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Agenda for Today & Next Few Lectures
n Previous lectures

q Single-cycle Microarchitectures
q Multi-cycle and Microprogrammed Microarchitectures

n Yesterday
q Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution

n Issues in OoO Execution: Load-Store Handling, …
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Lecture Announcement
n Monday, April 30, 2018
n 16:15-17:15
n CAB G 61
n Apéro after the lecture J

n Prof. Wen-Mei Hwu (University of Illinois at Urbana-Champaign)
n D-INFK Distinguished Colloquium
n Innovative Applications and Technology Pivots –

A Perfect Storm in Computing

n https://www.inf.ethz.ch/news-and-
events/colloquium/event-detail.html?eventFeedId=40447
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Readings for This Week and Next Week
n H&H, Chapter 7.5: Pipelined Processor

n H&H 7.6-7.9 (finish Chapter 7)

n Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995
q More advanced pipelining
q Interrupt and exception handling
q Out-of-order and superscalar execution concepts
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Review: How to Handle Data Dependences
n Anti and output dependences are easier to handle 

q write to the destination in one stage and in program order

n Flow dependences are more interesting

n Six fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Detect and move it out of the way for independent instructions
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
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Stalling	Hardware

¢ Stalls	are	supported	by:
§ adding	enable	inputs	(EN)	to	the	Fetch	and	Decode	pipeline	

registers	
§ and	a	synchronous	reset/clear	(CLR)	input	to	the	Execute	pipeline	

register	
§ or	an	INV	bit	associated	with	each	pipeline	register

¢ When	a	lw	stall	occurs
§ StallD	and	StallF	are	asserted	to	force	the	Decode	and	Fetch	stage	

pipeline	registers	to	hold	their	old	values.	
§ FlushE	is	also	asserted	to	clear	the	contents	of	the	Execute	stage	

pipeline	register,	introducing	a	bubble
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Stalling	Hardware
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Control	Dependences
¢ Special	case	of	data	dependence:	dependence	on	PC

¢ beq:	
§ branch	is	not	determined	until	the	fourth	stage	of	the	pipeline
§ Instructions	after	the	branch	are	fetched	before	branch	is	resolved

§ Always	predict	that	the	next	sequential	instruction	is	fetched
§ Called	“Always	not	taken”	prediction

§ These	instructions	must	be	flushed	if	the	branch	is	taken

¢ Branch	misprediction	penalty
§ number	of	instructions	flushed	when	branch	is	taken
§ May	be	reduced	by	determining	branch	earlier
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Control	Dependence:	Original	Pipeline

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Hazard Unit

Fl
us
hE

PCPlus4E

BranchE BranchM

ZeroM

EN

EN

C
LR



Carnegie Mellon

11

Control	Dependence
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Early	Branch	Resolution
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Early	Branch	Resolution
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Early	Branch	Resolution:	Good	Idea?
¢ Advantages

§ Reduced	branch	misprediction penalty	
à Reduced	CPI	(cycles	per	instruction)

¢ Disadvantages
§ Potential	increase	in	clock	cycle	time?

à Higher	Tclock?
§ Additional	hardware	cost

à Specialized	and	likely	not	used	by	other	instructions
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Data	Forwarding	for	Early	Branch	Resolution
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Data	forwarding	for	early	branch	resolution.
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Control	Forwarding	and	Stalling	Hardware
// Forwarding logic:
assign ForwardAD = (rsD != 0) & (rsD == WriteRegM) & RegWriteM;
assign ForwardBD = (rtD != 0) & (rtD == WriteRegM) & RegWriteM;

//Stalling logic:
assign lwstall = ((rsD == rtE) | (rtD == rtE)) & MemtoRegE;

assign branchstall = (BranchD & RegWriteE &
(WriteRegE == rsD | WriteRegE == rtD))
|
(BranchD & MemtoRegM &
(WriteRegM == rsD | WriteRegM == rtD));

// Stall signals;
assign StallF = lwstall | branchstall;
assign StallD = lwstall | branchstall; 
assign FLushE = lwstall | branchstall;
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Doing	Better:	Smarter	Branch	Prediction
¢ Guess	whether	branch	will	be	taken

§ Backward	branches	are	usually	taken	(loops)
§ Consider	history	of	whether	branch	was	previously	taken	to	

improve	the	guess

¢ Good	prediction	reduces	the	fraction	of	branches	
requiring	a	flush	
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Pipelined	Performance	Example
¢ SPECINT2006	benchmark:	

§ 25%	loads
§ 10%	stores	
§ 11%	branches
§ 2%	jumps
§ 52%	R-type

¢ Suppose:
§ 40%	of	loads	used	by	next	instruction
§ 25%	of	branches	mispredicted

¢ All	jumps	flush	next	instruction

¢ What	is	the	average	CPI?
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Pipelined	Performance	Example	Solution
¢ Load/Branch	CPI	=	1	when	no	stall/flush,	2	when	stall/flush.

