
SHORT NOTES

Single
Programming
Line

Programming
Line to the
next cell in
order

Fig. 8. A linear select programmable cell structure.

i2
HA

Programming _
Line

.....

HB

Hz X

0-

Fig. 9. Some possible arrangements of the programming
bus in linear select scheme. Fig. 10. A linear

and q outputs can realize any n or less state sequential
machine with p or less inputs and q or less outputs.

CONCLUSIONS

The purpose of this study has been to develop cellular
methods of synthesizing sequential machines. From the
production point of view, cellular array employing LSI
technology represents a great saving in cost, space, and
weight. From the designer's point of view, cellulariza-
tion does away with the arduous task of state assign-

ment. A further advantage of cellularization lies in its
programmability. This is important in designing recon-

figurable digital systems.

ACKNOWLEDGMENT
The author wishes to thank Dr. R. A. Short for inspir-

ing interest in this area and for his helpful guidance

throughout this work.

REFERENCES
[1] K. K. Maitra, "Cascaded switching networks of two-input flex-

ible cells,"IRE Trans. Electron. Comput., vol. EC-1l,pp. 136-143,
Apr. 1962.

[2] R. A. Short, "Two-rail cellular cascades," in 1965 Fall Joint
Comput. Conf., AFIPS Conf. Proc., vol. 27. Montvale, N. J.:
AFIPS Press, 1965, pp. 355-369.

r select programmable cellular array.

[3] R. C. Minnick, "Cutpoint cellular logic," IEEE Trans. Electron
Comput., vol. EC-13, pp. 685-698, Dec. 1964.

[4] , "Survey of microcellular research," Stanford Res. Inst.,
Menlo Park, Calif., Rep. AFCRL-66-475, 1966.

[5] R. A. Short, "The attainment of reliable digital system through
the use of redundancy-A survey," Comput. Group Nes, vol. 2,
pp. 2-17, 1968.

[6] R. H. Wilcox and W. C. Mann, Ed., Redundancy Techniques for
Computer Systems. Washington, D. C.: Spartan, 1962.

The Inhibition of Potential Parallelism
by Conditional Jumps

EDWARD M. RISEMAN AND CAXTON C. FOSTER

Abstract-This note reports the results of an examination of seven
programs originally written for execution on a conventional computer
(CDC-3600). We postulate an infinite machine, one with an infinite
memory and instruction stack, infinite registers and memory, and an
infinite number of functional units. This machine wiU exectite a pro-
gram in parallel at maximum speed by executing each instruction at
the earliest possible moment.

Manuscript received March 24, 1972; revised June 21, 1972. This
work was supported in part by a study grant from Control Data
Corporation.

The authors are with the Department of Computer and I nforma-
tion Sciences, University of Massachusetts, Amherst, Mass. 01002.

JR R- R L
e1--iI~~~~
. +

1405

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1972

The manner in which conditional jump instructions are treated is
the primary concern of this note. One possibility is to assume that
when- a conditional jump is encountered, no further instructions may
be issued until that condition is resolved and the subsequent path is
determined. Under this assumption, the seven programs, even on this
infinite machine, ran only 1.72 times as fast as they did on a conven-
tional machine. On the contrary, if it is assumed that one knows in
advance which path will be taken at each branch, conditional jumps
do not impede the execution of the program. This results in the pro-
gram running 51 times as fast as in a conventional machine. The im-
plications of these results are discussed.

Index Terms-Conditional jumps, CPU design, execution speed,
multiple functional units, parallelism, pipelining.

INTRODUCTION

Consider the stream of instructions presented to the
control unit of a conventional CPU. There are loads,
stores, adds, multiplies, unconditional and conditional
jumps, etc. Examples of such streams may be collected
by tracing actual programs with a suitable interpreter.
What factors limit the rate of execution of such an in-
struction stream?

