¢sTEM/360 Model 91: An efficient algorith
setic units,” IBM Journal of Research 073
(January 1967). Or see T. C. Chen, “Tbé
rEM/360 Model 92 central processing unit,
S Fall Joint Compuler Conference 26, Part

seting and error correcting codes,” The Be)
X, No. 2, 147-160 (April 1950).

1l structure of o0s/360, Part I, Introducto
15, No. 1, 3-11 (1966).

structure of os,360, Part II, Job and
Tournal 5, No. 1, 12-29 (1966).

J structure of os/360, Part III, Data mag
nal 5, No. 1, 30-51 (1966).
to Dr. H. Hellerman.

o o~

The cac]ze; a high-speed buffer establishing a storage hierarchy in the
\odel 85, 18 discussed tn depth in this part, since i represents the
é;asic organizational departure from other sYSTEM/360 compulers. -

Discussed are organization and operation of the cache, including the
pechanisms used to locate and relrieve data needed by the processor.

The internal performance sludies that led to use of the cache are de-
cribed, and simulated performance of the chosen configuration ts
compared with that of a theoretical system having an enlire 80-nano-
second main storage. F inally, the effects of varying cache parameters
are discussed and tabulated.

Structural aspects of the System /360 Model 85
I The cache

by J. S. Liptay

Among the objectives of the Model 85 is that of providing a

SYSTEM/360 compatible processor with both high performance and

high throughput. One of the important ingredients of high through-

put is a large main storage capacity (see the accompanying article

in Part I). However, it is not feasible to provide a large main stor-

age with an access time commensurate with the 80-nanosecond

processor cycle of the Model 85. A longer access time can be par- .

tially compensated for by an increase in overlap, greater buffering, -

decper storage interleaving, more sophistication in the handling of o

branches, and other improvements in the processor. All of these . -

factors only partially compensate for the slower storage, and, there- . .. ... -

fore, we decided to use a storage hierarchy instead. R '
The storage hierarchy consists of a 1.04-microsecond main stor- ... ... D

age and a small, fast store called a cache,! which is integrated :

fnto the cpu. The cache is not addressable by a program, but rather -~ - 5 .

is used to hold the contents of those portions of main storagethat '~ - = = 7

are currently being used. Most processor fetches can then be . '

handled by referring to the cache, so that most of the time the

processor has a short access time. When the program starts operat-

ing on data in a different portion of main storage, the data in that

I’Ol’ﬁon must be loaded into the cache and the data from some other

portion removed. This activity must take place without program

asistance, since the Model 85 must be compatible with the rest of

the systeM/300 line. - o0 o - "
This paper discusses organization of the cache and the studies

that led to its use in the Model 85 and to selecting of values for its.
Mrameters, o :

"‘musrmus:ovnuu-vo:..7-xo.l-1§68 15




e
SORL

¥
X
fiiaf RE IR U R

g

&l, ik
¥ 2

ki i Db vt i il i

" assigning

cache
sectors

" 16

* operation, so that they are assigned to the main storage sectors that

fetch from a main storage sector that does not have a cache sector

~ reassign, enough information is maintained to order the cache sec-

- movement of sectors within the cache, but rather refers to a logical

Figure 1 Assignment of cache sectors to main storage sectors

MAIN STORAGE

SECTOR

CACHE
SECTOR

———

Cache organization

The main storage units that can be used on the Model 85 are the
1BM 2365-5 and the 2385. They have a 1.04-microsecond cycle time
and make available capacities from 512K bytes to 4096K bytes
(K = 1024). The cache is a 16K-byte integrated storage, which is
capable of operating every processor cycle. Optionally, it can be !
expanded to 24K bytes or 32K bytes. f

Both the cache and main storage are logically divided into sec- !

|
~ tors, each consisting of 1K contiguous bytes starting on 1K-byte .;

boundaries. During operation, a correspondence is set up between

... cache sectors and main storage sectors in which each cache sector 4

is assigned to a single different main storage sector. However, be- |
cause of the limited number of cache sectors, most main storage
sectors do not have any cache sectors assigned to them (see Figure
1). Each of the cache sectors has a 14-bit sector address register,
which holds the address of the main storage sector to which it is
assigned.

The assignment of cache sectors is dynamically adjusted during

are currently being used by the program. If the program causes a

assigned to it, one of the cache sectors is then reassigned to that
main storage sector. To make a good selection of a cache sector to

tors into an activity list. The sector at the top of the list is the one
that was most recently referred to, the second one is the next most
recently referred to, and so forth. When a cache sector is referred |
to, it is moved to the top of the list, and the intervening ones are
moved down one position. This is not meant to imply an actual

" J. 8. LIPTAY

\ ‘




i

3 srdering of the sectors. When it is necessary to reassign a sector, the
i ne selected is the one at the bottom of the activity List. This
8 .oche sector is the one that has gone the longest without being
Breferred to.

