Design of Digital Circuits Lecture 15: Pipelining Issues

Prof. Onur Mutlu ETH Zurich

Spring 2018

20 April 2018

Agenda for Today & Next Few Lectures

- Previous lectures
 - Single-cycle Microarchitectures
 - Multi-cycle and Microprogrammed Microarchitectures
- Yesterday
 - Pipelining
- Issues in Pipelining: Control & Data Dependence Handling,
 State Maintenance and Recovery, ...
- Out-of-Order Execution
- Issues in OoO Execution: Load-Store Handling, ...

Lecture Announcement

- Monday, April 30, 2018
- 16:15-17:15
- CAB G 61
- Apéro after the lecture ©

- Prof. Wen-Mei Hwu (University of Illinois at Urbana-Champaign)
- D-INFK Distinguished Colloquium
- Innovative Applications and Technology Pivots –
 A Perfect Storm in Computing
- https://www.inf.ethz.ch/news-andevents/colloquium/event-detail.html?eventFeedId=40447

Readings for This Week and Next Week

- H&H, Chapter 7.5: Pipelined Processor
- H&H 7.6-7.9 (finish Chapter 7)
- Smith and Sohi, "The Microarchitecture of Superscalar Processors," Proceedings of the IEEE, 1995
 - More advanced pipelining
 - Interrupt and exception handling
 - Out-of-order and superscalar execution concepts

Review: How to Handle Data Dependences

- Anti and output dependences are easier to handle
 - write to the destination in one stage and in program order
- Flow dependences are more interesting
- Six fundamental ways of handling flow dependences
 - Detect and wait until value is available in register file
 - Detect and forward/bypass data to dependent instruction
 - Detect and eliminate the dependence at the software level
 - No reed for the hardware to detect dependence
 - Detect and move it out of the way for independent instructions
 - Predict the needed value(s), execute "speculatively", and verify
 - Do something else (fine-grained multithreading)
 - No need to detect

Stalling

Stalling Hardware

Stalls are supported by:

- adding enable inputs (EN) to the Fetch and Decode pipeline registers
- and a synchronous reset/clear (CLR) input to the Execute pipeline register
 - or an INV bit associated with each pipeline register

When a lw stall occurs

- StallD and StallF are asserted to force the Decode and Fetch stage pipeline registers to hold their old values.
- FlushE is also asserted to clear the contents of the Execute stage pipeline register, introducing a bubble

Stalling Hardware

Control Dependences

Special case of data dependence: dependence on PC

beq:

- branch is not determined until the fourth stage of the pipeline
- Instructions after the branch are fetched before branch is resolved
 - Always predict that the next sequential instruction is fetched
 - Called "Always not taken" prediction
- These instructions must be flushed if the branch is taken

Branch misprediction penalty

- number of instructions flushed when branch is taken
- May be reduced by determining branch earlier

Control Dependence: Original Pipeline

Control Dependence

Early Branch Resolution

Early Branch Resolution

Early Branch Resolution: Good Idea?

Advantages

- Reduced branch misprediction penalty
 - → Reduced CPI (cycles per instruction)

Disadvantages

- Potential increase in clock cycle time?
 - → Higher Tclock?
- Additional hardware cost
 - → Specialized and likely not used by other instructions

Data Forwarding for Early Branch Resolution

Control Forwarding and Stalling Hardware

```
// Forwarding logic:
assign ForwardAD = (rsD != 0) & (rsD == WriteRegM) & RegWriteM;
assign ForwardBD = (rtD != 0) & (rtD == WriteRegM) & RegWriteM;
//Stalling logic:
assign lwstall = ((rsD == rtE) | (rtD == rtE)) & MemtoRegE;
assign branchstall = (BranchD & RegWriteE &
                     (WriteRegE == rsD | WriteRegE == rtD))
                     (BranchD & MemtoRegM &
                     (WriteRegM == rsD | WriteRegM == rtD));
// Stall signals;
assign StallF = lwstall | branchstall;
assign StallD = lwstall | branchstall;
assign FLushE = lwstall | branchstall;
```

Doing Better: Smarter Branch Prediction

- Guess whether branch will be taken
 - Backward branches are usually taken (loops)
 - Consider history of whether branch was previously taken to improve the guess
- Good prediction reduces the fraction of branches requiring a flush

Pipelined Performance Example

SPECINT2006 benchmark:

- 25% loads
- 10% stores
- 11% branches
- 2% jumps
- 52% R-type

Suppose:

- 40% of loads used by next instruction
- 25% of branches mispredicted
- All jumps flush next instruction
- What is the average CPI?