In the simplest type of CPU, the time required to fetch
instructions and operands will limit the rate. Let us add
a very large (unlimited) stack or cache to the machine
so that, for all practical purposes, memory access time
goes to zero. Still the program takes a finite nonzero
time to execute. This is because it consists of a sequence
of instructions, each consuming some time. Let us,
therefore, allow as many instructions to be executed in
parallel (at the same time) as we can. Since at any given
moment we may wish to have several additions and
several multiplies executing concurrently, let us expand
the CPU so it has very many (as many as necessary)
functional units. That is to say, the dispatching of an
instruction is never delayed because of lack of a piece of
hardware.

Complete parallelism is still not achieved because of
the inherently sequential nature of parts of the instruc-
tion stream. For example, the triplet "load accumu-
lator, add, store accumulator" must be executed sequen-
tially. This condition occurs because the add instruction
needs the information fetched by the load and the store
instruction needs the sum computed by the add. M\Iore
formally, we may say that each instruction has a set of
"sources" on which it depends and a set of "destina-
tions" which it modifies.

For the above triplet we have the following.

In keeping with our previous approach, we will say
that each redefinition creates a new destination. Under
this assumption consider the following six instructions.

LDA al
ADD 3 strand 1
STA FJ

LDA6'
MPY c- strand 2.
STA1rj

This set of instructions could be executed in any of
three ways: 1) as shown-first strand 1, then strand 2;
2) in parallel-strand 1 at the same time as strand 2;
or 3) in reverse order-first strand 2, then strand 1.
The parallel execution (case 2) can take place because

the LDA 6 and the LDA a are both redefinitions of the
accumulator, and each creates a new accumulator for
use by that strand independently of the one used by
the other.
There is still a limit on the speed of the program.

Clearly, an instruction cannot be dispatched (begin to
execute) until all its sources are available. The ADD 3
instruction above must await the completion of the
LDA a and the availability of the data in ,B. Even after
all its sources are available, the ADD will take a nonzero
time to execute. To assume otherwise would imply that
all programs, regardless of their length, run in zero
seconds. Stating this somewhat more formally, we have

T = E + max (Si, S2,* ,Sk)
where
T Completion time of the instruction and hence the

time at which its results (destinations) become
available as a source for further instructions.

E Execution time of the instruction.
Sj Time at which source j becomes available.

We will say that a program is running at "maximum
speed" when the following hold.

1) Each instruction is dispatched as soon as its
sources become available.

2) There exist sufficient resources in the machine so
that no execution of an instruction is delayed by lack
of required resources.

Instruction Meaning Sources Destinations

LDA a load accumulator memory location a accumulator
ADD $ add to accumulator accumulator and memory location' accumulator
STA - store accumulator accumulator memory location e

When an instruction has a destination that is not at
the same time a source for that instruction, we will say
that it "redefines" that destination. Thus, LDA redefines
the accumulator and STA a redefines 6. Tjaden and Flynn
call this "open effects" [5].

3) Conditional jump instructions do not impede the
flow of the program because either of the following is
true.

a) One somehow knows a priori which path will be
taken from a branch point and can proceed only down

1406

SHORT NOTES

that path (in which case the branch could effectively
be removed).

b) Many tentative computational paths can be
maintained simultaneously, with the eventual selection
of the correct path and the discarding of the incorrect
paths taking place as conditional jumps become resolved.

Thus, a program is running at maximum speed when
the only remaining constraints on its speed are the exe-

cution times of the various instructions and any inherent
sequential dependencies between them. Note that the
problem is not necessarily being solved at the maximum
possible speed. A different algorithm or more efficient
coding might run much faster than the program being
used. By rewriting the algorithm for the type of machine
being discussed, or even allowing redundant computa-
tions if the resources are available, a serial program

might be modified to show a greater speed. This aspect
has not been investigated in this note.
At various points in this note, we refer to an instruc-

tion stack or dispatch stack. This stack is similar to the
predecode stack presented in [5]. It differs, however, in
that it may be of infinite length;' the dispatching of
instructions occurs as soon as they are ready rather than
being clocked, and the decode and dispatch times are

assumed to be zero. If the length of the stack is limited
(as discussed in the latter part of this note), this last
assumption may still allow-instructions to be dispatched
at an unbounded rate. Effectively, we have assumed
that the dispatch time is a vanishingly small part of the
execution time of any of the functional units. Therefore,
new instructions can be brought in and dispatched in
zero time until there is no room left in the stack to hold
presently undispatchable instructions.