, ; TWhen a cache sector is assigned to a different main storage sec-
R or, the contents of all of the 1K bytes located in that main storage
e} ctor are not loaded into the cache at once. Rather, each sector is
divided into 16 blocks of 64 bytes, and the blocks are loaded on a
iemand basis. When a cache sector is reassigned, the only block
i- hat is loaded is the one that was referred to. If they are required,
Sk 1e remaining blocks are loaded later, one at a time. Each block
£ tn the cache has a bit associated with it to record whether it has
'R cen loaded. This “validity bit” is turned on when the block is
_% oaded and off when the sector is reassigned.

| Store operations always cause main storage to be updated. If
b he main storage sector being changed has a cache sector assigned
:i ko it, the cache is also updated; otherwise, no activity related to the
; ache takes place. Therefore, store operations cannot cause a cache

PUIPDIPINS AN

sector to be reassigned, a block to be loaded, or the activity list to
he revised. Since all of the data in the cache is also in main storage,
t is not necessary on a cache sector reassignment to move any data
rom the cache to main storage. All that is required is to change the
Rgector address register, reset the validity bits, and initiate loading
3 }‘o a block. The processor is capable of buffering one instruction
B i equesting the storing of information in main storage, so that it
3
!

iran proceed with subsequent instructions even if execution of the
ktore instruction cannot be initiated immediately.

~Two processor cycles are required to fetch data that is in the
1 ‘ ache. The first cycle is used to examine the sector address registers
" ~#pnd the validity bits to determine if the data is in the cache. The
' ; pecond cycle is then used to read the data out of the cache. How-
ZEver, requests can normally be overlapped, so that one request can
3ibe processed every cycle. If the data is not present in the cache,
fbdditional cycles are required while the block is loaded into the

1
!
i

fache from main storage.
The storage word size on which the Model 85 operates internally
4883 16 bytes. This is the width of the data paths to and from the
“Jfptorage units, and is the amount the processer can store or fetch
ZF1th a single request. Because a single 2365-5 storage unit operates
f;' an 8byte-wide interface, two units are paired together and
Mbperated simultaneously. Except for the 512K configuration, main
JPtorage is interleaved four ways. Since a block is 64 bytes, four
etches to main storage are required to load one bleck into the
i mpe. With four-way interleaving, this means one request to each
“BPasic storage module. To improve performance, the first basic
- ‘orage module referred to during each block load is the one con-
-gpunng .the 16 bytes wanted by the processor. In addition to being
S ¢ aded into the cache, the data is sent directly to the processor, so
4Rhat execution can proceed as soon as possible (see Figure 2).
On the Model 85, channels store and fetch data by way of the

MODEL 85 CACHE

Y
PUDHAND- SV TER S N

store
operations

17




o

L s

Ut YAty gy

WPEPLERS LI thah o B FNBE P TR A 2l b e i i 118 SO TR

IETIR T

cache
effectiveness

Figure 2 Timing for a block load g
gy
MAIN STORAGE i

BLOCK e
BSMO / Egmcg 1
ADED 1
TIME TO DATA AVAILABLE
Bsm3 TO PROCESSOR 1

BSM2 } 16 BYTES IF BLOCK ]
REQUESTED hcg@g Elg ! ,
BSM1 ' 4 BSM2 ACCESS TIME ! 3
1
8sMo R BSM3 ACCESS TIME |
BSM3 4 { {
BSM2 N BSMO ACCESS TIME R
16-BYTE g L |
i

85M1 }STORAGE
WORD ' BSM1 ACCESS TIME
BSMO I

BSM3

NUMBIN OF TRACK TAPLS 30 PLATOMMANCE RANGE
w“r ~

18

1
L—""" BSM = BASIC STORAGE MODUEER.

i

processor. Channel fetches are processed by getting the requir 3
data from main storage without referring to the cache. Cha u:
stores are handled the same way as processor stores. In this way, & - .
a channel changes data that is in the cache, the cache is updated byfg - |
the channels do not have any part of the cache devoted to them {-‘ s