Thus:
§ CPIlw =	1(0.6)	+	2(0.4)	=	1.4 Average	CPI	for	load
§ CPIbeq =	1(0.75)	+	2(0.25)	=	1.25 Average	CPI	for	branch

¢ And	
§ Average	CPI					=
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Pipelined	Performance	Example	Solution
¢ Load/Branch	CPI	=	1	when	no	stall/flush,	2	when	stall/flush.

Thus:
§ CPIlw =	1(0.6)	+	2(0.4)	=	1.4 Average	CPI	for	load
§ CPIbeq =	1(0.75)	+	2(0.25)	=	1.25 Average	CPI	for	branch

¢ And	
§ Average	CPI =	 (0.25)(1.4)	+ load

(0.1)(1)	+ store
(0.11)(1.25)	+ beq
(0.02)(2)	+ jump
(0.52)(1) r-type

=	 1.15
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Pipelined	Performance
¢ There	are	5	stages,	and	5	different	timing	paths:

Tc =	max	{
tpcq +	tmem +	tsetup fetch
2(tRFread +	tmux +	teq +	tAND +	tmux +	tsetup ) decode
tpcq +	tmux +	tmux +	tALU +	tsetup execute
tpcq +	tmemwrite +	tsetup memory
2(tpcq +	tmux +	tRFwrite)	 writeback
}

¢ The	operation	speed	depends on	the	slowest	operation

¢ Decode	and	Writeback	use	register	file	and	have	only	half	a
clock	cycle	to	complete,	that	is	why	there	is	a	2	in	front	of	them
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Pipelined	Performance	Example
Element Parameter Delay	(ps)

Register	clock-to-Q tpcq_PC 30

Register	setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory	read tmem 250

Register	file	read tRFread 150

Register	file	setup tRFsetup 20

Equality	comparator teq 40

AND	gate tAND 15

Memory	write Tmemwrite 220

Register	file	write tRFwrite 100

Tc =	2(tRFread +	tmux +	teq +	tAND +	tmux +	tsetup )
=	2[150	+	25	+	40	+	15	+	25	+	20]	ps
=	550	ps
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Pipelined	Performance	Example
¢ For	a	program	with	100	billion	instructions	executing	on	a	

pipelined	MIPS	processor:
§ CPI	=	1.15
§ Tc =	550	ps

¢ Execution	Time =	(#	instructions)	× CPI	× Tc
=	(100	× 109)(1.15)(550		× 10-12)
=	63	seconds
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Performance	Summary	for	MIPS	arch.

Processor
Execution	Time
(seconds)

Speedup
(single-cycle	is	baseline)

Single-cycle 95 1
Multicycle 133 0.71
Pipelined 63 1.51

¢ Fastest	of	the	three	MIPS	architectures	is	Pipelined.

¢ However,	even	though	we	have	5	fold	pipelining,	it	is	not	
5	times	faster	than	single	cycle.



Questions to Ponder
n What is the role of the hardware vs. the software in data 

dependence handling?
q Software based interlocking 
q Hardware based interlocking
q Who inserts/manages the pipeline bubbles?
q Who finds the independent instructions to fill “empty” pipeline 

slots?
q What are the advantages/disadvantages of each?

n Think of the performance equation as well
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Questions to Ponder
n What is the role of the hardware vs. the software in the 

order in which instructions are executed in the pipeline?
q Software based instruction scheduling à static scheduling
q Hardware based instruction scheduling à dynamic scheduling

n How does each impact different metrics?
q Performance (and parts of the performance equation)
q Complexity
q Power consumption
q Reliability
q …
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More on Software vs. Hardware
n Software based scheduling of instructions à static scheduling

q Compiler orders the instructions, hardware executes them in 
that order

q Contrast this with dynamic scheduling (in which hardware can 
execute instructions out of the compiler-specified order)

q How does the compiler know the latency of each instruction?

n What information does the compiler not know that makes 
static scheduling difficult?
q Answer: Anything that is determined at run time

n Variable-length operation latency, memory addr, branch direction 

n How can the compiler alleviate this (i.e., estimate the 
unknown)?
q Answer: Profiling

27



Pipelining and Precise Exceptions: 
Preserving Sequential Semantics



Multi-Cycle Execution
n Not all instructions take the same amount of time for 

“execution”

n Idea: Have multiple different functional units that take 
different number of cycles
q Can be pipelined or not pipelined
q Can let independent instructions start execution on a different 

functional unit before a previous long-latency instruction 
finishes execution
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Issues in Pipelining: Multi-Cycle Execute
n Instructions can take different number of cycles in EXECUTE 

stage
q Integer ADD versus FP MULtiply

q What is wrong with this picture in a Von Neumann architecture?
n Sequential semantics of the ISA NOT preserved!
n What if FMUL incurs an exception?
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Exceptions vs. Interrupts
n Cause

q Exceptions: internal to the running thread
q Interrupts: external to the running thread

n When to Handle
q Exceptions: when detected (and known to be non-speculative)
q Interrupts: when convenient

n Except for very high priority ones
q Power failure
q Machine check (error)

n Priority: process (exception), depends (interrupt)

n Handling Context: process (exception), system (interrupt)
31



Precise Exceptions/Interrupts
n The architectural state should be consistent (precise)    

when the exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired. 

