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Agenda for Today & Next Few Lectures
n Previous lectures

q Single-cycle Microarchitectures
q Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution

n Issues in OoO Execution: Load-Store Handling, …
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Lecture Announcement
n Monday, April 30, 2018
n 16:15-17:15
n CAB G 61
n Apéro after the lecture J

n Prof. Wen-Mei Hwu (University of Illinois at Urbana-Champaign)
n D-INFK Distinguished Colloquium
n Innovative Applications and Technology Pivots –

A Perfect Storm in Computing

n https://www.inf.ethz.ch/news-and-
events/colloquium/event-detail.html?eventFeedId=40447
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Readings for This Week and Next Week
n H&H, Chapter 7.5: Pipelined Processor

n H&H 7.6-7.9 (finish Chapter 7)

n Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995
q More advanced pipelining
q Interrupt and exception handling
q Out-of-order and superscalar execution concepts
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Can We Do Better?
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Can We Do Better?
n What limitations do you see with the multi-cycle design?

n Limited concurrency
q Some hardware resources are idle during different phases of 

instruction processing cycle
q “Fetch” logic is idle when an instruction is being “decoded” or 

“executed”
q Most of the datapath is idle when a memory access is 

happening
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Can We Use the Idle Hardware to Improve Concurrency?

n Goal: More concurrency à Higher instruction throughput 
(i.e., more “work” completed in one cycle)

n Idea: When an instruction is using some resources in its 
processing phase, process other instructions on idle 
resources not needed by that instruction
q E.g., when an instruction is being decoded, fetch the next 

instruction
q E.g., when an instruction is being executed, decode another 

instruction
q E.g., when an instruction is accessing data memory (ld/st), 

execute the next instruction
q E.g., when an instruction is writing its result into the register 

file, access data memory for the next instruction
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Pipelining
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Pipelining: Basic Idea
n More systematically:

q Pipeline the execution of multiple instructions
q Analogy: “Assembly line processing” of instructions

n Idea:
q Divide the instruction processing cycle into distinct “stages” of 

processing
q Ensure there are enough hardware resources to process one 

instruction in each stage
q Process a different instruction in each stage

n Instructions consecutive in program order are processed in 
consecutive stages

n Benefit: Increases instruction processing throughput (1/CPI)
n Downside: Start thinking about this…
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Example: Execution of Four Independent ADDs

n Multi-cycle: 4 cycles per instruction

n Pipelined: 4 cycles per 4 instructions (steady state)
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The Laundry Analogy 

n “place one dirty load of clothes in the washer”
n “when the washer is finished, place the wet load in the dryer”
n “when the dryer is finished, take out the dry load and fold”
n “when folding is finished, ask your roommate (??) to put the clothes 

away”
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- steps to do a load are sequentially dependent
- no dependence between different loads
- different steps do not share resources
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Based	on	original	figure	from	[P&H	CO&D,	COPYRIGHT	2004	Elsevier.	ALL	RIGHTS	RESERVED.]



Pipelining Multiple Loads of Laundry
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- throughput increased by 4
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Pipelining Multiple Loads of Laundry: In Practice
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Pipelining Multiple Loads of Laundry: In Practice
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An Ideal Pipeline
n Goal: Increase throughput with little increase in cost 

(hardware cost, in case of instruction processing)

n Repetition of identical operations
q The same operation is repeated on a large number of different 

inputs (e.g., all laundry loads go through the same steps)
n Repetition of independent operations

q No dependencies between repeated operations
n Uniformly partitionable suboperations

q Processing can be evenly divided into uniform-latency 
suboperations (that do not share resources)

n Fitting examples: automobile assembly line, doing laundry
q What about the instruction processing “cycle”?
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Ideal Pipelining
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More Realistic Pipeline: Throughput
n Nonpipelined	version	with	delay	T	

BW	=	1/(T+S)	where	S	=	latch	delay

n k-stage	pipelined	version
BWk-stage =	1	/	(T/k	+S	)
BWmax =	1	/	(1	gate	delay	+	S	)
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Latch delay reduces throughput
(switching overhead b/w stages)