Performance studies

Among the questions that had to be answered to determine whethd
the cache approach should be taken were: (1) how effective is :,5
and (2) does its effectiveness vary substantially from one prograf
to another? The principal tools used to answer these questions a3
the tracing and timing techniques referred to in Part I. The traci .
technique produces an instruction-by-instruction trace of a prg
gram operating under the sysTEM/360 Operating System. The outp®
is a sequence of ‘“‘trace tapes,” which contain every mstructl
executed, whether in the problem program or the operating systemj -
and the necessary information to determine how long it takes to
executed. These trace tapes contain about 250,000 instructions es
and are used as input to a timing program, which determines, cyc 'z
by-cycle, how the Model 85 would execute that sequence of mstru ‘
tions. These techniques are intended to determine internal pg
formance and do not provide any information concerning throu ;4;?
put. An intensive investigation preceded selection of the progra 8
used in this study.
_ In order to measure the effectiveness of the cache, we postula
a system identical to the Model 85 except that the storage hierarci
is replaced by a single-level storage operating at cache speed. T
performance of such a system is that which would be ach.leved .
the Model 85 if it always found the data it wanted in the cache @
if it never encountered interference in main storage due to storg
Therefore, it represents an upper limit on the performance of L
Model 85; how close the Model 85 approaches this ideal can serg
as a measure of how effective the cache is. Nineteen trace tapg

!
!
1

J. 8. LIPTAY



DATA AVAILABLE
TO PROCESSOR

BSM2 ACCESS TIME

1

BSM3 ACCESS TIME

J—
1

BSMO ACCESS TIME

1

BSM1 ACCESS TIME

i

BSM= BASIC STORAGE MODUW -

- processed by getting the ;eq i

& ﬂgur.a

NUMBIR OF TRACL TAPLS 3N PLATORMANCE RANGL
-
1

Model 85 performance relative to si - .
speed o singie-level storage operating at cache

MEAN=81%

MMM

7

DM

17

6569

%
90-94

A
85.89

~
=1
~
&
~
o
9
0

PERCENTAGE OF IDEAL PERFORMANCE

wout refernng to the cache. Channe E Figure 4 Probabllity of finding fetched data in cache

-ay as processor stores. In this way, K
in the cache, the cache is updated b
y part of the cache devoted to them]g

L s b an

{ to be answered to determine whethé
e taken were: (1) how effective is
vary substantially from one prograg
5s used to answer these questions af
ques referred to in Part I. The tracin}
qction-by-instruction trace of a prg
tEM/360 Operating System. The outp N
es,” which contain every instructiod
olem program or the operating syste i}
.0 to determine how long it takes to :
.ontain about 250,000 instructions eag
aing program, which determines, cyclf
would execute that sequence of instru$§
, intended to determine internal p
e any information concerning through
jon preceded selection of the prograifi

-

sffectiveness of the cache, we postula g
,del 85 except that the storage hierarc i
_storage operating at cache speed. T
»m is that which would be achieved 18
und the data it wanted in the cache i
srference in main storage due to sto o
upper limit on the performance of i
lodel 85 approaches this ideal can ser{y

tive the cache is. Nineteen trace ',

)RS EIPIIR QRPN

"7 NUMBER OF TRACE TAPES WITH £ACH PROBABILITY
N .

T ;
7
N" ? 7 7 Z ?

PROBABILITY

were timed for both the Model 85 and the postulated system, and

he performance of the Model 85 was expressed as a percentage of

the performance of the ideal system. Figure 3 shows the distribu-

on of performance data obtained. The average was 81 percent of

the performance of ;
the ideal s :
: and 94 percent. ystem, with a range between 66

b il?t?v :?gzﬁnt statistic related to cache operation is the prob-
hows tho o g thg data Wapted for a fetch in the cache. Figure 4
e e ¢ tnputlon of this probability for the same 19 trace

b or F igure 3. The average probability was 0.968. It is

ndomth g that, 1f _the addres;es generated by a program were
oul b’e e probability of finding the data wanted in the cache

much less than 0.01. Therefore, it can be said that what

addressing patterns.

MODEL 85 CACHE

es the cache work is the fact that real programs are not random

19




i?.

Table 1! Average performance relative to an ideal system with cache size and numbe -
of sectors varied — Block size =064 bytes B fable 2
Number of Number of sectors ;3
cache bytes 8 16 32 i k.
8K 0.603 0.74 0793 f —
16K 0.763 0.825 0.861
32K 0.857 0.891 0.902

b Toble 3

Selection of cache pa.ra.meters

Before the final cache design was established, a great deal of efforllf —
was expended on the choice of cache parameters.’ The tools used G

make the choice were the trace and timing programs. From among

the trace tapes available, we picked five representative ones al

ran them for many cache configurations, varying cache size, sectofl

size, and block size. Tables 1 and 2 show the results obtained. f 3
Table 1, block size is always 64 bytes; in Table2, the number G
sectors is always sixteen. In both cases, performance is compa -.3' =
with that of 2 single-level storageé operati B

ng at cache speed. The
selection of a 16K byte cache with 16 sectors and 64 bytes .':'.5
b block was made as the best balance between cost and performancel -
The choice of an algorithm for the selection of a sector to el
assign was also the object of careful study. From among the :1
gorithms proposed, two Were selected as likely candidates and i
corporated into the timing program for study. 1 i wee
For one algorithm, the cache sectors are partitioned with §8