Retire = commit = finish execution and update arch. state
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Checking for and Handling Exceptions in Pipelining

n When the oldest instruction ready-to-be-retired is detected 
to have caused an exception, the control logic

q Ensures architectural state is precise (register file, PC, memory)

q Flushes all younger instructions in the pipeline

q Saves PC and registers (as specified by the ISA)

q Redirects the fetch engine to the appropriate exception 
handling routine
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Why Do We Want Precise Exceptions?
n Semantics of the von Neumann model ISA specifies it

q Remember von Neumann vs. Dataflow

n Aids software debugging

n Enables (easy) recovery from exceptions

n Enables (easily) restartable processes

n Enables traps into software (e.g., software implemented 
opcodes)

34



Ensuring Precise Exceptions in Pipelining
n Idea: Make each operation take the same amount of time

n Downside
q Worst-case instruction latency determines all instructions’ latency
q What about memory operations?
q Each functional unit takes worst-case number of cycles?
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Solutions
n Reorder buffer

n History buffer

n Future register file

n Checkpointing

n Suggested reading
q Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 

Processors,” IEEE Trans on Computers 1988 and ISCA 1985.
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Solution I: Reorder Buffer (ROB)
n Idea: Complete instructions out-of-order, but reorder them 

before making results visible to architectural state
n When instruction is decoded it reserves the next-sequential 

entry in the ROB
n When instruction completes, it writes result into ROB entry
n When instruction oldest in ROB and it has completed 

without exceptions, its result moved to reg. file or memory
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What’s in a ROB Entry?

n Everything required to:
q correctly reorder instructions back into the program order
q update the architectural state with the instruction’s result(s), if 

instruction can retire without any issues
q handle an exception/interrupt precisely, if an 

exception/interrupt needs to be handled before retiring the 
instruction

n Need valid bits to keep track of readiness of the result(s) 
and find out if the instruction has completed execution

38
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Reorder Buffer: Independent Operations
n Result first written to ROB on instruction completion
n Result written to register file at commit time

n What if a later operation needs a value in the reorder 
buffer?
q Read reorder buffer in parallel with the register file. How?
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Reorder Buffer: How to Access?
n A register value can be in the register file, reorder buffer, 

(or bypass/forwarding paths)
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Simplifying Reorder Buffer Access
n Idea: Use indirection

n Access register file first (check if the register is valid)
q If register not valid, register file stores the ID of the reorder 

buffer entry that contains (or will contain) the value of the 
register

q Mapping of the register to a ROB entry: Register file maps the 
register to a reorder buffer entry if there is an in-flight 
instruction writing to the register

n Access reorder buffer next

n Now, reorder buffer does not need to be content addressable
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Reorder Buffer in Intel Pentium III

42

Boggs et al., “The 
Microarchitecture of the 
Pentium 4 Processor,” Intel 
Technology Journal, 2001.



Important: Register Renaming with a Reorder Buffer

n Output and anti dependencies are not true dependencies
q WHY? The same register refers to values that have nothing to 

do with each other
q They exist due to lack of register ID’s (i.e. names) in 

the ISA
n The register ID is renamed to the reorder buffer entry that 

will hold the register’s value
q Register ID à ROB entry ID
q Architectural register ID à Physical register ID
q After renaming, ROB entry ID used to refer to the register

n This eliminates anti- and output- dependencies
q Gives the illusion that there are a large number of registers
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Renaming Example
n Assume

q Register file has a pointer to the reorder buffer entry that 
contains or will contain the value, if the register is not valid

q Reorder buffer works as described before

n Where is the latest definition of R3 for each instruction 
below in sequential order?

LD R0(0) à R3
LD R3, R1 à R10
MUL R1, R2 à R3
MUL R3, R4 à R11
ADD R5, R6 à R3
ADD R7, R8 à R12 
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In-Order Pipeline with Reorder Buffer
n Decode (D): Access regfile/ROB, allocate entry in ROB, check if 

instruction can execute, if so dispatch instruction
n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer
n Retirement/Commit (W): Check for exceptions; if none, write result to 

architectural register file or memory; else, flush pipeline and start from 
exception handler

n In-order dispatch/execution, out-of-order completion, in-order retirement 
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Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that 

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing
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