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Readings
n This week

q Multi-cycle microarchitecture
n P&P, Appendices A and C 
n H&H, Chapter 7.4

q Microprogramming
n P&P, Appendices A and C 

n Next week
q Pipelining

n H&H, Chapter 7.5
q Pipelining Issues

n H&H, Chapter 7.8.1-7.8.3
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Agenda for Today & Next Few Lectures
n Instruction Set Architectures (ISA): LC-3 and MIPS

n Assembly programming: LC-3 and MIPS

n Microarchitecture (principles & single-cycle uarch)

n Multi-cycle microarchitecture

n Microprogramming

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution
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Recall: Performance Analysis Basics
n Execution time of an instruction

q {CPI}  x  {clock cycle time} 
n CPI: Number of cycles it takes to execute an instruction

n Execution time of a program
q Sum over all instructions [{CPI}  x  {clock cycle time}]
q {# of instructions}  x  {Average CPI}  x  {clock cycle time}
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Recall: (Micro)architecture Design Principles

n Critical path design
q Find and decrease the maximum combinational logic delay
q Break a path into multiple cycles if it takes too long

n Bread and butter (common case) design
q Spend time and resources on where it matters most

n i.e., improve what the machine is really designed to do
q Common case vs. uncommon case 

n Balanced design
q Balance instruction/data flow through hardware components
q Design to eliminate bottlenecks: balance the hardware for the 

work
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Recall: Multi-Cycle Microarchitecture
AS = Architectural (programmer visible) state 

at the beginning of an instruction

Step 1: Process part of instruction in one clock cycle

Step 2: Process part of instruction in the next clock cycle

…

AS’ = Architectural (programmer visible) state 
at the end of a clock cycle
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Recall: A Basic Multi-Cycle Microarchitecture
n Instruction processing cycle divided into “states”

q A stage in the instruction processing cycle can take multiple 
states

n A multi-cycle microarchitecture sequences from state to 
state to process an instruction 
q The behavior of the machine in a state is completely 

determined by control signals in that state

n The behavior of the entire processor is specified fully by a 
finite state machine

n In a state (clock cycle), control signals control two things:
q How the datapath should process the data
q How to generate the control signals for the (next) clock cycle
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Recall: Multi-Cycle MIPS FSM
IorD = 0

AluSrcA = 0
ALUSrcB = 01
ALUOp = 00
PCSrc = 00

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

PCSrc = 10
PCWrite

Op = J

S11: Jump
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Single-Cycle Performance

n TC is limited by the critical path (lw)
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Single-Cycle Performance
n Single-cycle critical path:

q Tc = tpcq_PC + tmem + max(tRFread, tsext + tmux) + tALU + 
tmem + tmux + tRFsetup

n In most implementations, limiting paths are: 
q memory, ALU, register file. 
q Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup
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Tc =

11

Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 30
Register setup tsetup 20
Multiplexer tmux 25
ALU tALU 200
Memory read tmem 250
Register file read tRFread 150
Register file setup tRFsetup 20



Single-Cycle Performance Example

Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup
= [30 + 2(250) + 150 + 25 + 200 + 20] ps
= 925 ps
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Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 30
Register setup tsetup 20
Multiplexer tmux 25
ALU tALU 200
Memory read tmem 250
Register file read tRFread 150
Register file setup tRFsetup 20



Single-Cycle Performance Example
n Example:

For a program with 100 billion instructions executing on a 
single-cycle MIPS processor:
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Single-Cycle Performance Example
n Example:

For a program with 100 billion instructions executing on a 

single-cycle MIPS processor:

Execution Time = # instructions x CPI x Tc

= (100 � 109)(1)(925  � 10-12 s)

= 92.5 seconds
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Multi-Cycle Performance: CPI
n Instructions take different number of cycles:

q 3 cycles: beq, j
q 4 cycles: R-Type, sw, addi
q 5 cycles: lw

n CPI is weighted average, e.g. SPECINT2000 benchmark: 
q 25% loads
q 10% stores
q 11% branches
q 2% jumps
q 52% R-type

n Average CPI = (0.11 + 0.02) 3 +(0.52 + 0.10) 4 +(0.25) 5 
= 4.12

Realistic?
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Multi-cycle Performance: Cycle Time
n Multi-cycle critical path:

Tc =
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Multi-cycle Performance: Cycle Time
n Multi-cycle critical path:

Tc = tpcq + tmux + max(tALU + tmux, tmem) + tsetup
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Multi-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 30
Register setup tsetup 20
Multiplexer tmux 25
ALU tALU 200
Memory read tmem 250
Register file read tRFread 150
Register file setup tRFsetup 20