More Realistic Pipeline: Cost
n Nonpipelined	version	with	combinational	cost	G	

Cost	=	G+L	where	L	=	latch	cost

n k-stage	pipelined	version
Costk-stage =	G	+	Lk	
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Pipelining Instruction Processing
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Remember: The Instruction Processing Cycle

q Fetch
q Decode
q Evaluate Address
q Fetch Operands
q Execute
q Store Result
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1. Instruction fetch (IF)
2. Instruction decode and 

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB) 



Remember the Single-Cycle Uarch
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Dividing Into Stages
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Instruction Pipeline Throughput
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Enabling Pipelined Processing: Pipeline Registers
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Pipelined Operation Example
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All instruction classes must follow the same path
and timing through the pipeline stages. 

Any performance impact?



Pipelined Operation Example

26

Instruction 
memory

Address

4

32

0

Add Add 
result

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

16
Sign 

extend

Write 
register

Write 
data

Read 
data

1

ALU 
result

M 
u 
x

ALU
Zero

ID/EX

Instruction decode
lw $10, 20($1)

Instruction fetch
sub $11, $2, $3

Instruction 
memory

Address

4

32

0

Add Add 
result

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

16
Sign 

extend

Write 
register

Write 
data

Read 
data

1

ALU 
resultM 

u 
x

ALU
Zero

ID/EX

Instruction fetch
lw $10, 20($1)

Address

Data 
memory

Address

Data 
memory

Clock 1

Clock 2

Instruction 
memory

Address

4

32

0

Add Add 
result

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

16
Sign 

extend

Write 
register

Write 
data

Read 
data

1

ALU 
result

M 
u 
x

ALU
Zero

ID/EX

Instruction decode
lw $10, 20($1)

Instruction fetch
sub $11, $2, $3

Instruction 
memory

Address

4

32

0

Add Add 
result

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

16
Sign 

extend

Write 
register

Write 
data

Read 
data

1

ALU 
resultM 

u 
x

ALU
Zero

ID/EX

Instruction fetch
lw $10, 20($1)

Address

Data 
memory

Address

Data 
memory

Clock 1

Clock 2

Instruction 
memory

Address

4

0

Add Add 
result

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

3216
Sign 

extend

Write 
register

Write 
data

Memory
lw $10, 20($1)

Read 
data

1

ALU 
result

M 
u 
x

ALU
Zero

ID/EX

Execution
sub $11, $2, $3

Instruction 
memory

Address

4

0

Add Add 
result

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Write 
register

Write 
data

Read 
data

1

ALU 
result

M 
u 
x

ALU
Zero

ID/EX

Execution
lw $10, 20($1)

Instruction decode
sub $11, $2, $3

3216
Sign 

extend

Address

Data 
memory

Data 
memory

Address

Clock 3

Clock 4

Instruction 
memory

Address

4

0

Add Add 
result

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

3216
Sign 

extend

Write 
register

Write 
data

Memory
lw $10, 20($1)

Read 
data

1

ALU 
result

M 
u 
x

ALU
Zero

ID/EX

Execution
sub $11, $2, $3

Instruction 
memory

Address

4

0

Add Add 
result

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Write 
register

Write 
data

Read 
data

1

ALU 
result

M 
u 
x

ALU
Zero

ID/EX

Execution
lw $10, 20($1)

Instruction decode
sub $11, $2, $3

3216
Sign 

extend

Address

Data 
memory

Data 
memory

Address

Clock 3

Clock 4

Instruction 
memory

Address

4

32

0

Add Add 
result

1

ALU 
result

Zero

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

16
Sign 

extend

M 
u 
x

ALU
Read 
data

Write 
register

Write 
data

lw $10, 20($1)