Pipelined Performance Example Solution

- Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush. Thus:
 - $CPI_{lw} = 1(0.6) + 2(0.4) = 1.4$
 - \blacksquare CPI_{beq} = 1(0.75) + 2(0.25) = 1.25

Average CPI for load

Average CPI for branch

- And
 - Average CPI =

Pipelined Performance Example Solution

- Load/Branch CPI = 1 when no stall/flush, 2 when stall/flush. Thus:
 - $CPI_{lw} = 1(0.6) + 2(0.4) = 1.4$
 - $CPI_{beq} = 1(0.75) + 2(0.25) = 1.25$

Average CPI for load

Average CPI for branch

And

load store beq jump r-type

= 1.15

Pipelined Performance

There are 5 stages, and 5 different timing paths:

```
\begin{aligned} \textbf{T_c} &= \text{max} \, \{ \\ & t_{\text{pcq}} + t_{\text{mem}} + t_{\text{setup}} & \textit{fetch} \\ & 2(t_{\text{RFread}} + t_{\text{mux}} + t_{\text{eq}} + t_{\text{AND}} + t_{\text{mux}} + t_{\text{setup}}) & \textit{decode} \\ & t_{\text{pcq}} + t_{\text{mux}} + t_{\text{mux}} + t_{\text{ALU}} + t_{\text{setup}} & \textit{execute} \\ & t_{\text{pcq}} + t_{\text{memwrite}} + t_{\text{setup}} & \textit{memory} \\ & 2(t_{\text{pcq}} + t_{\text{mux}} + t_{\text{RFwrite}}) & \textit{writeback} \\ & \} \end{aligned}
```

- The operation speed depends on the slowest operation
- Decode and Writeback use register file and have only half a clock cycle to complete, that is why there is a 2 in front of them

Pipelined Performance Example

Element	Parameter	Delay (ps)
Register clock-to-Q	t _{pcq_PC}	30
Register setup	t _{setup}	20
Multiplexer	t _{mux}	25
ALU	t _{ALU}	200
Memory read	t _{mem}	250
Register file read	t_{RFread}	150
Register file setup	t _{RFsetup}	20
Equality comparator	t _{eq}	40
AND gate	t _{AND}	15
Memory write	$T_{memwrite}$	220
Register file write	t _{RFwrite}	100

$$T_c$$
 = 2($t_{RFread} + t_{mux} + t_{eq} + t_{AND} + t_{mux} + t_{setup}$)
= 2[150 + 25 + 40 + 15 + 25 + 20] ps
= 550 ps

Pipelined Performance Example

- For a program with 100 billion instructions executing on a pipelined MIPS processor:
 - CPI = 1.15
 - $T_c = 550 \text{ ps}$
- Execution Time = (# instructions) × CPI × T_c = (100 × 10⁹)(1.15)(550 × 10⁻¹²) = 63 seconds

Performance Summary for MIPS arch.

Processor	Execution Time (seconds)	Speedup (single-cycle is baseline)
Single-cycle	95	1
Multicycle	133	0.71
Pipelined	63	1.51

- Fastest of the three MIPS architectures is Pipelined.
- However, even though we have 5 fold pipelining, it is not
 5 times faster than single cycle.