Let us consider in some detail the assumptions we

have made concerning the decoding and dispatching
mechanism. We assume first that there exist plenty of
functional units and plenty of registers, and that the
compiler or assembler has been clever enough to utilize
these in such a way that there are no unnecessary con-

tention problems. This is the "renaming" or 'open ef-
fects" problem, and we hereby assume it out of existence.
Now in a conventional machine like the 360/91, the

ith instruction in the stack is compared with the
(i-l)th, the (i-2)th, and so on, to see if any of the
sources of i are destinations of a previous instruction.
It is this comparison hardware that increases as S2
where S is the stack size. Comparisons are being done
in the stack. Therefore, uncompleted instructions must
be retained in the stack until they are completed in
order that their presence there may inhibit later use of
those registers they are in the process of changing. Under
this assumption, there cannot be more instructions in
execution than there are places in the stack to hold these
uncompleted instructions; and, therefore, the maximum
possible speedup is limited to the stack size. Our as-

1 Actually, it never needs to be larger than the entire sequence of
executed instructions.

sumptions are somewhat different from this. The fact
that they do not correspond to present-day techniques
was pointed out by one of our referees.
We assume that when an instruction is loaded into the

stack, it already specifies exactly which registers it
needs as sources and which it expects to modify (its
destinations). (Thus we ignore the problem of dynamic
remapping of register names, although it does not seem
as if this would be an insuperable design problem.) The
dispatching hardware continuously monitors the state
of all the source registers of this instruction, and when
these sources all become "valid," it issues the instruction
to some functional unit and simultaneously marks all
of the destinations of this instruction as containing
"invalid" data-data that are in the process of changing
and hence :are unusable. As the func-tional unit finishes
its operation, it places the results it calculated in the:
destination registers and marks them as now containing
valid numbers. Not all' interlocking hardware can be
eliminated from the stack, of course, for if we look at the
following sequence of code,

1) LDA a

2) ADDf3
3) MUL a

we see that when the accumulator becomes valid for the
first time, it means that instruction 2 may be dispatched,
but not instruction 3.

However, these assumptions do mean that as soon as
an instruction is issued (dispatched), it can be removed
from the stack, making room for a new instruction to
be inserted and analyzed. Thus, even with a very short
stack (one or two slots), we are able to stream inde-
pendent instructions through at a rate limited only by
the decoding time, and achieve rates of parallelism that
exceed the stack size. For convenience, we have assumed
that the decoding time is vanishingly small (in fact,
equal to zero). This assumption is entirely in keeping
with our assumptions about unlimited registers and
functional units.
The maximum speed of the seven programs we ex-

amined is shown in the last column of Table II (oo
jumps). The average of the maximum speeds is 51.2
times faster than their average speed on a conventional
machine. As will be explained later, this maximum
speed corresponds to bypassing an infinite number of
conditional jumps.

BLOCKING ON CONDITIONAL JUMPS
In the previous section, the concept of maximum

speed was defined, which, of course, can never be
reached in practice. Stack sizes are finite and functional
units are limited in number, as are central registers and
memory locations. An even more severe limit is the
effect of conditional branching on the parallel execution
of instructions. In the above, we were looking at traces
of instruction streams, at the a posteriori history of a
program. There, the choice of which path to take from

1407

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1972

a conditional jump was already made. But in reality,
when a choice point in an instruction stream (a condi-
tional branch) is encountered, it is not known which of
the two possible paths the program is going to take until
the data upon which the choice is to be made (the
sources of the conditional jump) become available and
the instruction is actually executed-that is, until the
conditional is resolved.
Suppose this limitation is accepted. Then no instruc-

tion can be dispatched for execution until all conditional
jumps preceding it have been resolved and its own

sources are available. We define Li{x} to be the j+lth
largest element of the set x. For example,

LO{ 1, 2, 3, 4, 5} = 5 is the largest element of the set

Ll{ 1, 2, 3, 4, 5} = 4 is the second largest, etc.