Instruction 
memory

Address

4

32

0

Add Add 
result

1

ALU 
result

Zero

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

16
Sign 

extend

M 
u 
x

ALU
Read 
data

Write 
register

Write 
data

sub $11, $2, $3

Memory
sub $11, $2, $3

Address

Data 
memory

Address

Data 
memory

Clock 6

Clock 5

Instruction 
memory

Address

4

32

0

Add Add 
result

1

ALU 
result

Zero

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

16
Sign 

extend

M 
u 
x

ALU
Read 
data

Write 
register

Write 
data

lw $10, 20($1)

Instruction 
memory

Address

4

32

0

Add Add 
result

1

ALU 
result

Zero

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

16
Sign 

extend

M 
u 
x

ALU
Read 
data

Write 
register

Write 
data

sub $11, $2, $3

Memory
sub $11, $2, $3

Address

Data 
memory

Address

Data 
memory

Clock 6

Clock 5

Based	on	original	figure	from	[P&H	CO&D,	COPYRIGHT	2004	Elsevier.	ALL	RIGHTS	RESERVED.]

Is	life	always	this	beautiful?



Illustrating Pipeline Operation: Operation View
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Illustrating Pipeline Operation: Resource View
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Control Points in a Pipeline
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Identical set of control points as the single-cycle datapath!!

Based	on	original	figure	from	[P&H	CO&D,	
COPYRIGHT	2004	Elsevier.	ALL	RIGHTS	
RESERVED.]



Control Signals in a Pipeline
n For a given instruction

q same control signals as single-cycle, but
q control signals required at different cycles, depending on stage
Þ Option 1: decode once using the same logic as single-cycle and 

buffer signals until consumed

Þ Option 2: carry relevant “instruction word/field” down the pipeline 
and decode locally within each or in a previous stage

Which one is better?
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Pipelined Control Signals
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Another	Example:	Single-Cycle	and	Pipelined
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Another	Example:	Correct	Pipelined	Datapath

¢ WriteReg	must	arrive	at	the	same	time	as	Result
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Another	Example:	Pipelined	Control
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¢ Same	control	unit	as	single-cycle	processor
Control	delayed	to	proper	pipeline	stage



Remember: An Ideal Pipeline
n Goal: Increase throughput with little increase in cost 

(hardware cost, in case of instruction processing)

n Repetition of identical operations
q The same operation is repeated on a large number of different 

inputs (e.g., all laundry loads go through the same steps)
n Repetition of independent operations

q No dependencies between repeated operations
n Uniformly partitionable suboperations

q Processing an be evenly divided into uniform-latency 
suboperations (that do not share resources)

n Fitting examples: automobile assembly line, doing laundry
q What about the instruction processing “cycle”?
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Instruction Pipeline: Not An Ideal Pipeline
n Identical operations ... NOT! 

Þ different instructions à not all need the same stages
Forcing different instructions to go through the same pipe stages

à external fragmentation (some pipe stages idle for some instructions)

n Uniform suboperations ...  NOT! 
Þ different pipeline stages à not the same latency

Need to force each stage to be controlled by the same clock
à internal fragmentation (some pipe stages are too fast but all take 

the same clock cycle time)

n Independent operations ... NOT!
Þ instructions are not independent of each other

Need to detect and resolve inter-instruction dependencies to ensure 
the pipeline provides correct results
à pipeline stalls (pipeline is not always moving)
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Issues in Pipeline Design
n Balancing work in pipeline stages

q How many stages and what is done in each stage

n Keeping the pipeline correct, moving, and full in the 
presence of events that disrupt pipeline flow
q Handling dependences 

n Data
n Control

q Handling resource contention
q Handling long-latency (multi-cycle) operations

n Handling exceptions, interrupts

n Advanced: Improving pipeline throughput
q Minimizing stalls
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Causes of Pipeline Stalls
n Stall: A condition when the pipeline stops moving

n Resource contention

n Dependences (between instructions)
q Data
q Control

n Long-latency (multi-cycle) operations
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Dependences and Their Types
n Also called “dependency” or less desirably “hazard”

n Dependences dictate ordering requirements between 
instructions

n Two types
q Data dependence
q Control dependence

n Resource contention is sometimes called resource 
dependence
q However, this is not fundamental to (dictated by) program 

semantics, so we will treat it separately
39



Handling Resource Contention
n Happens when instructions in two pipeline stages need the 

same resource

n Solution 1: Eliminate the cause of contention
q Duplicate the resource or increase its throughput

n E.g., use separate instruction and data memories (caches)
n E.g., use multiple ports for memory structures

n Solution 2: Detect the resource contention and stall one of 
the contending stages
q Which stage do you stall?
q Example: What if you had a single read and write port for the 

register file?

