the CPI by 20% for the same benchmark.

(a) [4 points] What is the execution time expressed in terms of the number of cycles taken for the old
generation of the processor (i.e., before the modifications)?

Assuming that the IPC is 2, what is the number of instructions in the benchmark?

Answer: Execution time is 50 Million cycles. The benchmark has 100 Million instructions.

Explanation:
Clock frequency is 500 MHz. Then each cycle takes 1/(500× 10−6) = 2ns.
Total execution time in cycles is 100ms/2ns = 50Million cycles.

2 instructions per cycle. Then, the total number of instructions: 2x50M = 100M

(b) [3 points] What is the execution time of the benchmark in milliseconds for the new generation of
the processor?

Answer: 80 ms.

Explanation:
Execution T ime = [Number of Instructions]× [CPI]× [Frequency−1]
Let’s say that the CPI of baseline is c, and number of instructions is i.
Then the execution time of baseline:
(c× i)/(500x106) = 100x10−3 seconds => (c× i) = 5× 107

The execution time after modifications: ((1.2× c)× i)/(750x106)
T = ((1.2× (c× i))/(750× 106) seconds.
T = ((1.2× (5× 107))/(750× 106) seconds.
T = 8× 10−2 = 80ms.

(c) [3 points] What is the speedup or slowdown of the new generation processor over the old generation?

Answer: 25% speedup

Explanation:
Speedup = (OldExecutionT ime / [NewExecutionT ime])− 1
Speedup = 100/80− 1
Speedup = 0.25

Then the modification introduces 25% speedup.

Final Exam Page 4 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

2 Verilog [30 points]

Please answer the following four questions about Verilog.

(a) [6 points] Does the following code result in a sequential circuit or a combinational circuit? Explain
why.

1 module concat (input clk, input data_in1, input data_in2,
2 output reg [1:0] data_out);
3 always @ (posedge clk, data_in1)
4 if (data_in1)
5 data_out = {data_in1, data_in2};
6 else if (data_in2)
7 data_out = {data_in2, data_in1};
8 endmodule

Answer and concise explanation:

Sequential circuit.

Explanation.
This code results in a sequential circuit because data_in2 is not in the sensitivity list, and thus a
latch is inferred for data_out.

(b) [6 points] In the following code, the input clk is a clock signal. What is the hexadecimal value of
the output c right after the third positive edge of clk if initially c = 8’hE3 and a = 4’d8 and
b = 4’o2 during the entire time?

1 module mod1 (input clk, input [3:0] a, input [3:0] b, output reg [7:0] c);
2 always @ (posedge clk)
3 begin
4 c <= {c, &a, |b};
5 c[0] <= ^c[7:6];
6 end
7 endmodule

Please answer below. Show your work.

8’hC4.

Explanation.
Cycle 1: c <= {c, &a, |b} → c <= {1110_0011, 0, 1} → c <= {1000_1101}

c[0] <= ˆc[7:6] → c[0] <= ˆ{11} → c[0] <= 0
At the first positive edge of clk, c = 8′b1000_1100
Cycle 2: c <= {c, &a, |b} → c <= {1000_1100, 0, 1} → c <= {0011_0001}

c[0] <= ˆc[7:6] → c[0] <= ˆ{10} → c[0] <= 1
At the second positive edge of clk, c = 8′b0011_0001
Cycle 3: c <= {c, &a, |b} → c <= {0011_0001, 0, 1} → c <= {1100_0101}

c[0] <= ˆc[7:6] → c[0] <= ˆ{00} → c[0] <= 0
At the third positive edge of clk, c = 8′b1100_0100→ c = 8′hC4

Note that since the assignments to c are non-blocking, c[7 : 6] in line 5 is not affected by the assignment
to c in line 4 in the same cycle.

Final Exam Page 5 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(c) [6 points] Is the following code syntactically correct? If not, please explain the mistake(s) and how
to fix it/them.

1 module 1nn3r (input [3:0] d, input op, output[1:0] s);
2 assign s = op ? (d[1:0] - d[3:2]) :
3 (d[3:2] + d[1:0]);
4 endmodule
5

6 module top (input wire [6:0] instr, input wire op, output reg z);
7

8 reg[1:0] r1, r2;
9

10 1nn3r i0 (.instr(instr[1:0]), .op(instr[7]), .z(r1));
11 1nn3r i1 (.instr(instr[3:2]), .op(instr[0]), .z(r2));
12 assign z = r1 | r2;
13

14 endmodule

Answer and concise explanation:

The code is not syntactically correct.

Explanation.
• Module names cannot start with a number → ’1nn3r’ is not a legal module name.
• The output signal ’z’ has to be declared as a ’wire’ but not ’reg’.
• ’r1’ and ’r2’ has to be declared as ’wire’s.
• The module ’1nn3r’ does not have ports named ’instr’ and ’z’. Those need to be changed to ’d’
and ’s’, respectively.

Final Exam Page 6 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(d) [6 points] Does the following code correctly implement a counter that counts from 1 to 11 by incre-
ments of 2 (e.g., 1, 3, 5, 7, 9, 11, 1, 3, ...)? If so, say "Correct". If not, correct the code with minimal
modification.

1 module odd_counter (clk, count);
2 wire clk;
3 reg[2:0] count;
4 reg[2:0] count_next;
5

6 always@*
7 begin
8 count_next = count;
9 if(count != 11)

10 count_next = count_next + 2;
11 else
12 count_next <= 1;
13 end
14

15 always@(posedge clk)
16 count <= count_next;
17 endmodule

Answer and concise explanation:

No, the implementation is not correct.

Explanation.
The correct implementation:

module odd_counter (clk, count);
wire clk;
reg[3:0] count = 1;
reg[3:0] count_next;

always@* begin
count_next = count;
if(count != 11)
count_next += 2;
else
count_next = 1;

end

always@(posedge clk)
count <= count_next;

endmodule

Final Exam Page 7 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(e) [6 points] Does the following code correctly instantiate a 4-bit adder? If so, say "Correct". If not,
correct the code with minimal modification.