Tc =
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Multi-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 30
Register setup tsetup 20
Multiplexer tmux 25
ALU tALU 200
Memory read tmem 250
Register file read tRFread 150
Register file setup tRFsetup 20

Tc = tpcq_PC + tmux + max(tALU + tmux, tmem) + tsetup

= [30 + 25 + 250 + 20] ps

= 325 ps
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Multi-Cycle Performance Example
n For a program with 100 billion instructions executing on a 

multi-cycle MIPS processor
q CPI = 4.12
q Tc = 325 ps

n Execution Time = (# instructions) � CPI � Tc
= (100 � 109)(4.12)(325  � 10-12)

= 133.9 seconds
n This is slower than the single-cycle processor (92.5 

seconds). Why? 
n Did we break the stages in a balanced manner?
n Overhead of register setup/hold paid many times
n How would the results change with different assumptions 

on memory latency and instruction mix?
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Review: Single-Cycle MIPS Processor
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Review: Multi-Cycle MIPS Processor
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Review: Multi-Cycle MIPS FSM

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 00

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback
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What is the 
shortcoming of 
this design?

What does 
this design
assume
about memory?
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What If Memory Takes > One Cycle?
n Stay in the same “memory access” state until memory 

returns the data
n “Memory Ready?” bit is an input to the control logic that 

determines the next state
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Another Example: 
Microprogrammed Multi-Cycle 

Microarchitecture



How Do We Implement This?
n Maurice Wilkes, “The Best Way to Design an Automatic 

Calculating Machine,” Manchester Univ. Computer 
Inaugural Conf., 1951.

n An elegant implementation:
q The concept of microcoded/microprogrammed machines
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Recall: A Basic Multi-Cycle Microarchitecture
n Instruction processing cycle divided into “states”

q A stage in the instruction processing cycle can take multiple 
states

n A multi-cycle microarchitecture sequences from state to 
state to process an instruction 
q The behavior of the machine in a state is completely 

determined by control signals in that state

n The behavior of the entire processor is specified fully by a 
finite state machine

n In a state (clock cycle), control signals control two things:
q How the datapath should process the data
q How to generate the control signals for the (next) clock cycle
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Microprogrammed Control Terminology
n Control signals associated with the current state

q Microinstruction

n Act of transitioning from one state to another
q Determining the next state and the microinstruction for the 

next state
q Microsequencing

n Control store stores control signals for every possible state
q Store for microinstructions for the entire FSM

n Microsequencer determines which set of control signals will 
be used in the next clock cycle (i.e., next state)
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Simple Design 
of the Control Structure

Example
Control
Structure

29

C.4. THE CONTROL STRUCTURE 9

Microinstruction

R

Microsequencer

BEN

x2

Control Store
6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block
diagram

on the LC-3b instruction being executed during the current instruction cycle. This state
carries out the DECODE phase of the instruction cycle. If the IRD control signal in the
microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer
(Figure C.5) will take its source from the six bits formed by 00 concatenated with the
four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-
3b instruction being processed, the next address of the control store will be one of 16
addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =
1010 and 1011. That is, each of the 16 next states is the first state to be carried out
after the instruction has been decoded in state 32. For example, if the instruction being
processed is ADD, the address of the next state is state 1, whose microinstruction is
stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the



What Happens In A Clock Cycle?
n The control signals (microinstruction) for the current state 

control two things:
q Processing in the data path
q Generation of control signals (microinstruction) for the next 

cycle
q See Supplemental Figure 1 (next-next slide)

n Datapath and microsequencer operate concurrently

n Question: why not generate control signals for the current 
cycle in the current cycle?
q This could lengthen the clock cycle
q Why could it lengthen the clock cycle? 
q See Supplemental Figure 2
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Example uProgrammed Control & Datapath
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2APPENDIXC. THEMICROARCHITECTUREOF THELC-3B, BASICMACHINE
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Figure C.1: Microarchitecture of the LC-3b, major components

3. If that LC-3b instruction is a BR, whether the conditions for the branch have
been met (i.e., the state of the relevant condition codes).

4. If a memory operation is in progress, whether it is completing during this cycle.

Figure C.1 identifies the specific information in our implementation of the LC-3b
that corresponds to these five items. They are, respectively:

1. J[5:0], COND[1:0], and IRD—9 bits of control signals provided by the current
clock cycle.

2. inst[15:12], which identifies the opcode, and inst[11:11], which differentiates
JSR from JSRR (i.e., the addressing mode for the target of the subroutine call).