40



Carnegie Mellon

41

Example	Resource	Dependence:	RegFile

¢ The	register	file	can	be	read	and	written	in	the	same	cycle:	
§ write	takes	place	during	the	1st	half	of	the	cycle
§ read	takes	place	during	the	2nd	half	of	the	cycle	=>	no	problem!!!
§ However	operations	that	involve	register	file	have	only	half	a	clock	

cycle to	complete	the	operation!!
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Data Dependences
n Types of data dependences

q Flow dependence (true data dependence – read after write)
q Output dependence (write after write)
q Anti dependence (write after read)

n Which ones cause stalls in a pipelined machine?
q For all of them, we need to ensure semantics of the program 

is correct
q Flow dependences always need to be obeyed because they 

constitute true dependence on a value
q Anti and output dependences exist due to limited number of 

architectural registers 
n They are dependence on a name, not a value
n We will later see what we can do about them
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Data Dependence Types
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Flow	dependence
r3 ¬ r1 op		r2 Read-after-Write
r5 ¬ r3 op		r4 (RAW)

Anti	dependence
r3 ¬ r1 op		r2 Write-after-Read
r1 ¬ r4 op		r5 (WAR)

Output-dependence
r3 ¬ r1 op		r2 Write-after-Write
r5 ¬ r3 op		r4 (WAW)
r3 ¬ r6 op		r7



Pipelined Operation Example
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Based	on	original	figure	from	[P&H	CO&D,	COPYRIGHT	2004	Elsevier.	ALL	RIGHTS	RESERVED.]

What	if	the	SUB	were	dependent	on	LW?
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Reading for Next Few Lectures
n H&H, Chapter 7.5-7.9

n Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995
q More advanced pipelining
q Interrupt and exception handling
q Out-of-order and superscalar execution concepts
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How to Handle Data Dependences
n Anti and output dependences are easier to handle 

q write to the destination in one stage and in program order

n Flow dependences are more interesting

n Five fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
47



Interlocking
n Detection of dependence between instructions in a 

pipelined processor to guarantee correct execution

n Software based interlocking
vs. 

n Hardware based interlocking

n MIPS acronym?
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Approaches to Dependence Detection (I)
n Scoreboarding

q Each register in register file has a Valid bit associated with it
q An instruction that is writing to the register resets the Valid bit
q An instruction in Decode stage checks if all its source and 

destination registers are Valid
n Yes: No need to stall… No dependence
n No: Stall the instruction

n Advantage:
q Simple. 1 bit per register

n Disadvantage:
q Need to stall for all types of dependences, not only flow dep.
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Not Stalling on Anti and Output Dependences

n What changes would you make to the scoreboard to enable 
this?
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Approaches to Dependence Detection (II)
n Combinational dependence check logic 

q Special logic that checks if any instruction in later stages is 
supposed to write to any source register of the instruction that 
is being decoded

q Yes: stall the instruction/pipeline
q No: no need to stall… no flow dependence

n Advantage:
q No need to stall on anti and output dependences

n Disadvantage:
q Logic is more complex than a scoreboard
q Logic becomes more complex as we make the pipeline deeper 

and wider (flash-forward: think superscalar execution)
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Once You Detect the Dependence in Hardware

n What do you do afterwards?