equal number of sectors in each partition. An activity list is m2 3
tained for each partition reflecting the use of the sectors within 2
Each partition bas a binary address, and when & main storage i
the cache, the low-order b ! 3
itions. THE

replacement
algorithms

9‘ tor needs to be assigned a position in
b of its sector address are used to select one of the part
=. sector at the bottom of that partition’s activity list is the one chos
i for reassignment. ) =
i ’) : This algorithm was studied for 1, 2, 4, & and 16 partitiol 3 ?
L : When there is only one partition, the algorithm becomes the Mo y'—l '
85 replacement algorithm. At the opposite extreme, when there 3 k
. sixteen partitions, ch, and the ideagl
L an activity list for each partition is meaningless. In this case, e
' ' choice of a cache sector to reassign depends only on thelow-0 i
address bits of the main storage sector for which a place is ber
found in the cache, and consequently each main storage sector It
only one possible place where it can be put in the cache. - ‘
The second algorithm involves a single usage bit for each cat¥

there is only one sector in ea

sector. When a sector is referred to, its usage bit is turned on if gl 1
not already on. When the last sector bitis turned on, all of the OV
bits are turned off and the process continues. If asector has to be Ji L

ps

g those with their usl

assigned, it i selected randomly from amon
bits off. ’

3

20 J. S. LIPTAY




sl D st s

.

t

deal system with cache size and number & i
{able 7 Average performance relative to an ideal syst ith i
o . ber of bytes per block vuried—Numbere:f :::t::; :1'2 cache size and num-
P er;;:f sectors s Number of Number of bytes per block
: cache bytes 64 128 256
0.744 0.793 » 8K 0.744
0.825 0.861 ‘.
o o 7 16K 0.825 0.810 0.781
) . : 32K 0.891 0.885 0.870
s Table 3 Comparative performance using different cache sector replacement algorithms
rs -
{ algorithm performance

sstablished, a great deal of effort @

1e parameters.? The tools used to: 1 partition* 1.000
d timing programs. From amongg 2 partitions 0.990
ed five representative ones and 4 partitions 0.
-ations, varying cache size, sector N . <987
{ 2 show the results obtained. In 8 partitions 0.979
bytes; in Table2, the number of_ £ 16 partitions 0.933
usage bits 0.931

1 cases, performance is compared§
ze operating at cache speed. Thel | .
vith 16 sectors and 64 bytes pet Replacement algorithm chosen for the Model 85
ce between cost and performamce;l
or the selection of a sector to re:
reful study. From among the 2
ected as likely candidates and i}
-am for study. .
e sectors are partitioned with ag]
partition. An activity list is maing
ng the use of the sectors within if]
ress, and when a main storage sed
on in the cache, the low-order bit§

-T.able'3 summarizes the results obtained. The choice of the
activity list was made because it provided the best balance be-
tween cost and performance.

Summary comment

The mclu_sion of a storage hierarchy represents one of the major
advances in system organization present in the Model 85. Although
o elect one of the pa titions. Th the concey?t of a storage hierarchy is not new, the successful im-
S o e activity list s the one chosel _plerpe;ntatmn of a nanosecond/microsecond level of hierarchy was
R inhibited u.ntil now by the lack of a suitable technology. As im-
Plemented in the Model 85, the fast monolithic storage physicall
u?ttslgrated with the cpu logic yields the desired machine speedy
o (Zothg. large core storage yields the desired storage capacity:
o ﬁrﬁ ination bemg transparent to the user. It is likely that
_eerthlr.e progress in tech‘nology .this nanosecond/microsecond
e g g 1153;0t merely an u.movatxon that worked out well for
W i)e del 85, but r?ther it is a fundamental step forward that
incorporated into most large systems of the future.

{for 1, 2, 4, 8, and 16 partitions
1, the algorithm becomes the Modé
1 opposite extreme, when there afj
one sector in each, and the idea
on is meaningless. In this case, the
ssign depends only on the low-orde!
ge sector for which a place is bein}
quently each main storage sector h
; can be put in the cache. :
lves a single usage bit for each cacllCITED REFREENCE AND FOOTNOTE
«d to, its usage bit is turned on if it The 1 .
sector bit is turned on, all of the othdl yp deleg; dcc‘)‘cc‘i‘;eliti)t’;?ymo‘xs with high-speed buffer, as used in other
s continues. If asector has to be - D. H. Gibson, “Considerations in block-oriented systems design,” AFIPS

ly from among those with their Conjerence Proceeds ; ;
L e ngs, Spring Joint Com Confer i
New York, New York, 7 (1067). puter Conference 30, Academic Press,

MODEL 85 CACHE

21



