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Agenda for Today & Next Few Lectures
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms
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Reminder: Optional Homeworks
n Posted online

q 3 Optional Homeworks

n Optional

n Good for your learning

n https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id
=homeworks
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Readings Specifically for Today
n Smith and Sohi, “The Microarchitecture of Superscalar 

Processors,” Proceedings of the IEEE, 1995
q More advanced pipelining
q Interrupt and exception handling
q Out-of-order and superscalar execution concepts

n Optional:
q Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999. 

4



Lecture Announcement
n Monday, April 30, 2018
n 16:15-17:15
n CAB G 61
n Apéro after the lecture J

n Prof. Wen-Mei Hwu (University of Illinois at Urbana-Champaign)
n D-INFK Distinguished Colloquium
n Innovative Applications and Technology Pivots –

A Perfect Storm in Computing

n https://www.inf.ethz.ch/news-and-
events/colloquium/event-detail.html?eventFeedId=40447
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General Suggestion
n Attend the Computer Science Distinguished Colloquia

n Happens on some Mondays 
q 16:15-17:15, followed by an apero

n https://www.inf.ethz.ch/news-and-events/colloquium.html

n Great way of learning about key developments in the field
q And, meeting leading researchers
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Review: In-Order Pipeline with Reorder Buffer
n Decode (D): Access regfile/ROB, allocate entry in ROB, check if instruction 

can execute, if so dispatch instruction (send to functional unit)
n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer
n Retirement/Commit (W): Check for exceptions; if none, write result to 

architectural register file or memory; else, flush pipeline and start from 
exception handler

n In-order dispatch/execution, out-of-order completion, in-order retirement 
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Remember: Register Renaming with a Reorder Buffer

n Output and anti dependencies are not true dependencies
q WHY? The same register refers to values that have nothing to 

do with each other
q They exist due to lack of register ID’s (i.e. names) in 

the ISA

n The register ID is renamed to the reorder buffer entry that 
will hold the register’s value
q Register ID à ROB entry ID
q Architectural register ID à Physical register ID
q After renaming, ROB entry ID used to refer to the register

n This eliminates anti and output dependencies
q Gives the illusion that there are a large number of registers
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Remember: Renaming Example
n Assume

q Register file has a pointer to the reorder buffer entry that 
contains or will contain the value, if the register is not valid

q Reorder buffer works as described before

n Where is the latest definition of R3 for each instruction 
below in sequential order?

LD R0(0) à R3
LD R3, R1 à R10    
MUL R1, R2 à R3
MUL R3, R4 à R11
ADD R5, R6 à R3
ADD R7, R8 à R12 
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Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that 

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing
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Out-of-Order Execution
(Dynamic Instruction Scheduling)



An In-order Pipeline

n Dispatch: Act of sending an instruction to a functional unit
n Renaming with ROB eliminates stalls due to false dependencies
n Problem: A true data dependency stalls dispatch of younger 

instructions into functional (execution) units
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Can We Do Better?
n What do the following two pieces of code have in common 

(with respect to execution in the previous design)?

n Answer: First ADD stalls the whole pipeline!
q ADD cannot dispatch because its source registers unavailable
q Later independent instructions cannot get executed

n How are the above code portions different?
q Answer: Load latency is variable (unknown until runtime)
q What does this affect? Think compiler vs. microarchitecture
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IMUL  R3 ß R1, R2
ADD   R3 ß R3, R1
ADD   R4 ß R6, R7
IMUL  R5 ß R6, R8
ADD   R7 ß R9, R9

LD      R3 ß R1 (0)
ADD   R3 ß R3, R1
ADD   R4 ß R6, R7
IMUL  R5 ß R6, R8
ADD   R7 ß R9, R9



Preventing Dispatch Stalls
n Problem: in-order dispatch (scheduling, or execution)

n Solution: out-of-order dispatch (scheduling, or execution)

n Actually, we have seen the basic idea before:
q Dataflow: fetch and “fire” an instruction only when its inputs 

are ready
q We will use similar principles, but not expose it in the ISA

n Aside: Any other way to prevent dispatch stalls?
1. Compile-time instruction scheduling/reordering
2. Value prediction
3. Fine-grained multithreading
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Out-of-order Execution (Dynamic Scheduling)

n Idea: Move the dependent instructions out of the way of 
independent ones (s.t. independent ones can execute)
q Rest areas for dependent instructions: Reservation stations 