1 module adder(input a, input b, input c, output sum, output carry);
2 assign sum = a ^ b ^ c;
3 assign carry = (a&b) | (b&c) | (c&a);
4 endmodule
5

6

7 module adder_4bits(input [3:0] a, input [3:0] b, output [3:0] sum, carry);
8 wire [2:0]s;
9

10 adder u0 (a[0],b[0],1’b0,sum[0],s[0]);
11 adder u1 (a[1],s[0],b[1],sum[1],s[1]);
12 adder u2 (a[2],s[1],b[2],sum[2],s[2]);
13 adder u3 (a[3],s[2],b[3],sum[3],carry);
14 endmodule

Yes.
Explanation: Even though the wire s is swapped with the input b, the final computation produced
by the module adder is still going to be correct since the or and and operations are commutative.

Final Exam Page 8 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

3 Boolean Algebra [15 points]

(a) [5 points] Find the simplest sum-of-products representation of the following Boolean equation. Show
your work step-by-step.

F = B + (A+ C).(A+B + C)

Answer: F = A+B + C

Explanation:
F = B + (A.A+A.B +A.C +A.C +B.C + C.C)
F = B + 0 +A.B + C.(A+A) +B.C + C
F = (B +A.B) + C.(A+A) + (B.C + C)
F = (B +A) + C + C.(B + 1)
F = A+B + C

(b) [5 points] Convert the following Boolean equation so that it only contains NAND operations. Show
your work step-by-step.

F = (A+B.C) + C

Answer: F = (((A.A).(B.C)).C)

Explanation:

F = (((A+B.C) + C))
F = ((A+B.C).C)

F = ((A+B.C).C)

F = ((A.(B.C)).C)

F = (((A.A).(B.C)).C)

(c) [5 points] Using Boolean algebra, simplify the following min-terms:
∑

(3, 5, 7, 11, 13, 15)

Show your work step-by-step.

Answer: F = D.(B + C)

Explanation:

{3, 5, 7, 11, 13, 15} = {0011, 0101, 0111, 1011, 1101, 1111}

F = (A.B.C.D) + (A.B.C.D) + (A.B.C.D) + (A.B.C.D) + (A.B.C.D) + (A.B.C.D)
F = (C.D.((A.B) + (A.B) + (A.B) + (A.B))) + (B.D.((A.C) + (A.C)))
F = (C.D) + (B.C.D)
F = D.(C + (B.C))
F = D.(B + C)

Final Exam Page 9 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

4 Finite State Machine [50 points]

You are given the following FSM with two one-bit input signals (TA and TB) and one two-bit output
signal (O). You need to implement this FSM, but you are unsure about how you should encode the
states. Answer the following questions to get a better sense of the FSM and how the three different types
of state encoding we dicussed in the lecture (i.e., one-hot, binary, output) will affect the implementation.

A
O: 10

C
O: 01

B
O: 11

D
O: 00

TA

__
TA

TB

__
TB

__
TB

TB

(a) [3 points] There is one critical component of an FSM that is missing in this diagram. Please write
what is missing in the answer box below.

The reset line or indication for initial state.

(b) [2 points] Of the two FSM types, what type of an FSM is this?

Moore

Final Exam Page 10 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(c) [5 points] List one major advantage of each type of state encoding below.

One-hot encoding reduces next-state logic

Binary encoding reduces FFs to hold state

Output encoding reduces the output logic

(d) [10 points] Fully describe the FSM with equations given that the states are encoded with one-hot
encoding. Assign state encodings such that numerical values of states increase monotonically for
states A through D while using the minimum possible number of bits to represent the states with
one-hot encoding. Indicate the values you assign to each state and simplify all equations:

State assignments: A: 0001, B: 0010, C: 0100, D: 1000
NS[3] = TB * TS[3] + TS[2]
NS[2] = TB * TS[0] + TA * TS[1]
NS[1] = TB * (TS[0] + TS[3])
NS[0] = TS[1] * TA
O[1] = TS[0] + TS[1]
O[0] = TS[1] + TS[2]

Final Exam Page 11 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(e) [10 points] Fully describe the FSM with equations given that the states are encoded with binary
encoding. Assign state encodings such that numerical values of states increase monotonically for
states A through D while using the minimum possible number of bits to represent the states with
binary encoding. Indicate the values you assign to each state and simplify all equations:

State assignments: A: 00, B: 01, C: 10, D: 11
NS[1] = TS[1] * (TS[0] * TB + TS[0] TA) + TS[1] * (TS[0] + TS[0] * TB)
NS[0] = TS[1] * TS[0] * TB + TS[1]
O[1] = TS[1]
O[0] = TS[1] XOR TS[0]

(f) [10 points] Fully describe the FSM with equations given that the states are encoded with output
encoding. Use the minimum possible number of bits to represent the states with output encoding.
Indicate the values you assign to each state and simplify all equations:

State assignments: A: 10, B: 11, C: 01, D: 00
NS[1] = TS[1] * TS[0] * TB + TS[1] * TS[0] * TA + TS[1] * TS[0] * TB
= TS[0] * TB + TS[1] * TS[0] * TA
NS[0] = TS[1] * TS[0] + TS[1] * TS[0] * TA + TS[1] * TS[0] * TB
= TS[1] * (TS[0] + TS[0] * TA) + TS[1] * TS[0] * TB
O[1] = TS[1]
O[0] = TS[0]

Final Exam Page 12 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(g) [10 points] Assume the following conditions:

• We can only implement our FSM with 2-input AND gates, 2-input OR gates, and D flip-flops.
• 2-input AND gates and 2-input OR gates occupy the same area.
• D flip-flops occupy 3x the area of 2-input AND gates.

Which state encoding do you choose to implement in order to minimize the total area of this
FSM?

one-hot: 10 logics 4 FFs binary: 16 logics. 2 FFs output: 10 logics. 2 FFs
Output encoding has the least amount of circuitry elements.

Final Exam Page 13 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

5 ISA and Microarchitecture [45 points]

You are asked to complete the following program written in MIPS assembly with a sequence of MIPS
instructions that perform 64-bit integer subtraction (A - B). The 64-bit integer to be subtracted
from (A) is loaded into registers $4 and $5. Similarly, the 64-bit integer to subtract (B) is loaded into
registers $6 and $7. Both numbers are in two’s complement form. The upper 32-bit part of each number
is stored in the corresponding even-numbered register.