Questions to Ponder

- What is the role of the hardware vs. the software in data dependence handling?
 - Software based interlocking
 - Hardware based interlocking
 - Who inserts/manages the pipeline bubbles?
 - Who finds the independent instructions to fill "empty" pipeline slots?
 - What are the advantages/disadvantages of each?
 - Think of the performance equation as well

Questions to Ponder

- What is the role of the hardware vs. the software in the order in which instructions are executed in the pipeline?
 - □ Software based instruction scheduling → static scheduling
 - □ Hardware based instruction scheduling → dynamic scheduling
- How does each impact different metrics?
 - Performance (and parts of the performance equation)
 - Complexity
 - Power consumption
 - Reliability
 - **...**

More on Software vs. Hardware

- Software based scheduling of instructions → static scheduling
 - Compiler orders the instructions, hardware executes them in that order
 - Contrast this with dynamic scheduling (in which hardware can execute instructions out of the compiler-specified order)
 - How does the compiler know the latency of each instruction?
- What information does the compiler not know that makes static scheduling difficult?
 - Answer: Anything that is determined at run time
 - Variable-length operation latency, memory addr, branch direction
- How can the compiler alleviate this (i.e., estimate the unknown)?
 - Answer: Profiling

Pipelining and Precise Exceptions: Preserving Sequential Semantics

Multi-Cycle Execution

- Not all instructions take the same amount of time for "execution"
- Idea: Have multiple different functional units that take different number of cycles
 - Can be pipelined or not pipelined
 - Can let independent instructions start execution on a different functional unit before a previous long-latency instruction finishes execution

Issues in Pipelining: Multi-Cycle Execute

- Instructions can take different number of cycles in EXECUTE stage
 - Integer ADD versus FP MULtiply

FMUL R4 \leftarrow R1, R2 ADD R3 \leftarrow R1, R2

FMUL R2 \leftarrow R5, R6 ADD R7 \leftarrow R5, R6

- What is wrong with this picture in a Von Neumann architecture?
 - Sequential semantics of the ISA NOT preserved!
 - What if FMUL incurs an exception?

Exceptions vs. Interrupts

Cause

- Exceptions: internal to the running thread
- Interrupts: external to the running thread

When to Handle

- Exceptions: when detected (and known to be non-speculative)
- Interrupts: when convenient
 - Except for very high priority ones
 - Power failure
 - Machine check (error)
- Priority: process (exception), depends (interrupt)
- Handling Context: process (exception), system (interrupt)

Precise Exceptions/Interrupts

- The architectural state should be consistent (precise) when the exception/interrupt is ready to be handled
- 1. All previous instructions should be completely retired.
- 2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

Checking for and Handling Exceptions in Pipelining

- When the oldest instruction ready-to-be-retired is detected to have caused an exception, the control logic
 - Ensures architectural state is precise (register file, PC, memory)
 - Flushes all younger instructions in the pipeline
 - Saves PC and registers (as specified by the ISA)
 - Redirects the fetch engine to the appropriate exception handling routine

Why Do We Want Precise Exceptions?

- Semantics of the von Neumann model ISA specifies it
 - Remember von Neumann vs. Dataflow
- Aids software debugging
- Enables (easy) recovery from exceptions
- Enables (easily) restartable processes
- Enables traps into software (e.g., software implemented opcodes)

Ensuring Precise Exceptions in Pipelining

Idea: Make each operation take the same amount of time

FMUL R3 \leftarrow R1, R2 ADD R4 \leftarrow R1, R2

F	D	Е	Ε	Е	Е	Е	Е	Е	Е	W						
	F	D	Ε	Е	Е	Е	Е	Е	Е	Е	W					
		F	D	Е	Е	Е	Е	Е	Е	Е	Ш	V				
			F	D	Е	Е	Ε	Ε	Ε	Е	Ш	Ш	W			
				F	D	Е	Е	Е	Е	Е	Ш	Ш	Ш	W		_
					F	D	Ε	Ε	Ε	Е	Е	Ε	Е	Ш	W	
						F	D	E	Е	Е	Е	E	Ε	Е	Е	W

Downside

- Worst-case instruction latency determines all instructions' latency
- What about memory operations?
- Each functional unit takes worst-case number of cycles?