n Monitor the source “values” of each instruction in the 
resting area

n When all source “values” of an instruction are available, 
“fire” (i.e. dispatch) the instruction
q Instructions dispatched in dataflow (not control-flow) order 

n Benefit:
q Latency tolerance: Allows independent instructions to execute 

and complete in the presence of a long-latency operation
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In-order vs. Out-of-order Dispatch
n In order dispatch + precise exceptions:

n Out-of-order dispatch + precise exceptions:

n 16 vs. 12 cycles
16
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Enabling OoO Execution
1. Need to link the consumer of a value to the producer

q Register renaming: Associate a “tag” with each data value 
2. Need to buffer instructions until they are ready to execute

q Insert instruction into reservation stations after renaming
3. Instructions need to keep track of readiness of source values

q Broadcast the “tag” when the value is produced
q Instructions compare their “source tags” to the broadcast tag 

à if match, source value becomes ready
4. When all source values of an instruction are ready, need to 

dispatch the instruction to its functional unit (FU)
q Instruction wakes up if all sources are ready
q If multiple instructions are awake, need to select one per FU
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Tomasulo’s Algorithm for OoO Execution
n OoO with register renaming invented by Robert Tomasulo

q Used in IBM 360/91 Floating Point Units
q Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple 

Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

n What is the major difference today?
q Precise exceptions
q Provided by

n Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and 
introduction,” MICRO 1985.

n Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985.

n OoO variants are used in most high-performance processors
q Initially in Intel Pentium Pro, AMD K5  
q Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15
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Two Humps in a Modern Pipeline

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window 

or active window)
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Two Humps in a Modern Pipeline

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window 

or active window)
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General Organization of an OOO Processor

n Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 
1995.
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Tomasulo’s Machine: IBM 360/91
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Register Renaming
n Output and anti dependencies are not true dependencies

q WHY? The same register refers to values that have nothing to 
do with each other

q They exist because not enough register ID’s (i.e. 
names) in the ISA

n The register ID is renamed to the reservation station entry 
that will hold the register’s value
q Register ID à RS entry ID
q Architectural register ID à Physical register ID
q After renaming, RS entry ID used to refer to the register

n This eliminates anti- and output- dependencies
q Approximates the performance effect of a large number of 

registers even though ISA has a small number
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n Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming
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Tomasulo’s Algorithm
n If reservation station available before renaming

q Instruction + renamed operands (source value/tag) inserted into the 
reservation station

q Only rename if reservation station is available
n Else stall
n While in reservation station, each instruction:

q Watches common data bus (CDB) for tag of its sources
q When tag seen, grab value for the source and keep it in the reservation station
q When both operands available, instruction ready to be dispatched

n Dispatch instruction to the Functional Unit when instruction is ready
n After instruction finishes in the Functional Unit

q Arbitrate for CDB
q Put tagged value onto CDB (tag broadcast)
q Register file is connected to the CDB

n Register contains a tag indicating the latest writer to the register
n If the tag in the register file matches the broadcast tag, write broadcast value 

into register (and set valid bit)
q Reclaim rename tag

n no valid copy of tag in system!
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An Exercise

n Assume ADD (4 cycle execute), MUL (6 cycle execute)
n Assume one adder and one multiplier
n How many cycles

q in a non-pipelined machine
q in an in-order-dispatch pipelined machine with imprecise 

exceptions (no forwarding and full forwarding)
q in an out-of-order dispatch pipelined machine imprecise 

exceptions (full forwarding)
26
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ADD   R5 ß R3, R4
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Exercise Continued

27



Exercise Continued
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Exercise Continued
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MUL   R3 ß R1, R2
ADD   R5 ß R3, R4
ADD   R7 ß R2, R6
ADD   R10 ß R8, R9
MUL   R11 ß R7, R10
ADD   R5 ß R5, R11



How It Works
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Cycle 0
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Cycle 2
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Cycle 3



Cycle 4
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Cycle 7
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Cycle 8 
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Some Questions
n What is needed in hardware to perform tag broadcast and 

value capture?
à make a value valid 
à wake up an instruction

n Does the tag have to be the ID of the Reservation Station 
Entry?

n What can potentially become the critical path?
q Tag broadcast à value capture à instruction wake up

n How can you reduce the potential critical paths?
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Dataflow Graph for Our Example
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MUL   R3 ß R1, R2
ADD   R5 ß R3, R4
ADD   R7 ß R2, R6
ADD   R10 ß R8, R9
MUL   R11 ß R7, R10
ADD   R5 ß R5, R11



State of RAT and RS in Cycle 7
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Dataflow Graph
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We did not cover the following slides in lecture. 
These are for your preparation for the next lecture. 