n Observation: Dependence between two instructions is 
detected before the communicated data value becomes 
available

n Option 1: Stall the dependent instruction right away
n Option 2: Stall the dependent instruction only when 

necessary à data forwarding/bypassing
n Option 3: …
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Data Forwarding/Bypassing
n Problem: A consumer (dependent) instruction has to wait in 

decode stage until the producer instruction writes its value 
in the register file

n Goal: We do not want to stall the pipeline unnecessarily

n Observation: The data value needed by the consumer 
instruction can be supplied directly from a later stage in the 
pipeline (instead of only from the register file)

n Idea: Add additional dependence check logic and data 
forwarding paths (buses) to supply the producer’s value to 
the consumer right after the value is available

n Benefit: Consumer can move in the pipeline until the point 
the value can be supplied à less stalling
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A Special Case of Data Dependence
n Control dependence

q Data dependence on the Instruction Pointer / Program Counter
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Control Dependence
n Question: What should the fetch PC be in the next cycle?
n Answer: The address of the next instruction

q All instructions are control dependent on previous ones. Why?

n If the fetched instruction is a non-control-flow instruction:
q Next Fetch PC is the address of the next-sequential instruction
q Easy to determine if we know the size of the fetched instruction

n If the instruction that is fetched is a control-flow instruction:
q How do we determine the next Fetch PC?

n In fact, how do we know whether or not the fetched 
instruction is a control-flow instruction?
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Data Dependence Handling: 
Concepts and Implementation
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Remember: Data Dependence Types
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Flow	dependence
r3 ¬ r1 op		r2 Read-after-Write
r5 ¬ r3 op		r4 (RAW)

Anti	dependence
r3 ¬ r1 op		r2 Write-after-Read
r1 ¬ r4 op		r5 (WAR)

Output-dependence
r3 ¬ r1 op		r2 Write-after-Write
r5 ¬ r3 op		r4 (WAW)
r3 ¬ r6 op		r7



RAW Dependence Handling
n Which one of the following flow dependences lead to 

conflicts in the 5-stage pipeline?
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MEM

WBIF ID

IF

EX

ID

MEM

EX WB

addi ra	r- -

addi		 r- ra	-

MEMIF ID EX

IF ID EX

IF ID

IF

addi		 r- ra	-

addi		 r- ra	-

addi		 r- ra	-

addi		 r- ra	-

?



Pipeline Stall: Resolving Data Dependence
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IF

WB

IF ID ALU MEM
IF ID ALU MEM

IF ID ALU MEM
IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM
IF ID ALU

IF ID

Insti
Instj
Instk
Instl

WB
WB

i:	rx	¬ _
j:	_	¬ rx dist(i,j)=1

i
j

Insth

WB
MEM
ALU

i:	rx	¬ _
bubble
j:	_	¬ rx dist(i,j)=2

WB

IF ID ALU MEM
IF ID ALU MEM

IF ID ALU MEM
IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti
Instj
Instk
Instl

WB
WBi

j

Insth

ID
IF

IF

IF ID ALU
IF ID

i:	rx	¬ _
bubble
bubble
j:	_	¬ rx dist(i,j)=3

IF

IF ID ALU MEM
IF ID ALU MEM

IF ID ALU
IF ID

t0 t1 t2 t3 t4 t5

IF

MEM
ALU
ID

Insti
Instj
Instk
Instl

WB
WBi

j

Insth

ID
IF

ID
IF

i:	rx	¬ _
bubble
bubble
bubble
j:	_	¬ rx dist(i,j)=4

IF

IF ID ALU MEM
IF ID ALU MEM

IF ID
IF

t0 t1 t2 t3 t4 t5

ALU
ID

Insti
Instj
Instk
Instl

WB
WBi

j

Insth

ID
IF

ID
IF

ID
IF

Stall = make the dependent instruction 
wait until its source data value is available

1. stop all up-stream stages
2. drain all down-stream stages



How to Implement Stalling

n Stall
q disable PC and IF/ID latching; ensure stalled instruction stays in its stage
q Insert “invalid” instructions/nops into the stage following the stalled one 

(called “bubbles”)
60

PC

Instruction 
memory

In
st

ru
ct

io
n

Add

Instruction 
[20– 16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction 
[15– 0]