Loop: lw $4, 0($1)
lw $5, 4($1)
lw $6, 8($1)
lw $7, 12($1)

64-bit subtraction
goes here

addi $1, $1, 16
j Loop

(a) [15 points] Complete the above program to perform the 64-bit subtraction explained above using
at most 4 MIPS instructions. (Note: A summary of the MIPS ISA is provided at the end of this
question.)

A possible sequence of instructions is as follows:

subu $3, $5, $7 # Subtract the least significant part
sltu $2, $5, $7 # Check if borrowing is needed
add $2, $6, $2 # Add borrow
sub $2, $4, $2 # Subtract the most significant part

Final Exam Page 14 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(b) [15 points] Assume that the program executes on a pipelined processor, which does not implement
interlocking in hardware. The pipeline assumes that all instructions are independent and relies on
the compiler to properly order instructions such that there is sufficient distance between dependent
instructions. The compiler either moves other independent instructions between two dependent
instructions, if it can find such instructions, or otherwise, inserts nops. There is no internal register
file forwarding (i.e., if an instruction writes into a register, another instruction cannot access the new
value of the register until the next cycle). The pipeline does not implement any data forwarding.
The datapath has the following five pipeline stages, similarly to the basic pipelined MIPS processor
we discussed in lecture. Registers are accessed in the Decode stage. The execution stage contains
one ALU.

(a) Fetch (one clock cycle)

(b) Decode (one clock cycle)

(c) Execute (one clock cycle)

(d) Memory (one clock cycle)

(e) Write-back (one clock cycle).

Reorder the existing instructions and insert as few as possible nop instructions to correctly execute
the entire program that you completed in part (a) on the given pipelined processor. Show all the
instructions necessary to correctly execute the entire program.

We reoder the lw instructions to first load the data that corresponds to the lower parts of the
two numbers since we need the lower part first. We also reorder the completely independent
addi instruction to hide part of the load latency. We insert sufficient number of nop instructions
until the register is written before the dependent instruction reads the same register in the decode stage.

This is the resulting code:

Loop: lw $5, 4($1)
lw $7, 12($1)
lw $4, 0($1)
lw $6, 8($1)
addi $1, $1, 16
sltu $2, $5, $7
subu $3, $5, $7
nop
nop
add $2, $6, $2
nop
nop
nop
sub $2, $4, $2
j Loop

Final Exam Page 15 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(c) [5 points] What is the Cycles Per Instruction (CPI) of the program when executed on the pipelined
processor provided in part (b)?

CPI ≈ 1.5

Explanation.
Since the code is an infinite loop, the number of cycles to fill the pipeline becomes negligible after a
large number of iterations. Thus, we can consider that the throughput is one instruction every cycle.
We count the number of cycles for one loop iteration. It is 15 for 10 instructions. This way,
CPI ≈ 15

10 = 1.5.

(d) [10 points] Now, assume a processor with a multi-cycle datapath. In this multi-cycle datapath, each
instruction type is executed in the following number of cycles: 4 cycles for R-type, 5 cycles for load,
4 cycles for store, and 3 cycles for jump. What is the CPI of the program in part (a) when executed
on this multi-cycle datapath? Assuming the multi-cycle datapath runs at the same clock frequency
as the pipelined datapath in part (b), how much speedup does pipelining provide?

CPI:

CPI = 4.3

Explanation.
For the multi-cycle datapath, we have to take into account the number of cycles
for each instruction type: 4 cycles for R-type, 5 cycles for load, 4 cycles for store,
and 3 cycles for jump.
Thus, CPI = 4×5+5×4+3×1

10 = 4.3.

Speedup:

Pipelining provides 287% speedup.

Explanation.
We calculate the speedup as follows:
Speedup =

CPImulti−cycle

CPIpipelined
= 4.3

1.5 = 2.87.

Final Exam Page 16 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

MIPS Instruction Summary

Opcode Example Assembly Semantics
add add $1, $2, $3 $1 = $2 + $3
sub sub $1, $2, $3 $1 = $2 - $3
add immediate addi $1, $2, 100 $1 = $2 + 100
add unsigned addu $1, $2, $3 $1 = $2 + $3
subtract unsigned subu $1, $2, $3 $1 = $2 - $3
add immediate unsigned addiu $1, $2, 100 $1 = $2 + 100
multiply mult $2, $3 hi, lo = $2 * $3
multiply unsigned multu $2, $3 hi, lo = $2 * $3
divide div $2, $3 lo = $2/$3, hi = $2 mod $3
divide unsigned divu $2, $3 lo = $2/$3, hi = $2 mod $3
move from hi mfhi $1 $1 = hi
move from low mflo $1 $1 = lo
and and $1, $2, $3 $1 = $2 & $3
or or $1, $2, $3 $1 = $2 | $3
and immediate andi $1, $2, 100 $1 = $2 & 100
or immediate ori $1, $2, 100 $1 = $2 | 100
shift left logical sll $1, $2, 10 $1 = $2 « 10
shift right logical srl $1, $2, 10 $1 = $2 » 10
load word lw $1, 100($2) $1 = memory[$2 + 100]
store word sw $1, 100($2) memory[$2 + 100] = $1
load upper immediate lui $1, 100 $1 = 100 « 16
branch on equal beq $1, $2, label if ($1 == $2) goto label
branch on not equal bne $1, $2, label if ($1 != $2) goto label
set on less than slt $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0
set on less than immediate slti $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0
set on less than unsigned sltu $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0
set on less than immediate sltui $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0
jump j label goto label
jump register jr $31 goto $31
jump and link jal label $31 = PC + 4; goto label

Final Exam Page 17 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

6 Pipelining [35 points]

Consider two pipelined machines implementing MIPS ISA, Machine I and Machine II:
Both machines have the following five pipeline stages, very similarly to the basic 5-stage pipelined

MIPS processor we discussed in lectures, and one ALU :

1. Fetch (one clock cycle)

2. Decode (one clock cycle)

3. Execute (one clock cycle)

4. Memory (one clock cycle)

5. Write-back (one clock cycle).

Machine I does not implement interlocking in hardware. It assumes all instructions are independent
and relies on the compiler to order instructions such that there is sufficient distance between depen-
dent instructions. The compiler either moves other independent instructions between two dependent
instructions, if it can find such instructions, or otherwise, inserts nops. Assume internal register file
forwarding (an instruction writes into a register in the first half of a cycle and another instruction
can correctly access the updated value of the same register in the next half of the cycle). Assume
that the processor predicts all branches as always-taken.