3. BEN to indicate whether or not a BR should be taken.

Microarchitecture of the LC-3b, major components

Read P&P Revised Appendix C 
On website



A Clock Cycle

32



A Bad Clock Cycle!
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A Simple LC-3b Control and Datapath
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3. If that LC-3b instruction is a BR, whether the conditions for the branch have
been met (i.e., the state of the relevant condition codes).

4. If a memory operation is in progress, whether it is completing during this cycle.

Figure C.1 identifies the specific information in our implementation of the LC-3b
that corresponds to these five items. They are, respectively:
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2. inst[15:12], which identifies the opcode, and inst[11:11], which differentiates
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What Determines Next-State Control Signals?
n What is happening in the current clock cycle

q See the 9 control signals coming from “Control” block
n What are these for?

n The instruction that is being executed

q IR[15:11] coming from the Data Path

n Whether the condition of a branch is met, if the instruction 
being processed is a branch

q BEN bit coming from the datapath

n Whether the memory operation is completing in the current 
cycle, if one is in progress

q R bit coming from memory
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A Simple LC-3b Control and Datapath
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The State Machine for Multi-Cycle Processing

n The behavior of the LC-3b uarch is completely determined by
q the 35 control signals and
q additional 7 bits that go into the control logic from the datapath

n 35 control signals completely describe the state of the control 
structure

n We can completely describe the behavior of the LC-3b as a 
state machine, i.e. a directed graph of 
q Nodes (one corresponding to each state)
q Arcs (showing flow from each state to the next state(s))
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An LC-3b State Machine
n Patt and Patel, Revised Appendix C, Figure C.2

n Each state must be uniquely specified 
q Done by means of state variables

n 31 distinct states in this LC-3b state machine
q Encoded with 6 state variables

n Examples
q State 18,19 correspond to the beginning of the instruction 

processing cycle
q Fetch phase: state 18, 19 à state 33 à state 35
q Decode phase: state 32
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C.2. THE STATE MACHINE 5
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The FSM Implements the LC-3b ISA

40

n P&P Appendix A 
(revised):
q https://safari.ethz.ch/digi

taltechnik/spring2018/lib/
exe/fetch.php?media=pp
-appendixa.pdf

https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=pp-appendixa.pdf


LC-3b State Machine: Some Questions
n How many cycles does the fastest instruction take?

n How many cycles does the slowest instruction take?

n Why does the BR take as long as it takes in the FSM? 

n What determines the clock cycle time?
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LC-3b Datapath
n Patt and Patel, Revised Appendix C, Figure C.3

n Single-bus datapath design
q At any point only one value can be “gated” on the bus (i.e., 

can be driving the bus)
q Advantage: Low hardware cost: one bus
q Disadvantage: Reduced concurrency – if instruction needs the 

bus twice for two different things, these need to happen in 
different states

n Control signals (26 of them) determine what happens in the 
datapath in one clock cycle
q Patt and Patel, Revised Appendix C, Table C.1
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C.4. THE CONTROL STRUCTURE 7
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Figure C.3: The LC-3b data path

provide you with the additional flexibility of more states, so we have selected a control
store consisting of 26 locations.
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Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or
store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains
the address to be read and the microinstruction asserts READ, it will take five cycles
before the contents of the specified location in memory are available to be loaded into
MDR. (Note that the microinstruction asserts READ by means of three control signals:
MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses
an instruction from memory during the fetch phase of each instruction cycle. For the
LC-3b to operate correctly, state 33 must execute five times before moving on to state
35. That is, until MDR contains valid data from the memory location specified by the
contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,
the memory has completed the “read,” resulting in valid data in MDR, so the processor
can move on to state 35. What if the microarchitecture did not wait for the memory to
complete the read operation before moving on to state 35? Since the contents of MDR
would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-
ory knows it needs five clock cycles to complete the read, it asserts a ready signal
(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,
100001) if the memory read will not complete in the current clock cycle and state 35
(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure
C.5) to produce the next state address.