0

0

M 
u 
x

0

1

Add Add 
result

Registers
Write 
register

Write 
data

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Sign 
extend

M 
u 
x

1

ALU 
result

Zero

Write 
data

Read 
data

M 
u 
x

1

ALU 
control

Shift 
left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction 
[15– 11]

6

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M 
u 
x

0

1

M
em

W
rit

e

Address
Data 

memory

Address

Based	on	original	figure	from	[P&H	CO&D,	COPYRIGHT	2004	Elsevier.	ALL	RIGHTS	RESERVED.]
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RAW	Data	Dependence	Example

¢ One	instruction	writes	a	register	($s0)	and	next	instructions	
read	this	register	=>	read	after	write	(RAW)	dependence.	
§ add writes	into	$s0	in	the	first	half	of	cycle	5
§ and reads	$s0	on	cycle	3,	obtaining	the	wrong	value
§ or reads	$s0	on	cycle	4,	again	obtaining	the	wrong	value.
§ sub reads	$s0	in	the	second	half	of	cycle	5,	obtaining	the	correct	value
§ subsequent	instructions	read	the	correct	value	of	$s0

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

Only	if	the	pipeline	handles	data	dependences	wrong!
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Compile-Time	Detection	and	Elimination

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

nop

nop

RF RFDMnopIM

RF RFDMnopIM

9 10

¢ Insert	enough	NOPs	for	the	required	result	to	be	ready

¢ Or	(if	you	can)	move	independent	useful	instructions	up
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Data	Forwarding
¢ Also	called	Data	Bypassing

¢ We	have	already	seen	the	basic	idea	before

¢ Forward	the	result	value	to	the	dependent	instruction								
as	soon	as	the	value	is	available

¢ Remember	dataflow?
§ Data	value	supplied	to	dependent	instruction	as	soon	as	it	is	available
§ Instruction	executes	when	all	its	operands	are	available

¢ Data	forwarding	brings	a	pipeline	closer	to	data	flow	execution	
principles
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Data	Forwarding

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub
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Data	Forwarding

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File
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1
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1
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1
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1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE
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<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW
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31:26
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MemtoRegD
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ALUSrcD

RegWriteD

Op

Funct

Control
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CLK CLK CLK

CLK CLK

WriteRegW4:0
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AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

Hazard Unit

PCPlus4E

BranchE BranchM

ZeroM
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Data	Forwarding

¢ Forward	to	Execute	stage	from	either:
§ Memory	stage	or
§ Writeback	stage

¢ When	should	we	forward	from	one	either	Memory	or	
Writeback	stage?
§ If	that	stage	will	write	a	destination	register	and	the	destination	register	

matches	the	source	register.	
§ If	both	the	Memory	and	Writeback	stages	contain	matching	destination	

registers,	the	Memory	stage	should	have	priority,	because	it	contains	the	
more	recently	executed	instruction.
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Data	Forwarding

¢ Forward	to	Execute	stage	from	either:
§ Memory	stage	or
§ Writeback	stage

¢ Forwarding	logic	for	ForwardAE	(pseudo	code):

if ((rsE != 0) AND (rsE == WriteRegM) AND RegWriteM) then

ForwardAE = 10  # forward from Memory stage

else if ((rsE != 0) AND (rsE == WriteRegW) AND RegWriteW) then

ForwardAE = 01  # forward from Writeback stage

else

ForwardAE = 00  # no forwarding

¢ Forwarding	logic	for	ForwardBE same,	but	replace	rsE with	rtE
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Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

Trouble!

¢ Forwarding	is	sufficient	to	resolve	RAW	data	dependences

¢ but	…

¢ There	are	cases	when	forwarding	is	not	possible	due	to	
pipeline	design	and	instruction	latencies
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Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

Trouble!

The	lw instruction	does	not	finish	reading	data	until	the	end	of	the	
Memory	stage,	so	its	result	cannot	be	forwarded	to	the	Execute	stage	of	
the	next	instruction.	
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Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

Trouble!