Machine II implements data forwarding in hardware. On detection of a flow dependence, it can forward
an operand from the memory stage or from the write-back stage to the execute stage. The load
instruction (lw) can only be forwarded from the write-back stage because data becomes available in
the memory stage but not in the execute stage like for the other instructions. Assume internal register
file forwarding (an instruction writes into a register in the first half of a cycle and another instruction
can access the updated value of the same register in the next half of the cycle). The compiler does
not reorder instructions. Assume that the processor predicts all branches as always-taken.
Consider the following code segment:

Copy: lw $2, 100($5)
sw $2, 200($6)
addi $1, $1, 1
bne $1, $25, Copy

Initially, $5 = 0, $6 = 0, $1 = 0, and $25 = 25.

(a) [10 points] When the given code segment is executed on Machine I, the compiler has to reorder
instructions and insert nops if needed. Write the resulting code that has minimal modifications
from the original.

Copy: lw $2, 100($5)

addi $1, $1, 1

nop

sw $2, 200($6)

bne $1, $25, Copy

Final Exam Page 18 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(b) [10 points] When the given code segment is executed on Machine II, dependencies between instruc-
tions are resolved in hardware. Explain when data is forwarded and which instructions are stalled
and when they are stalled.

In every iteration, data are forwarded for sw and for bne. The instruction sw is dependent on lw, so
it is stalled one cycle in every iteration

(c) [5 points] Calculate the machine code size of the code segments executed on Machine I (part (a))
and Machine II (part (b)).

Machine I: Machine I - 20 bytes (because of the additional nop)

Machine II: Machine II - 16 bytes

(d) [7 points] Calculate the number of cycles it takes to execute the code segment on Machine I and
Machine II.

Machine I:

The compiler reorders instructions and places one nop. This is the execution
timeline of the first iteration:
1 2 3 4 5 6 7 8 9
F D E M W

F D E M W
N N N N N

F D E M W
F D E M W

9 cycles for one iteration. As there are 5 instructions in each iteration and 25
iterations, the total number of cycles is 129 cycles.

Machine II:

The machine stalls sw one cycle in the decode stage. This is the execution
timeline of the first iteration:
1 2 3 4 5 6 7 8 9
F D E M W

F D D E M W
F F D E M W

F D E M W
9 cycles for one iteration. As there are 4 instructions in each iteration and 25
iterations, and one stall cycle in each iteration, the total number of cycles is
129 cycles.

Final Exam Page 19 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(e) [3 points] Which machine is faster for this code segment? Explain.

For this code segment, both machines take the same number of cycles. We cannot say which one is
faster, since we do not know the clock frequency.

Final Exam Page 20 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

7 Out-of-order Execution [45 points]

In this problem, we will give you the state of the Register Alias Table (RAT) and Reservation Stations
(RS) for an out-of-order execution engine that employs Tomasulo’s algorithm, as we discussed in lectures.
Your first task is to determine the original sequence of four instructions in program order.

The out-of-order machine in this problem behaves as follows:
• The frontend of the machine has a one-cycle fetch stage and a one-cycle decode stage. The machine
can fetch one instruction per cycle, and can decode one instruction per cycle.
• The machine executes only register-type instructions, e.g., OP Rdest ← Rsrc1, Rsrc2., where OP can

be ADD or MUL.
• The machine dispatches one instruction per cycle into the reservation stations, in program order.
Dispatch occurs during the decode stage.
• An instruction always allocates the first reservation station that is available (in top-to-bottom order)
at the required functional unit.
• When an instruction in a reservation station finishes executing, the reservation station is cleared.
• The adder and multiplier are not pipelined. An ADD operation takes 2 cycles. A multiply operation

takes 3 cycles.
• The result of an addition and multiplication is broadcast to the reservation station entries and the
RAT in the writeback stage. A dependent instruction can begin execution in the next cycle after the
writeback if it has all of its operands available in the reservation station entry. There is only one
broadcast bus, and thus multiple instructions cannot broadcast in the same cycle.
• When multiple instructions are ready to execute at a functional unit at the same cycle, the oldest
ready instruction is chosen to be executed first.
Initially, the machine is empty. Four instructions then are fetched, decoded, and dispatched into

reservation stations. Pictured below is the state of the machine when the final instruction has been
dispatched into a reservation station:

Reg V Tag Value

RAT

R0

R1

R2

R3

R4

R5

0

0

0

1

A

E

B

5

8–
–
–

–

–––

––

ID

+

V Tag Value V Tag Value

A 0 D – 1 8
B 0 A – 0 A –

–

C – – – –– –

ID

×

V Tag Value V Tag Value

D 1 – 5 1 – 5

E 0 A 0 B– –
F – – – –– –

Final Exam Page 21 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(a) [15 points] Give the four instructions that have been dispatched into the machine, in program order.
The source registers for the first instruction can be specified in either order. Give instructions in the
following format: “opcode destination ⇐ source1, source2.”

MUL R1 ⇐ R1 , R1

ADD R1 ⇐ R1 , R2

ADD R4 ⇐ R1 , R1

MUL R3 ⇐ R1 , R4

(b) [15 points] Now assume that the machine flushes all instructions out of the pipeline and restarts fetch
from the first instruction in the sequence above. Show the full pipeline timing diagram below for
the sequence of four instructions that you determined above, from the fetch of the first instruction
to the writeback of the last instruction. Assume that the machine stops fetching instructions after
the fourth instruction.

As we saw in lectures, use “F” for fetch, “D” for decode, “En” to signify the nth cycle of execution
for an instruction, and “W” to signify writeback. Fill in each instruction as well. You may or may
not need all columns shown.