Let the set of completion times of all conditional jumps
preceding2 the execution of the ith instruction be Ji;
then the earliest possible completion time of the ith
instruction will be

Ti° = Ei + max IS1, S2, I Ji
where the superscript 0 on T indicates that no condi-
tional jumps are bypassed. Using this equation, we can

compute the running time R of a program that blocks
on all conditional jumps to be R = maxi { Ti°} . That is,
the running time will be equated to the completion time
of the last instruction completed. The "speedup" of a

program under a given set of conditions is defined to be
the ratio of the running time on a conventional machine
to the running time obtained under the given conditions.
But suppose a machine is built that could "bypass" one

conditional jump by beginning execution down both
paths leading out of the jump. Once the conditionaljump
is resolved, the untaken path is discarded. Sometimes,
when a conditional jump is reached, all the information
necessary for its resolution will have already been com-

puted, and it can be resolved at once. Conditionals that
can be decided on the spot cause no complications, since
they have only one path of successors. Thus the machine
can keep going down at most two paths. Such programs

may be said to "bypass" one conditional jump.
Let us consider the case of a machine that can bypass

two conditional jumps. Let the first unresolved jump
be called A if the jump is taken and AT if not. We have
two paths that must be explored. Suppose that, upon

going down path A, another jump called B is encoun-

tered. If it is unresolved also, path A will be split into
two paths: AB and AB. Each of these paths may con-

tinue until they reach unresolved conditional jumps
(D and E, respectively), at which point they must wait
for the resolution of either A or B or D for path AB,
and A or B or E for path ABW. But path A may proceed,

2 "Preceding" refers to the order in the original code as it would
be executed by a conventional machine.

and when it comes to an unresolved conditional jump C
(not necessarily the same as B), it will split into two
paths A C and A C. Generalizing this concept so that up
to j conditional jumps may be unresolved along the
ancestral path of an instruction, we have

Tij = Ei + max {S1S2, * L*,'XjJi{ }

and

Rj = max {Tij}
i

where Rj, is the running time of a program on an infinite
machine that can bypass] conditional jumps.
One should note that the number of paths that must

be maintained may be as large as 2i if the program can
bypass j conditional jumps. Of course, these various
paths may represent the same written instructions or
different ones. For example, a loop ended by a condi-
tional jump might generate the streams: iterate once
and exit; iterate twice and exit; iterate three times and
exit; etc. Since we do not know which is going to be the
"real path" (in a real life situation), we must be pre-
pared to explore all of them. It is clear that the number
of possible paths can exceed the number of written in-
structions. Since the complexity of a CPU must grow at
least linearly with the number of paths maintained, we
hope to find dramatic improvements in speed for smallj,
since even a j as small as 8 implies up to 256 paths exe-
cuting simultaneously.

PREVIOUS WORK
The discussion presented above- is by no means new.

Hellerman [1] and Stone [2] have examined parallelism
in higher level languages. Ramamoorthy and Gonzalez
[3] review several methods of recognizing parallelism in
programs. Flynn [4] pointed out in 1966 that dispatch-
ing of a single instruction per machine cycle was a seri-
ous bottleneck, and Tjaden and Flynn [5] examined the
benefits of parallel execution in an IBM-7090 environ-
ment. The IBM STRETCH [6]-[8], aided by the pro-
grammer, guessed at which path from a conditional it
should pursue, went ahead down that path, and then
'backed up" if the guess was wrong. The IB1\1 360/91
and 195 do prefetching and decode of the two possible
instruction paths but no execution beyond the condi-
tional jump [9]. Stone [10] describes a machine that
could proceed down two paths. We could discover no-
one who has carried out experiments on deep excursions
into the undecided future of a program.