Remember the MIPS datapath
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LC-3b Datapath: Some Questions

n How does instruction fetch happen in this datapath 
according to the state machine?

n What is the difference between gating and loading?
q Gating: Enable/disable an input to be connected to the bus

n Combinational: during a clock cycle
q Loading: Enable/disable an input to be written to a register

n Sequential: e.g., at a clock edge (assume at the end of cycle)

n Is this the smallest hardware you can design?
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LC-3b Microprogrammed Control Structure

n Patt and Patel, Appendix C, Figure C.4

n Three components:
q Microinstruction, control store, microsequencer

n Microinstruction: control signals that control the datapath  
(26 of them) and help determine the next state (9 of them)

n Each microinstruction is stored in a unique location in the 
control store (a special memory structure)

n Unique location: address of the state corresponding to the 
microinstruction
q Remember each state corresponds to one microinstruction

n Microsequencer determines the address of the next 
microinstruction (i.e., next state)
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Simple Design 
of the Control Structure
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Figure C.4: The control structure of a microprogrammed implementation, overall block
diagram

on the LC-3b instruction being executed during the current instruction cycle. This state
carries out the DECODE phase of the instruction cycle. If the IRD control signal in the
microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer
(Figure C.5) will take its source from the six bits formed by 00 concatenated with the
four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-
3b instruction being processed, the next address of the control store will be one of 16
addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =
1010 and 1011. That is, each of the 16 next states is the first state to be carried out
after the instruction has been decoded in state 32. For example, if the instruction being
processed is ADD, the address of the next state is state 1, whose microinstruction is
stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the
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Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,
starting at state 10 or state 11, depending on which illegal opcode was being decoded.
In both cases, the sequence of microinstructions would respond to the fact that an
instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not
among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6
shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the
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LC-3b Microsequencer

n Patt and Patel, Appendix C, Figure C.5

n The purpose of the microsequencer is to determine the 
address of the next microinstruction (i.e., next state)
q Next state could be conditional or unconditional

n Next state address depends on 9 control signals (plus 7 
data signals)
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Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,
starting at state 10 or state 11, depending on which illegal opcode was being decoded.
In both cases, the sequence of microinstructions would respond to the fact that an
instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not
among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6
shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the



The Microsequencer: Some Questions
n When is the IRD signal asserted?

n What happens if an illegal instruction is decoded?

n What are condition (COND) bits for?

n How is variable latency memory handled?

n How do you do the state encoding?

q Minimize number of state variables (~ control store size)

q Start with the 16-way branch

q Then determine constraint tables and states dependent on COND
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An Exercise in 
Microprogramming



Handouts
n 7 pages of Microprogrammed LC-3b design

n https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetc
h.php?media=lc3b-figures.pdf
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A Simple LC-3b Control and Datapath
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Figure C.1: Microarchitecture of the LC-3b, major components

3. If that LC-3b instruction is a BR, whether the conditions for the branch have
been met (i.e., the state of the relevant condition codes).

4. If a memory operation is in progress, whether it is completing during this cycle.

Figure C.1 identifies the specific information in our implementation of the LC-3b
that corresponds to these five items. They are, respectively:

1. J[5:0], COND[1:0], and IRD—9 bits of control signals provided by the current
clock cycle.

2. inst[15:12], which identifies the opcode, and inst[11:11], which differentiates
JSR from JSRR (i.e., the addressing mode for the target of the subroutine call).

3. BEN to indicate whether or not a BR should be taken.

Microarchitecture of the LC-3b, major components
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Figure C.3: The LC-3b data path

provide you with the additional flexibility of more states, so we have selected a control
store consisting of 26 locations.



State 18 (010010)
State 33 (100001)
State 35 (100011)
State 32 (100000)
State 6    (000110)
State 25 (011001)
State 27 (011011)

State Machine for LDW
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J[5]

Branch Ready
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Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,
starting at state 10 or state 11, depending on which illegal opcode was being decoded.
In both cases, the sequence of microinstructions would respond to the fact that an
instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not
among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6
shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

Microsequencer

Fill in the microinstructions
for the 7 states for LDW 
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Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or
store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains
the address to be read and the microinstruction asserts READ, it will take five cycles
before the contents of the specified location in memory are available to be loaded into
MDR. (Note that the microinstruction asserts READ by means of three control signals:
MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses
an instruction from memory during the fetch phase of each instruction cycle. For the
LC-3b to operate correctly, state 33 must execute five times before moving on to state
35. That is, until MDR contains valid data from the memory location specified by the
contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,
the memory has completed the “read,” resulting in valid data in MDR, so the processor
can move on to state 35. What if the microarchitecture did not wait for the memory to
complete the read operation before moving on to state 35? Since the contents of MDR
would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-
ory knows it needs five clock cycles to complete the read, it asserts a ready signal
(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,
100001) if the memory read will not complete in the current clock cycle and state 35
(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure
C.5) to produce the next state address.
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Figure C.4: The control structure of a microprogrammed implementation, overall block
diagram