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MUL R1 ← R1, R1 F D E1 E2 E3 W

ADD R1 ← R1, R2 F D E1 E2 W

ADD R4 ← R1, R1 F D E1 E2 W

MUL R3 ← R1, R4 F D E1 E2 E3 W

Final Exam Page 22 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(c) [15 points] Finally, show the state of the RAT and reservation stations at the end of the 12th cycle
of execution in the figure below. Complete all blank parts.

Reg V Tag Value

RAT

R0

R1

R2

R3

R4

R5

1

0

1

1

E

33

8–
–
66

–

–––

––
–

–

ID

+

V Tag Value V Tag Value

A

B

C – – – –– –

– – – –– –
– – – –– –

ID

×

V Tag Value V Tag Value

D – –
E 1 133 66
F – – – ––

– – ––

–
– –

Final Exam Page 23 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

8 Vector Processing [40 points]

Assume a vector processor that implements the following ISA:

Opcode Operands Latency (cycles) Description

SET Vst, #n 1 Vst ← n (Vst = Vector Stride Register)

SET Vln, #n 1 Vln ← n (Vln = Vector Length Register)

VLD Vi, #A 100, pipelined Vi ←Mem[Address]

VST Vi, #A 100, pipelined Mem[Address]← Vi

VMUL Vi, Vj , Vk 10, pipelined Vi ← Vj ∗ Vk

VADD Vi, Vj , Vk 5, pipelined Vi ← Vj + Vk

VDIV Vi, Vj , Vk 20, pipelined Vi ← Vj/Vk

Assume the following:

• The processor has an in-order pipeline.

• The size of a vector element is 4 bytes.

• Vst and Vln are 10-bit registers.

• The processor does not support chaining between vector functional units.

• The main memory has N banks.

• Vector elements stored in consecutive memory addresses are interleaved between the memory banks.
E.g., if a vector element at address A maps to bank B, a vector element at address A + 4 maps
to bank (B + 1)%N , where % is the modulo operator and N is the number of banks. N is not
necessarily a power of two.

• The memory is byte addressable and the address space is represented using 32 bits.

• Vector elements are stored in memory in 4-byte-aligned manner.

• Each memory bank has a 4KB row buffer.

• Each memory bank has a single read and a single write port so that a load and a store operation
can be performed simultaneously.

• There are separate functional units for executing VLD and VST instructions.

(a) [5 points] What should the minimum value of N be to avoid stalls while executing a VLD or VST
instruction, assuming a vector stride of 1? Explain.

100 banks (because the latency of VLD and VST instructions is 100 cycles)

Final Exam Page 24 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(b) [8 points] What should the minimum value of N be to avoid stalls while executing a VLD or VST
instruction, assuming a vector stride of 2? Explain.

101 banks.
Explanation. To avoid stalls, we need to ensure that consecutive vector elements access 100 different
banks.
With a vector stride of 2, consecutive elements of a vector will map to every other bank. For example,
if the first element maps to bank 0, the next element will map to bank 2, and so on.
With 100 banks, the 51st element of a vector will map to bank 100%100 = 0, conflicting with the first
element of the vector.
Howevert, with 101 banks, the 51st element will map to bank 1, which was skipped by the previous
vector elements.

Let’s assume there are 102 elements in a vector and the first elements accesses bank 0. The 101 banks
will be accessed in the following order:

(0, 2, ..., 100, 102, 104, ..., 200, 202)%101 = (0, 2, ..., 100, 1, 3, ..., 99, 0)
We can see that none of the elements conflict in the DRAM banks. Note that, when the last vector
elements accesses bank 0, the bank is already available for a new access because the 100 cycle latency
of accessing the first element is overlapped by accessing the other 101 elements.

(c) [12 points] Assume:

• A machine that has a memory with as many banks as you found is part (a).
• The vector stride is set to 1.
• The value of the vector length is set to M (but we do not know M)

The machine executes the following program:

VLD V1 ← A
VLD V2 ← (A + 32768)
VADD V3 ← V1, V1
VMUL V4 ← V2, V3
VST (A + 32768*2) ← V4

The total number of cycles needed to complete the execution of the above program is 4306. What is
M?

M = 1000

Explanation.

VLD |-100-|--(M-1)--|
VLD |-100-|--(M-1)--|
VADD |-5-|--(M-1)--|
VMUL |-10-|--(M-1)--|
VST |-100-|--(M-1)--|

(M + 100− 1) + 100 + (M − 1) + 10 + (M − 1) + 100 + (M − 1)
= 306 + 4 ∗M = 4306 → M = 1000 elements

Final Exam Page 25 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(d) [15 points] If we modify the vector processor to support chaining, how many cycles would be required
to execute the same program in part (c)? Explain.

VLD |--100--|--(VLEN-1)--|
VLD |---100---|---(VLEN-1)---|
VADD |-1-|-5-|---(VLEN-1)---| (this is delayed because the processor

executes the instructions in order)
VMUL |-10-|---(VLEN-1)---|
VST |-100-|---(VLEN-1)---|

100 + (VLEN-1) + 100 + 10 + 100 + (VLEN-1) = 310 + 2*1000 - 2 = 2308 cycles

Final Exam Page 26 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

9 GPUs and SIMD [45 points]

We define the SIMD utilization of a program that runs on a GPU as the fraction of SIMD lanes that are
kept busy with active threads during the run of the program. As we saw in lecture and practice exercises,
the SIMD utilization of a program is computed across the complete run of the program.

The following code segment is run on a GPU. Each thread executes a single iteration of the shown
loop. Assume that the data values of the arrays A and B are already in vector registers, so there are no
loads and stores in this program. (Hint: Notice that there are 3 instructions in each iteration.) A warp
in the GPU consists of 32 threads, and there are 32 SIMD lanes in the GPU.

for (i = 0; i < 1025; i++) {
if (A[i] < 33) { // Instruction 1

B[i] = A[i] << 1; // Instruction 2
}
else {

B[i] = A[i] >> 1; // Instruction 3
}

}

Please answer the following six questions.

(a) [2 points] How many warps does it take to execute this program?

33 warps.