An Exercise, with Precise Exceptions

n Assume ADD (4 cycle execute), MUL (6 cycle execute)
n Assume one adder and one multiplier
n How many cycles

q in a non-pipelined machine
q in an in-order-dispatch pipelined machine with reorder buffer 

(no forwarding and full forwarding)
q in an out-of-order dispatch pipelined machine with reorder 

buffer (full forwarding)
43

MUL   R3 ß R1, R2
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Out-of-Order Execution with Precise Exceptions
n Idea: Use a reorder buffer to reorder instructions before 

committing them to architectural state

n An instruction updates the RAT when it completes execution
q Also called frontend register file

n An instruction updates a separate architectural register file 
when it retires
q i.e., when it is the oldest in the machine and has completed 

execution
q In other words, the architectural register file is always updated in 

program order

n On an exception: flush pipeline, copy architectural register file 
into frontend register file
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Out-of-Order Execution with Precise Exceptions

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window 

or active window)
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Two Humps in a Modern Pipeline

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window 

or active window)
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Modern OoO Execution w/ Precise Exceptions

n Most modern processors use the following

n Reorder buffer to support in-order retirement of instructions

n A single register file to store all registers 
q Both speculative and architectural registers
q INT and FP are still separate

n Two register maps 
q Future/frontend register map à used for renaming
q Architectural register map à used for maintaining precise state
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An Example from Modern Processors

48
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” 
Intel Technology Journal, 2001.



Enabling OoO Execution, Revisited
1. Link the consumer of a value to the producer

q Register renaming: Associate a “tag” with each data value 

2. Buffer instructions until they are ready
q Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
q Broadcast the “tag” when the value is produced
q Instructions compare their “source tags” to the broadcast tag 

à if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

q Wakeup and select/schedule the instruction
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Summary of OOO Execution Concepts
n Register renaming eliminates false dependencies, enables 

linking of producer to consumers

n Buffering enables the pipeline to move for independent ops

n Tag broadcast enables communication (of readiness of 
produced value) between instructions

n Wakeup and select enables out-of-order dispatch
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OOO Execution: Restricted Dataflow
n An out-of-order engine dynamically builds the dataflow 

graph of a piece of the program
q which piece?

n The dataflow graph is limited to the instruction window
q Instruction window: all decoded but not yet retired 

instructions

n Can we do it for the whole program? 
n Why would we like to?
n In other words, how can we have a large instruction 

window?
n Can we do it efficiently with Tomasulo’s algorithm?
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Recall: Dataflow Graph for Our Example
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MUL   R3 ß R1, R2
ADD   R5 ß R3, R4
ADD   R7 ß R2, R6
ADD   R10 ß R8, R9
MUL   R11 ß R7, R10
ADD   R5 ß R5, R11



Recall: State of RAT and RS in Cycle 7
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Recall: Dataflow Graph

54



Questions to Ponder
n Why is OoO execution beneficial?

q What if all operations take single cycle?
q Latency tolerance: OoO execution tolerates the latency of 

multi-cycle operations by executing independent operations 
concurrently

n What if an instruction takes 500 cycles?
q How large of an instruction window do we need to continue 

decoding?
q How many cycles of latency can OoO tolerate?
q What limits the latency tolerance scalability of Tomasulo’s 

algorithm?
n Active/instruction window size: determined by both scheduling 

window and reorder buffer size
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General Organization of an OOO Processor

n Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 
1995.
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A Modern OoO Design: Intel Pentium 4

57Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.



Intel Pentium 4 Simplified

58

Mutlu+, “Runahead Execution,”
HPCA 2003.



Alpha 21264

59Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.