OUR EXPERIMENT

Seven programs written for the CDC-3600 were
traced. These included compilers, compiled code, hand-
generated code, numeric programs, and symbol ma-
nipulating programs. A total of 1 884 898 instructions
were traced representing very nearly 7 s of real 3600
time. We found no significant differences between hand-

1408

SHORT NOTES

and compiler-generated code, nor between numeric and
symbolic programs. Since the analysis of these seven

programs consumed some 40 h of machine time, it
was decided to bring the data collection phase of our
studies to a halt.
The seven programs traced were as follows.
1) BMD01: a Fortran program for the calculation of

means and variances.

2) CONCORDANCE: a Fortran program written to an-

alyze text strings for repetitions of patterns of symbols.
3) EIGENVALUE: a Fortran program to compute eigen-

values of matrices.
4) COMPASS: the COMPASS assembler itself translating

a short program. An example of hand-coded symbol
manipulation.

5) Fortran: the Fortran compiler itself translating a

program. Another example of hand-coded symbol ma-

nipulating program.

6) DECALIZE: a hand-coded program to analyze pat-
terns of op-codes up to ten-tuples.

7) INTERIT: our interpreter itself. Hand-coded.
Since we had to choose some set of execution times,

those of the 3600 itself were chosen. Table I shows that
their ratios are not far from the 360/91 or the CDC
6600, two of the fastest computers currently available.
Tjaden and Flynn [5] showed that for code written

for the 7090, a relative improvement of 1.86:1 could be
achieved with a stack length of 10 while blocking on all
conditional jumps. This was considerably less than the
51:1 improvement found with maximum speed. There-
fore, it was decided to let the stack length (and other
parameters) go to infinity and examine the effects of
bypassing various numbers of conditional jumps.

For zero jumps bypassed, we found an average im-
provement of 1.72 to 1 (see Fig. 1 and Table II). That is,
the average program examined ran 1.72 times as fast
with an infinite stack, infinite registers, infinite storage,
and infinite functional units as it did in an ordinary
everyday 3600. Clearly, conditional jumps were pre-

venting any substantial amounts of parallelism. If we

allow bypassing of one conditional, the average program

runs 2.72 times as fast as when run sequentially.
The relative speed increases as the VI where j is the

number of jumps bypassed. That is, if we bypass four
jumps, the program runs twice as fast as if we bypass
only one jump. Similarly, 16 jumps bypassed is twice
as fast as four jumps. The square-root relation holds
quite well up to 32 jumps (some four billion paths). We
have no theoretical justification of this relationship at
the present time.

DISCUSSION
If we can assume that the programs examined are

representative of programs in general, then an average

program will run 1.72 times as fast (0 jumps in Table
II) on a machine with infinite resources as on a conven-

tional machine. The observed range is between 1.22:1

TABLE I
RELATIVE SPEED OF VARIOUS INSTRUCTIONS IN VARIOUS MACHINES

WITH FIXED-POINT ADD TAKEN AS UNITY FOR EACH MACHINE

Instruction CDC-3600 IBM-360/91 CDC-6600

Fixed Add 1 1 1

Fixed Multiply 3-4 7-11 no such inst.

Fixed Divide 7-8 36-37 no such inst.

Floating Add 2-3 2 1.3

Floating Multiply 3-4 3 3.3

Floating Divide 6-7 4 9.6

-+.

BEST CASE,

f

-e

, 1DRST CASE

j-nuiber of oornditional jumps bypassed

Fig. 1. Average speed as a function of number of conditional jumps
that are bypassed-infinite stack machine.