Explanation:
The number of warps is calculated as:
#Warps = d#Total_threads#Warp_size e,

where
#Total_threads = 1025 = 210 + 1 (i.e., one thread per loop iteration),

and
#Warp_size = 32 = 25 (given).

Thus, the number of warps needed to run this program is:
#Warps = d 2

10+1
25 e = 25 + 1 = 33.

(b) [10 points] What is the maximum possible SIMD utilization of this program? (Hint: The warp
scheduler does not issue instructions when no threads are active).
1025
1056 .

Explanation:
Even though all active threads in a warp follow the same execution path, the last warp will only have
one active thread.

Final Exam Page 27 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(c) [5 points] Please describe what needs to be true about array A to reach the maximum possible SIMD
utilization asked in part (b). (Please cover all cases in your answer.)

For every 32 consecutive elements of A, every element should be lower than 33 (if), or greater than
or equal to 33 (else). (NOTE: The solution is correct if both cases are given.)

(d) [13 points] What is the minimum possible SIMD utilization of this program?
1025
1568 .

Explanation:
Instruction 1 is executed by every active thread (10251056 utilization).
Then, part of the threads in each warp executes Instruction 2 and the other part executes
Instruction 3. We consider that Instruction 2 is executed by α threads in each warp (except
the last warp), where 0 < α ≤ 32, and Instruction 3 is executed by the remaining 32−α threads.
The only active thread in the last warp executes either Instruction 2 or Instruction 3. The
other instruction is not issued for this warp.

The minimum SIMD utilization sums to 1025+α×32+(32−α)×32+1
1056+1024+1024+32 = 1025

1568 .

(e) [5 points] Please describe what needs to be true about array A to reach the minimum possible SIMD
utilization asked in part (d). (Please cover all cases in your answer.)

For every 32 consecutive elements of A, part of the elements should be lower than 33 (if), and the
other part should be greater than or equal to 33 (else).

(f) [10 points] What is the SIMD utilization of this program if A[i] = i? Show your work.
1025
1072 .

Explanation:
Instruction 1 is executed by every active thread (10251056 utilization).
Instruction 2 is executed by the first 33 threads, i.e., all threads in the first warp and one thread
in the second warp.
Instruction 3 is executed by the remaining active threads.

The SIMD utilization sums to 1025+32+1+31+960+1
1056+32+32+32+960+32 = 2050

2144 = 1025
1072 .

Final Exam Page 28 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

10 Memory Hierarchy [40 points]

An enterprising computer architect is building a new machine for high-frequency stock trading and
needs to choose a CPU. She will need to optimize her setup for memory access latency in order to
gain a competitive edge in the market. She is considering two different prototype enthusiast CPUs that
advertise high memory performance:

(A) Dragonfire-980 Hyper-Z

(B) Peregrine G-Class XTreme

She needs to characterize these CPUs to select the best one, and she knows from Prof. Mutlu’s course
that she is capable of reverse-engineering everything she needs to know. Unfortunately, these CPUs are
not yet publicly available, and their exact specifications are unavailable. Luckily, important documents
were recently leaked, claiming that the two CPUs have:

• Exactly 1 high-performance core

• LRU replacement policies (for any set-associative caches)

• Inclusive caching (i.e., data in a given cache level is present upward throughout the memory hier-
archy. For example, if a cache line is present in L1, the cache line is also present in L2 and L3 if
available.)

• Constant-latency memory structures (i.e., an access to any part of a given memory structure takes
the same amount of time)

• Cache line, size, and associativity are all size aligned to powers of two

Being an ingenious engineer, she devises the following simple application in order to extract all
of the information she needs to know. The application uses a high-resolution timer to measure the
amount of time it takes to read data from memory with a specific pattern parameterized by STRIDE
and MAX_ADDRESS:

start_timer()
repeat N times:

memory_address <- random_data()
READ[(memory_address * STRIDE) % MAX_ADDRESS]

end_timer()

Assume 1) this code runs for a long time, so all memory structures are fully warmed up, i.e., repeatedly
accessed data is already cached, and 2) N is large enough such that the timer captures only steady-state
information.

By sweeping STRIDE and MAX_ADDRESS, the computer architect can glean information about the
various memory structures in each CPU.

She produces Figure 1 for CPU A and Figure 2 for CPU B.
Your task: Using the data from the graphs, reverse-engineer the following system parameters. If the

parameter does not make sense (e.g., L3 cache in a 2-cache system), mark the box with an "X". If the
graphs provide insufficient information to ascertain a desired parameter, simply mark it as "N/A".

NOTE 1 TO SOLUTION READER:
This analysis provides insufficient information to determine the line size of the cache(s). This is because
we are always ’striding’ in power-of-two values starting at address 0. This means that either our access
pattern entirely fits within the cache (in which case we observe constant latency since the cache is
already warmed up), or the access pattern is striding using values larger than the line size, so we never
see two accesses to the same cache line.

Final Exam Page 29 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

NOTE 2 TO SOLUTION READER:
This problem is not actually that hard.
The way to think about these plots is that each point is an access pattern. The easiest points to
understand are those that result in an access pattern of {0, 0, 0, 0, ...} and randomly from {0,
A}, where A is your stride. Just by looking at those you should be able to determine pretty much
everything.
The access latencies and sizes are trivial to read off if you understand what the test code is trying
to do. The associativities are nuanced, but you can tell from the aforementioned access patterns by
simulating carefully.
If you want to go all-in, you can compute probabilities: if I access {0, A} then 50% of the time I’ll hit
and 50% miss. It’s easy to get the cache latencies, so I can just match points from there on :)

Final Exam Page 30 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(a) [15 points] Fill in the blanks for Dragonfire-980 Hyper-Z.

22 23 24 25 26 27 28 29 210 211

MAX_ADDRESS

0
10
20
30
40
50
60
70
80
90

100
110
120

tim
e

(n
s)

1

2

4
8 16 32

STRIDE
1
2
4
8
16
32

Figure 1: Execution time of the test code on CPU A for various values of STRIDE and MAX_ADDRESS.
STRIDE values are labeled on curves themselves for clarity. Note that the curves for strides 1, 2, 4, and
8 overlap in the figure.