The	lw instruction	has	a	two-cycle	latency,	therefore	a	dependent	
instruction	cannot	use	its	result	until	two	cycles	later.	

The	lw instruction	receives	data	from	memory	at	the	end	of	cycle	4.	But	
the	and instruction	needs	that	data	as	a	source	operand	at	the	beginning	
of	cycle	4. There	is	no	way	to	supply	the	data	with	forwarding.
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Stalling

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

9

RF $s1

$s0

IM or

Stall
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Stalling	Hardware

¢ Stalls	are	supported	by:
§ adding	enable	inputs	(EN)	to	the	Fetch	and	Decode	pipeline	

registers	
§ and	a	synchronous	reset/clear	(CLR)	input	to	the	Execute	pipeline	

register	
§ or	an	INV	bit	associated	with	each	pipeline	register

¢ When	a	lw	stall	occurs
§ StallD	and	StallF	are	asserted	to	force	the	Decode	and	Fetch	stage	

pipeline	registers	to	hold	their	old	values.	
§ FlushE	is	also	asserted	to	clear	the	contents	of	the	Execute	stage	

pipeline	register,	introducing	a	bubble



Design of Digital Circuits
Lecture 14: Pipelining

Prof. Onur Mutlu
ETH Zurich
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Backup Slides
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How to Handle Data Dependences
n Anti and output dependences are easier to handle 

q write to the destination in one stage and in program order

n Flow dependences are more interesting

n Five fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
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Fine-Grained Multithreading
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Fine-Grained Multithreading
n Idea: Hardware has multiple thread contexts (PC+registers). 

Each cycle, fetch engine fetches from a different thread.
q By the time the fetched branch/instruction resolves, no 

instruction is fetched from the same thread
q Branch/instruction resolution latency overlapped with execution 

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread 

-- Single thread performance suffers 
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough 

threads to cover the whole pipeline
77



Fine-Grained Multithreading (II)
n Idea: Switch to another thread every cycle such that no two 

instructions from a thread are in the pipeline concurrently

n Tolerates the control and data dependency latencies by 
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple 
threads

n Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

n Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

78



Fine-Grained Multithreading: History
n CDC 6600’s peripheral processing unit is fine-grained 

multithreaded
q Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
q Processor executes a different I/O thread every cycle
q An operation from the same thread is executed every 10 cycles

n Denelcor HEP (Heterogeneous Element Processor)
q Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
q 120 threads/processor 
q available queue vs. unavailable (waiting) queue for threads 
q each thread can have only 1 instruction in the processor pipeline; each thread 

independent 
q to each thread, processor looks like a non-pipelined machine
q system throughput vs. single thread performance tradeoff 
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Fine-Grained Multithreading in HEP
n Cycle time: 100ns

n 8 stages à 800 ns to 
complete an 
instruction
q assuming no memory 

access

n No control and data 
dependency checking
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Multithreaded Pipeline Example

81Slide credit: Joel Emer



Sun Niagara Multithreaded Pipeline
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Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.



Fine-grained Multithreading
n Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic
+ Otherwise-bubble cycles used for executing useful instructions from 

different threads
+ Improved system throughput, latency tolerance, utilization

n Disadvantages
- Extra hardware complexity: multiple hardware contexts (PCs, register 

files, …), thread selection logic
- Reduced single thread performance (one instruction fetched every N 

cycles from the same thread) 
- Resource contention between threads in caches and memory
- Some dependency checking logic between threads remains (load/store)
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Modern GPUs Are FGMT Machines
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NVIDIA GeForce GTX 285 “core”
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…

= instruction stream decode= data-parallel (SIMD) func. unit, 
control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 
for thread contexts 
(registers)

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…
64 KB of storage 
for thread contexts 
(registers)

n Groups of 32 threads share instruction stream (each group is 
a Warp): they execute the same instruction on different data

n Up to 32 warps are interleaved in an FGMT manner
n Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian



End of
Fine-Grained Multithreading
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