MIPS R10000

60Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996



IBM POWER4
n Tendler et al., 
“POWER4 system 
microarchitecture,”
IBM J R&D, 2002.
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IBM POWER4
n 2 cores, out-of-order execution
n 100-entry instruction window in each core
n 8-wide instruction fetch, issue, execute
n Large, local+global hybrid branch predictor
n 1.5MB, 8-way L2 cache
n Aggressive stream based prefetching
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IBM POWER5
n Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 

Micro 2004.
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Handling Out-of-Order Execution 
of Loads and Stores



Recall: Registers versus Memory
n So far, we considered mainly registers as part of state

n What about memory?

n What are the fundamental differences between registers 
and memory?
q Register dependences known statically – memory 

dependences determined dynamically
q Register state is small – memory state is large
q Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a 
shared memory multiprocessor)
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Memory Dependence Handling (I)
n Need to obey memory dependences in an out-of-order 

machine 
q and need to do so while providing high performance

n Observation and Problem: Memory address is not known until 
a load/store executes

n Corollary 1: Renaming memory addresses is difficult
n Corollary 2: Determining dependence or independence of 

loads/stores need to be handled after their (partial) execution
n Corollary 3: When a load/store has its address ready, there 

may be younger/older loads/stores with undetermined 
addresses in the machine
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Memory Dependence Handling (II)
n When do you schedule a load instruction in an OOO engine?

q Problem: A younger load can have its address ready before an 
older store’s address is known

q Known as the memory disambiguation problem or the unknown 
address problem

n Approaches
q Conservative: Stall the load until all previous stores have 

computed their addresses (or even retired from the machine)
q Aggressive: Assume load is independent of unknown-address 

stores and schedule the load right away
q Intelligent: Predict (with a more sophisticated predictor) if the 

load is dependent on the/any unknown address store
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Handling of Store-Load Dependences
n A load’s dependence status is not known until all previous store 

addresses are available. 

n How does the OOO engine detect dependence of a load instruction on a 
previous store?
q Option 1: Wait until all previous stores committed (no need to check 

for address match) 
q Option 2: Keep a list of pending stores in a store buffer and check 

whether load address matches a previous store address

n How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores?
q Option 1: Assume load dependent on all previous stores
q Option 2: Assume load independent of all previous stores
q Option 3: Predict the dependence of a load on an outstanding store
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Memory Disambiguation (I)
n Option 1: Assume load dependent on all previous stores

+ No need for recovery 
-- Too conservative: delays independent loads unnecessarily

n Option 2: Assume load independent of all previous stores
+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

n Option 3: Predict the dependence of a load on an 
outstanding store
+ More accurate. Load store dependencies persist over time
-- Still requires recovery/re-execution on misprediction
q Alpha 21264 : Initially assume load independent, delay loads found to be dependent
q Moshovos et al., “Dynamic speculation and synchronization of data dependences,”

ISCA 1997.
q Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.
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Memory Disambiguation (II)
n Chrysos and Emer, “Memory Dependence Prediction Using Store 

Sets,” ISCA 1998.

n Predicting store-load dependencies important for performance
n Simple predictors (based on past history) can achieve most of 

the potential performance 
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Data Forwarding Between Stores and Loads
n We cannot update memory out of program order

à Need to buffer all store and load instructions in instruction window

n Even if we know all addresses of past stores when we 
generate the address of a load, two questions still remain:
1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

n Modern processors use a LQ (load queue) and an SQ for this
q Can be combined or separate between loads and stores
q A load searches the SQ after it computes its address. Why?
q A store searches the LQ after it computes its address. Why?
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Out-of-Order Completion of Memory Ops 
n When a store instruction finishes execution, it writes its 

address and data in its reorder buffer entry

n When a later load instruction generates its address, it:
q searches the reorder buffer (or the SQ) with its address
q accesses memory with its address
q receives the value from the youngest older instruction that 

wrote to that address (either from ROB or memory)

n This is a complicated “search logic” implemented as a 
Content Addressable Memory
q Content is “memory address” (but also need size and age)
q Called store-to-load forwarding logic
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Store-Load Forwarding Complexity

n Content Addressable Search (based on Load Address)

n Range Search (based on Address and Size)

n Age-Based Search (for last written values)

n Load data can come from a combination of 
q One or more stores in the Store Buffer (SQ)
q Memory/cache
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Food for Thought for You
n Many other design choices for OoO engines

n Should reservation stations be centralized or distributed 
across functional units?
q What are the tradeoffs?

n Should reservation stations and ROB store data values or 
should there be a centralized physical register file where all 
data values are stored?
q What are the tradeoffs?

n Exactly when does an instruction broadcast its tag?
n …
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