Table 1: Fill in the following table for CPU A (Dragonfire-980 Hyper-Z)

System Parameter CPU A: Dragonfire-980 Hyper-Z
L1 L2 L3 DRAM

Cache Line Size (B) N/A N/A N/A N/A OR X

Cache Associativity 2 X X X

Total Cache Size (B) 16 X X X

Access Latency from (ns) 1 20 X X 100

1 DRAM access latency means the latency of fetching the data from DRAM to L3, not the latency of
bringing the data from the DRAM all the way down to the CPU. Similarly, L3 access latency means
the latency of fetching the data from L3 to L2. L1 access latency is the latency to bring the data to
the CPU from the L1 cache.

Final Exam Page 31 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(b) [25 points] Fill in the blanks for Peregrine G-Class XTreme.

22 23 24 25 26 27 28 29 210 211 212 213 214 215

MAX_ADDRESS

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

tim
e

(n
s)

1 2
4

8
16 32

64 128 256 512 1024

STRIDE
1
2
4
8
16
32
64
128
256
512
1024

Figure 2: Execution time of the test code on CPU B for various values of STRIDE and MAX_ADDRESS.
STRIDE values are labeled on curves themselves for clarity. Note that the curves for strides 1, 2, 4, 8,
16, and 32 overlap in the figure.

Table 2: Fill in the following table for CPU B (Peregrine G-Class XTreme)

System Parameter CPU B: Peregrine G-Class XTreme
L1 L2 L3 DRAM

Cache Line Size (B) N/A N/A N/A N/A OR X

Cache Associativity 1 4 X X

Total Cache Size (B) 32 512 X X

Access Latency (ns) 1 10 40 X 100

1 DRAM access latency means the latency of fetching the data from DRAM to L3, not the latency of
bringing the data from the DRAM all the way down to the CPU. Similarly, L3 access latency means
the latency of fetching the data from L3 to L2. L1 access latency is the latency to bring the data to
the CPU from the L1 cache.

Final Exam Page 32 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

11 Dataflow Meets Logic [35 points]

We often use the “addition node”:

a b

c

+

to represent the addition of two input tokens. If we think of the tokens as binary numbers, we can
model a simple logic circuit using dataflow graphs.1 Note that a token can be used as an input to only
one node. If the same value is needed by more than one node, it first should be replicated using one or
more copy nodes, and then each copied token can be supplied to one node only.

a b

c
1

AND

11

a b

c
1

OR

11

a b

c
1

XOR

11

a

a
1

COPY

1 1

a

Figure 3: Dataflow nodes of basic bitwise operations allowed in Part (a).

(a) [5 points] Implement the single-bit binary addition of two “1-bit” input tokens a and b as a dataflow
graph using only 2-input {AND, OR, XOR} nodes and COPY nodes if necessary (illustrated in
Figure 3). Fill in the internal implementation below, where inputs and outputs (labeled with their
corresponding bit-widths) have been provided:

a

1

b
1

sum[0]
1

sum[1]

1

1

AND

11

1

XOR

11

1

COPY

1 1

1

COPY

1 1

1Note: this is not an accurate electrical model of a circuit. Instead, the dataflow analogy is best thought of in terms of
the desired flow of information rather than physical phenomena.

Final Exam Page 33 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(b) [5 points] You may recognize the node we designed in part (a) as a model for a so-called “half-
adder (HA)”, which is not very useful by itself since it is only useful for adding 1-bit input tokens. In
order to extend this design to perform binary addition of 2-bit input tokens a[1:0] and b[1:0],
the sum[1] token from half-adding a[0] and b[0] will have to act as an input token for another
half-adder node used for adding a[1] and b[1]. This results in a 3-input adder called a “full-
adder (FA)”.

Fortunately, we can implement a full-adder (FA) using half-adders (HA) (i.e., the node we designed in
part (a). Implement the full-adder using a minimum number of half-adders and at most 1 additional
2-input {AND, OR, XOR} node.

a

1

c
1

sum[0]
1

sum[1]

1

b
1

HA

1 1

11

HA

1 1

11

1

OR

11

Final Exam Page 34 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(c) [5 points] The full-adder (FA) is a versatile design that can be used to implement n-bit addition.
Show how we might use it to implement 2-bit binary addition of two input tokens a[1:0] and
b[1:0]. Use only a minimum number of full-adders (i.e., the dataflow node you designed in Part
2). Hint: you may use constant input tokens if necessary.

a[0]

1

b[1]
1

sum[0]
1

sum[2]

1

a[1]
1

b[0]
1

sum[1]

1

FA

1 1

11
1

FA

1 1

11
1

0

Final Exam Page 35 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(d) [5 points] Interestingly, the full-adder can also be used to add four 1-bit input tokens. This is a
natural extension of the full-adder in the same way we extended the half-adder to create the full-
adder itself (in part (b)). Implement the 4-input node below using only a minimum number of
full-adders (FA) (i.e., the dataflow node you designed in part (b)). Hint: you may use constant input
tokens if necessary.

b

1

c
1

sum[0]
1

sum[2]

1

a
1

d
1

sum[1]

1

FA

1 1

11
1

FA

1 1

11
1

FA

1 1

11
1

0

0

(e) [15 points] As it turns out, any n ≥ 3 1-bit input binary adders can be implemented purely using
full-adders. Fill in the table below for the minimum number of required full adders to implement an
n-input 1-bit adder.

n # required full-adders

3 1

4 3

5 3

6 4

7 4

8 7

Final Exam Page 36 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

12 BONUS: Branch Prediction [40 points]

Assume a processor that implements an ISA with eight registers (R0-R7). In this ISA, the main memory
is byte-addressable and each word contains 4 bytes. The processor employs a branch predictor. The ISA
implements the instructions given in the following table:

Instructions Description
la Ri, Address load the Address into Ri
move Ri, Rj Ri ← Rj
move Ri, (Rj) Ri ← Memory[Rj]
move (Ri), Rj Memory[Ri] ← Rj
li Ri, Imm Ri ← Imm
add Ri, Rj , Rk Ri ← Rj + Rk
addi Ri, Rj , Imm Ri ← Rj + Imm
cmp Ri, Rj Compare: Set sign flag, if Ri < Rj ; set zero flag, if Ri = Rj
cmp Ri, (Rj) Compare: Set sign flag, if Ri < Memory[Rj]; set zero flag, if Ri = Memory[Rj]
cmpi Ri, Imm Compare: Set sign flag, if Ri < Imm; set zero flag, if Ri = Imm.
jg label Jump to the target address if both of sign and zero flags are zero.
jnz label Jump to the target address if zero flag is zero.
halt Stop executing instructions.