on the LC-3b instruction being executed during the current instruction cycle. This state
carries out the DECODE phase of the instruction cycle. If the IRD control signal in the
microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer
(Figure C.5) will take its source from the six bits formed by 00 concatenated with the
four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-
3b instruction being processed, the next address of the control store will be one of 16
addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =
1010 and 1011. That is, each of the 16 next states is the first state to be carried out
after the instruction has been decoded in state 32. For example, if the instruction being
processed is ADD, the address of the next state is state 1, whose microinstruction is
stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the
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Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,
starting at state 10 or state 11, depending on which illegal opcode was being decoded.
In both cases, the sequence of microinstructions would respond to the fact that an
instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not
among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6
shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the
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Figure C.7: Specification of the control store



End of the Exercise in 
Microprogramming



Variable-Latency Memory
n The ready signal (R) enables memory read/write to execute 

correctly
q Example: transition from state 33 to state 35 is controlled by 

the R bit asserted by memory when memory data is available

n Could we have done this in a single-cycle 
microarchitecture?

n What did we assume about memory and registers in a 
single-cycle microarchitecture?
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The Microsequencer: Advanced Questions
n What happens if the machine is interrupted?

n What if an instruction generates an exception?

n How can you implement a complex instruction using this 
control structure?
q Think REP MOVS instruction in x86

n string copy of N elements starting from address A to address B
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The Power of Abstraction
n The concept of a control store of microinstructions enables 

the hardware designer with a new abstraction: 
microprogramming

n The designer can translate any desired operation to a 
sequence of microinstructions

n All the designer needs to provide is 
q The sequence of microinstructions needed to implement the 

desired operation
q The ability for the control logic to correctly sequence through 

the microinstructions
q Any additional datapath elements and control signals needed 

(no need if the operation can be “translated” into existing 
control signals)
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Let’s Do Some More Microprogramming
n Implement REP MOVS in the LC-3b microarchitecture

n What changes, if any, do you make to the 
q state machine?
q datapath?
q control store?
q microsequencer?

n Show all changes and microinstructions
n Optional HW Assignment
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x86 REP MOVS (String Copy) Instruction

70

REP MOVS (DEST SRC)

How many instructions does this take in MIPS ISA?
How many microinstructions does this take to add to the LC-3b microarchitecture?



Aside: Alignment Correction in Memory
n Unaligned accesses

n LC-3b has byte load and byte store instructions that move 

data not aligned at the word-address boundary

q Convenience to the programmer/compiler

n How does the hardware ensure this works correctly?

q Take a look at state 29 for LDB

q States 24 and 17 for STB

q Additional logic to handle unaligned accesses

n P&P, Revised Appendix C.5
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Aside: Memory Mapped I/O
n Address control logic determines whether the specified 

address of LDW and STW are to memory or I/O devices

n Correspondingly enables memory or I/O devices and sets 
up muxes

n An instance where the final control signals of some 
datapath elements (e.g., MEM.EN or INMUX/2) cannot be 
stored in the control store
q These signals are dependent on memory address

n P&P, Revised Appendix C.6
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Advantages of Microprogrammed Control
n Allows a very simple design to do powerful computation by 

controlling the datapath (using a sequencer)
q High-level ISA translated into microcode (sequence of u-instructions)
q Microcode (u-code) enables a minimal datapath to emulate an ISA
q Microinstructions can be thought of as a user-invisible ISA (u-ISA)

n Enables easy extensibility of the ISA
q Can support a new instruction by changing the microcode
q Can support complex instructions as a sequence of simple 

microinstructions (e.g., REP MOVS, INC [MEM])

n Enables update of machine behavior
q A buggy implementation of an instruction can be fixed by changing the 

microcode in the field
n Easier if datapath provides ability to do the same thing in different ways

73



Update of Machine Behavior
n The ability to update/patch microcode in the field (after a 

processor is shipped) enables 
q Ability to add new instructions without changing the processor!
q Ability to “fix” buggy hardware implementations

n Examples
q IBM 370 Model 145: microcode stored in main memory, can be 

updated after a reboot
q IBM System z: Similar to 370/145.

n Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM 
JR&D, May/Jul 2004.

q B1700 microcode can be updated while the processor is running
n User-microprogrammable machine!
n Wilner, “Microprogramming environment on the Burroughs B1700”, CompCon 1972.
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Multi-Cycle vs. Single-Cycle uArch
n Advantages

n Disadvantages

n For you to fill in

75



Can We Do Better?
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