TABLE II.
SPEEDUP OF SEVEN PROGRAMS (IN A MACHINE WITH AN INFINITE

STACK) AS A FUNCTION OF THE NUMBER OF
CONDITIONAL JUMPS PASSABLE

Program 0 jump 1 jump 2 Jumps 8 jumps 32 Jumps 128 jumps Jumps

FORTRAN 1.40 2.03 2.38 3.14 4.02 5.86 32.4

COMPASS 1.22 2.10 2.74 4.28 5.55 7.17 27.2

CONCORDANCE 1.53 2.27 3.45 8.50 20.20 47.30 100.3

INTERIT 2.98 5.11 6.60 15.10 36.70 37.70 39.8

EIGENVALUE 1.72 2.40 3.34 6.64 14.20 22.40 29.7

DECALIZE 1.79 2.76 3.44 5.23 6.15 6.53 7.8

BMDOD 1.43 2.38 3.32 7.56 16.80 43.50 120.5

AVERAGE 1.72 2.72 3.62 7.21 14.8 24.4 51.2

1409

to

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1972

and 2.98:1. While it must be admitted that there is
some improvement, and while it may be a cost-effective
idea to apply to designing large-scale machines, it is not
the sort of dramatic breakthrough one might have
hoped to find. Indeed, Goode [11] used to urge that
system engineers not concern themselves with redesigns
that promise a payoff of less than a hemibel (factor of 3)
and should preferably look first for order of magnitude
(factor of 10) improvements. On his scale, this repre-
sents barely a hemi-semi-bel.
The relative speed of execution goes up only as the

square root of j, the number of conditional jumps by-
passed, and the number of paths that must be main-
tained simultaneously may go up as fast as 2i. The
authors' attention has been drawn to recent work by
Kuck- et al. [1313. By substantial preprocessing of pro-
-grams d-uring compilation, several levels of conditional
jumps can be collapsed into one level, and their results
are comparable to ours.

Naturally, the reader may be concerned with the fact
that the code we examined was written for a sequential
machine and not a parallel one. However, we have pro-
vided for as much renaming as is necessary and, aside
from recasting the algorithm completely, the only real
improvement that could be made would be to eliminate
conditional jumps. But Flynn [12] has mentioned an
unpublished study in which fewer than half of the condi-
tional jumps were removable even after extensive hand
tailoring.
One mechanical aid in this latter direction is a "re-

peat" instruction for those loops where the number of
iterations is known before entry (non-data-dependent
exits), which would not be "conditional" in the normal
sense of the word. In a very brief examination of this
approach, we effectively "unfolded" all the loops in
BMDO1 and reran the program on our hypothetical ma-
chine with infinite resources, but blocking on condi-
tional jumps. We found that with DO-loop generated
jumps eliminated, it ran almost exactly 1 percent faster
than with them left in. Thus, we conclude on the basis
of this very limited experiment that this approach does
not appear to offer much help.
An investigation was carried out to determine how

long a stack would be required to reach the theoretical
speedup of 51 times if we ignored the problem of condi-
tional jumps. Fig. 2 and Table III show the average
speed of our seven programs as a function of the dis-
patch stack length under the assumption that any
number of conditional jumps may be bypassed. The
important things to be noted in Fig. 2 are, first, that
even with a stack length as short as two, bypassing all
conditional jumps allows a program to run twice as fast
as if it had an infinite stack and blocked on conditionals.
It appears that stack length is not nearly as important
as the effect of conditional jumps. Second, it should be
noted that even with a stack of length 64, the machine
is still a factor of four slower than with an infinite stack.
This implies that instructions must be moved a long

100 -

so _

I
I

10-

I

I

#'I
i/

A

BESr CAnSI

AVERAGE +,/

,

~.~1
WORST CASE

r I J).. 1

2 4 8 16 32 64

L-length of stack

Fig. 2. Average speed as a function of stack length assuming all
conditional jumps can be bypassed.