The processor executes the following program. Answer the questions below related to the accuracy of
the branch predictors that the processor can potentially implement.

1 la R0, Array
2 move R6, R0
3 li R1, 4
4 move R5, R1
5 move R7, R1
6 move R2, R0
7 addi R2, R2, 4
8 Loop:
9 move R3, (R2)

10 cmp R3, (R0)
11 jg Next_Iteration
12 move R4, (R0)
13 move (R0), R3
14 move (R2), R4
15 Next_Iteration:
16 addi R0, R0, 4
17 addi R2, R2, 4
18 addi R1, R1, -1
19 cmpi R1, 0
20 jnz Loop
21 move R1, R7
22 addi R5, R5, -1
23 move R0, R6
24 move R2, R0
25 addi R2, R2, 4
26 cmpi R5, 0
27 jnz Loop
28 halt
29 .data
30 Array: word 5, 20, 1, -5, 34

Final Exam Page 37 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(a) [15 points] What would be the prediction accuracy using a global one-bit-history (last-time) branch
predictor shared between all the branches? The initial state of the predictor is "taken".

Answer: 19/36.

Note that initial values of both R1 and R5 are 4; and they change only before the branches in lines 20
and 27 respectively. Both branches follow the pattern of T-T-T-NT, which creates a nested loop.

At each iteration of the internal loop, adjacent elements (pointed by R0 and R2) are swapped, if
Memory[R0] ≤ Memory[R2]. Then, both R0 and R4 are incremented by 4. So they point to the
next element in the next iteration.

Therefore, the code sorts the elements in Array in increasing order.

Table below shows the behavior of each branch through the code. Here T means that the corresponding
branch is taken at specified turn, whereas N indicates that it is not taken.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Line11 T N N T N N T T
Line20 T T T N T T T N
Line27 T T

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Line11 N T T T T T T T
Line20 T T T N T T T N
Line27 T N

One-bit-history branch predictor suggests that the next branch’s behavior will be the same with the
last one. Table below shows the predictor states, hits, and misses through the execution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Predictor State T T T N T N T T N T N T N T T
Branch Behavior T T N T N T T N T N T N T T T
Hit/Miss H H M M M M H M M M M M M H H

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Predictor State T T N T N T T T T T T N T T T
Branch Behavior T N T N T T T T T T N T T T T
Hit/Miss H M M M M H H H H H M M H H H

31 32 33 34 35 36
Predictor State T T T T T N
Branch Behavior T T T T N N
Hit/Miss H H H H M H

Final Exam Page 38 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(b) [15 points] What would be the prediction accuracy using a global two-bit-history (two-bit counter)
branch predictor shared between all the branches? Assume that the initial state of the two-bit
counter is "weakly taken". The "weakly taken" state transitions to the "weakly not-taken" state
on misprediction. Similarly, the "weakly not-taken" state transitions to the "weakly taken" state
on misprediction. A correct prediction in one of the "weak" states transitions the state to the
corresponding "strong" state.

Answer: 26/36.

Explanation:
Table below shows the predictor states, hits, and misses through the code. Used abbreviations are as
follows: ST: Strongly Taken, WT: Weakly Taken, WN: Weakly Not-taken, SN: Strongly Not-taken.

Branch behavior is the same with question (a), since both of them are shared predictors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Predictor State WT ST ST WT ST WT ST ST WT ST WT ST WT ST
Branch Behavior T T N T N T T N T N T N T T
Hit/Miss H H M H M H H M H M H M H H

15 16 17 18 19 20 21 22 23 24 25 26 27 28
Predictor State ST ST ST WT ST WT ST ST ST ST ST ST WT ST
Branch Behavior T T N T N T T T T T T N T T
Hit/Miss H H M H M H H H H H H M H H

29 30 31 32 33 34 35 36
Predictor State ST ST ST ST ST ST ST WT
Branch Behavior T T T T T T N N
Hit/Miss H H H H H H M M

Final Exam Page 39 of 40

Initials: Solutions Design of Digital Circuits August 18th, 2018

(c) [10 points] What would be the prediction accuracy using a local two-bit-history (two-bit counter)
branch predictor that is separate for each branch? The initial state is "weakly taken" and the state
transitions are the same as in part (b).

Answer:

• L11: 8/16

• L20: 12/16

• L27: 3/4

• All Branches: 23/36

Explanation: Private predictors update their states only based on the behaviors of corresponding
branches.

1 2 3 4 5 6 7 8 9 10 11 12
L11 Predictor State WT ST WT WN WT WN
L11 Branch Behavior T N N T N N
L11 Hit/Miss H M M M M H

L20 Predictor State WT ST ST ST WT
L20 Branch Behavior T T T N T
L20 Hit/Miss H H H M H

L27 Predictor State WT
L27 Branch Behavior T
L27 Hit/Miss H

13 14 15 16 17 18 19 20 21 22 23 24
L11 Predictor State SN WN WT WN WT
L11 Branch Behavior T T N T T
L11 Hit/Miss M M M M H

L20 Predictor State ST ST ST WT ST ST
L20 Branch Behavior T T N T T T
L20 Hit/Miss H H M H H H

L27 Predictor State ST
L27 Branch Behavior T
L27 Hit/Miss H

25 26 27 28 29 30 31 32 33 34 35 36
L11 Predictor State ST ST ST ST ST
L11 Branch Behavior T T T T T
L11 Hit/Miss H H H H H

L20 Predictor State ST WT ST ST ST
L20 Branch Behavior N T T T N
L20 Hit/Miss M H H H M

L27 Predictor State ST ST
L27 Branch Behavior T N
L27 Hit/Miss H M

Final Exam Page 40 of 40