Solutions

- Reorder buffer
- History buffer
- Future register file

Checkpointing

We will not cover these

- Suggested reading
 - Smith and Plezskun, "Implementing Precise Interrupts in Pipelined Processors," IEEE Trans on Computers 1988 and ISCA 1985.

Solution I: Reorder Buffer (ROB)

- Idea: Complete instructions out-of-order, but reorder them before making results visible to architectural state
- When instruction is decoded it reserves the next-sequential entry in the ROB
- When instruction completes, it writes result into ROB entry
- When instruction oldest in ROB and it has completed without exceptions, its result moved to reg. file or memory

What's in a ROB Entry?

V	DestRegID	DestRegVal	StoreAddr	StoreData	PC	Valid bits for reg/data + control bits	Exception?	
---	-----------	------------	-----------	-----------	----	--	------------	--

- Everything required to:
 - correctly reorder instructions back into the program order
 - update the architectural state with the instruction's result(s), if instruction can retire without any issues
 - handle an exception/interrupt precisely, if an exception/interrupt needs to be handled before retiring the instruction
- Need valid bits to keep track of readiness of the result(s) and find out if the instruction has completed execution

Reorder Buffer: Independent Operations

- Result first written to ROB on instruction completion
- Result written to register file at commit time

- What if a later operation needs a value in the reorder buffer?
 - Read reorder buffer in parallel with the register file. How?

Reorder Buffer: How to Access?

 A register value can be in the register file, reorder buffer, (or bypass/forwarding paths)

Simplifying Reorder Buffer Access

- Idea: Use indirection
- Access register file first (check if the register is valid)
 - If register not valid, register file stores the ID of the reorder buffer entry that contains (or will contain) the value of the register
 - Mapping of the register to a ROB entry: Register file maps the register to a reorder buffer entry if there is an in-flight instruction writing to the register
- Access reorder buffer next
- Now, reorder buffer does not need to be content addressable

Reorder Buffer in Intel Pentium III

Boggs et al., "The Microarchitecture of the Pentium 4 Processor," Intel Technology Journal, 2001.

Important: Register Renaming with a Reorder Buffer

- Output and anti dependencies are not true dependencies
 - WHY? The same register refers to values that have nothing to do with each other
 - They exist due to lack of register ID's (i.e. names) in the ISA
- The register ID is renamed to the reorder buffer entry that will hold the register's value
 - □ Register ID → ROB entry ID
 - □ Architectural register ID → Physical register ID
 - After renaming, ROB entry ID used to refer to the register
- This eliminates anti- and output- dependencies
 - Gives the illusion that there are a large number of registers

Renaming Example

- Assume
 - Register file has a pointer to the reorder buffer entry that contains or will contain the value, if the register is not valid
 - Reorder buffer works as described before
- Where is the latest definition of R3 for each instruction below in sequential order?

```
LD R0(0) \rightarrow R3
```

LD R3, R1 \rightarrow R10

MUL R1, R2 \rightarrow R3

MUL R3, R4 \rightarrow R11

ADD R5, R6 \rightarrow R3

ADD R7, R8 \rightarrow R12

In-Order Pipeline with Reorder Buffer

- Decode (D): Access regfile/ROB, allocate entry in ROB, check if instruction can execute, if so dispatch instruction
- Execute (E): Instructions can complete out-of-order
- Completion (R): Write result to reorder buffer
- Retirement/Commit (W): Check for exceptions; if none, write result to architectural register file or memory; else, flush pipeline and start from exception handler
- In-order dispatch/execution, out-of-order completion, in-order retirement

Reorder Buffer Tradeoffs

- Advantages
 - Conceptually simple for supporting precise exceptions
 - Can eliminate false dependences
- Disadvantages
 - Reorder buffer needs to be accessed to get the results that are yet to be written to the register file
 - CAM or indirection → increased latency and complexity
- Other solutions aim to eliminate the disadvantages
 - History buffer
 - Future file

We will not cover these

Checkpointing

Design of Digital Circuits Lecture 15: Pipelining Issues

Prof. Onur Mutlu ETH Zurich

Spring 2018

20 April 2018