TABLE III
SPEEDUP OF SEVEN PROGRAMS AS A FUNCTION OF LENGTH OF THE
DISPATCH STACK WHEN ALL CONDITIONAL JUMPS ARE PASSABLE

Program Stack Length

2 4 8 16 32 64

FORTRAN 2.44 2.71 2.81 3.26 3.63 4.08

COMPASS 3.24 3.78 4.00 4.59 5.06 5.64

CONCORDANCE 4.22 6.50 9.33 11.95 15.80 20.0

INTERIT 4.43 5.63 7.39 10.59 15.80 24.8

EIGENVALUE 2.44 3.17 4.16 5.46 7.94 11.91

DECALIZE 2.66 3.46 4.33 4.85 5.28 5.78

BMDO1D 4.70 5.54, 6.59 8.30 10.91 15.20

AVERAGE 3.45 4.40 5.52 7.00 9.20 12.49

way from their original
instructions) in order to

locations (past more than 64
achieve maximum speed.

CONCLUSIONS
Within the programs that were examined, there is a

potential parallelism of 51:1. Even given all the re-
sources they might conceivably need, these programs
were severely inhibited by the presence of conditional
jumps. Limiting them to bypassing no more than two
conditionals, we could- extract less than a 4:1 improve-
ment in speed. To run ten times as fast as a one-instruc-
tion-at-a-time machine, 16 jumps must be bypassed.
This implies up to 65 000 paths being explored simul-
taneously. Obviously, a machine with 65 000 instruc-
tions executing at once is a bit impractical.

1410

440, -+- -

r--
--

t

SHORT NOTES

Therefore, we must reject the possibility of bypassing
conditional jumps as being of substantial help in speed-
ing up the execution of programs. In fact, our results
seem to indicate that even very large amounts of hard-
ware applied to programs at run time do not generate
hemibel improvements in execution speed.
We are left, then, with three alternatives: extensive

preprocessing of programs as suggested by Kuck et al.
[13]; recasting algorithms to take advantage of machine
parallelism as, for example, in the Goodyear STARAN or

the Illiac IV; or just plain speeding up a conventional
monoprocessor so it gets the job done faster.

ACKNOWLEDGMENT
The authors wish to express their appreciation to

J. Vervaert and F. Pirz for their help in collecting and
analyzing the data presented in this note.

REFERENCES
[1] H. Hellerman, "Parallel processing of algebraic instructions,"

IEEE Trans. Comput., vol. C-15, pp. 82-91, Feb. 1966.
[2] H. S. Stone, "One-pass compilation of arithmetic expressions for

a parallel processor," Commun. Ass. Comput. Mach., pp. 220-
223, Apr. 1967.

[3] C. V. Ramamoorthy and M. J. Gonzalez, "A survey of tech-
niques for recognizing parallel processable streams in computer
programs," in Proc. 1969 Fall Joint Comput. Conf., A FIPS
Conf. Proc., vol. 35. Montvale, N. J.: AFIPS Press, 1969, pp.
1-15.

[41 M. J. Flynn, "Very high-speed computing systems," Proc.
IEEE, vol. 54, pp. 1901-1909, Dec. 1966.

[51 G. S. Tjaden and M. J. Flynn, "Detection and parallel exectu-
tion of independent instructions," IEEE Trans. Comput., vol.
C-19, pp. 889-895, Oct. 1970.

[6] E. Bloch, "The engineering design of the Stretch computer," in
Proc. 1959 Eastern Joint Comput. Conf., p. 48.

[7] R. T. Blosk, "The instructions unit of the Stretch computer, in
Proc. 1960 Eastern Joint Comput. Conf., pp. 299-325.

[8] J. Cocke and H. J. Kolsky, "The virtual memory of the Stretch
compuiter," in Proc. 1959 Eastern Joint Comput. Conf., pp. 82-94.

[91 D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, "The
model 91: Machine philosophy and instruction handling," IBM
J. Res. Develop., vol. 11, Jan. 1967.

[10] H. S. Stone, "A pipeline puishdown-stack computer," in Parallel
Processor Systems, Technologies, and Applications, L. C. Hobbs,
Ed. Washington, D. C.: Spartan, 1970, pp. 235-249.

[11] H. H. Goode, notes from a course on system design, Uniiv. Michi-
gan, Ann Arbor, spring 1957.

[121 M. J. Flynn, personal communications.
[13] D. J. Kuck, Y. Muraoka, and S. C. Chen, "On the number of

operations simultaneously executable in FORTRAN-like pro-
grams and their resulting speed-up," IEEE Comput. Soc.
Repository, PubI. R72-109, May/June 1972.

Percolation of Code to Enhance Parallel
Dispatching and Execution

CAXTON C. FOSTER AND EDWARD M. RISEMAN

Abstract-This note investigates the increase in parallel execution
rate as a function of the size of an instruction dispatch stack with
lookahead hardware. Under the constraint that instructions are not

Manuscript received November 11, 1971; revised June 21, 1972.
This work was supported in part by a study grant from Control Data
Corporation.

The authors are with the Department of Computer and Informa- -

tion Scienices, University of Massachusetts, Amherst, Mass. 01002.

dispatched until all preceding conditional branches are resolved,
stack sizes as small as 2 or 4 achieve most of the parallelism that a
hypothetically infinite stack would.

An algorithm is described that can be used to replace the look-
ahead hardware of the stack by reordering the sequence of instruc-
tions prior to execution. The transformed sequence has the property
that, if the instruction at the top of the stack cannot be dispatched
immediately, there will be no instruction below it that is ready for
dispatching. Experimental results demonstrate that this method
achieves 93.5 percent of the parallelism obtained if an infinite dis-
patch stack were available under the assumption that it takes zero
time to decode and dispatch an instruction.

Index Terms-Dispatch stack, lookahead hardware, parallel exe-
cution, parallelism, percolation of code, software lookahead.

INTRODUCTION
The problem of detecting and utilizing parallelism in

programs has been extensively studied. A review of some
of the techniques developed to detect parallelism in
higher level languages, particularly in arithmetic expres-
sions, appears in [1]. There have been a number of
proposals for FORK and JOIN type instructions for the
programmer himself to specify where and how two or
more sequences of instructions are executed simultane-
ously [2]. The huge Illiac IV has been implemented to
take advantage in hardware of array operations that
can be executed in parallel [3]. However, this- type of
machine is used effectively only on a restricted class of
problems.
A different approach is the design of a general-purpose

computer to automatically detect when more than one
instruction in the instruction stream can be executed
simultaneously in parallel. In the case of a single instrtuc-
tion stream-single data stream machine, Flynn points
out that the bottleneck is the decoding and dispatching
of a single instruction per machine cycle [4]. Thus, in-
structions may be executed in parallel, but they are
dispatched sequentially as in a number of current com-
puters: IBM 360/85, 91, 195 and CDC 6600 and 7600.
The process of dispatching instructions at the maxi-

mum rate is complicated further by the presence of con-
ditional branches. Until the conditional is resolved, it is
not known which of the two instruction paths proceed-
ing from the coinditional should be fetched and executed.

This problem is considered in a companion note to
this one; Riseman and Foster [5] examine the relative
increase in execution rate as a function of the number of
conditional jumps "bypassed;" N conditional jumps can
be bypassed by the execution of 2N simultaneous parallel
instruction streams.

Recently, Tjaden and Flynn [6] examined the payoff
in using a hardware stack to dispatch and exec-ute in-
structions in parallel. They examined the speedup in
execution as a function of the stack size under the con-
straint that instructions are not dispatched until all
preceding conditional branches are resolved. This note
is a continuation of that work. It accepts the restric-
tions imposed by branching and explores the limit of
parallelism obtained by parallel dispatching using such
a hardware stack.
The resultant parallelism of seven programs written

141

