
Design of Digital Circuits
Lecture 16: Out-of-Order Execution

Prof. Onur Mutlu
ETH Zurich
Spring 2018
26 April 2018

Agenda for Today & Next Few Lectures
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms

2

Reminder: Optional Homeworks
n Posted online

q 3 Optional Homeworks

n Optional

n Good for your learning

n https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id
=homeworks

3

Readings Specifically for Today
n Smith and Sohi, “The Microarchitecture of Superscalar

Processors,” Proceedings of the IEEE, 1995
q More advanced pipelining
q Interrupt and exception handling
q Out-of-order and superscalar execution concepts

n Optional:
q Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.

4

Lecture Announcement
n Monday, April 30, 2018
n 16:15-17:15
n CAB G 61
n Apéro after the lecture J

n Prof. Wen-Mei Hwu (University of Illinois at Urbana-Champaign)
n D-INFK Distinguished Colloquium
n Innovative Applications and Technology Pivots –

A Perfect Storm in Computing

n https://www.inf.ethz.ch/news-and-
events/colloquium/event-detail.html?eventFeedId=40447

5

General Suggestion
n Attend the Computer Science Distinguished Colloquia

n Happens on some Mondays
q 16:15-17:15, followed by an apero

n https://www.inf.ethz.ch/news-and-events/colloquium.html

n Great way of learning about key developments in the field
q And, meeting leading researchers

6

Review: In-Order Pipeline with Reorder Buffer
n Decode (D): Access regfile/ROB, allocate entry in ROB, check if instruction

can execute, if so dispatch instruction (send to functional unit)
n Execute (E): Instructions can complete out-of-order
n Completion (R): Write result to reorder buffer
n Retirement/Commit (W): Check for exceptions; if none, write result to

architectural register file or memory; else, flush pipeline and start from
exception handler

n In-order dispatch/execution, out-of-order completion, in-order retirement

7

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

R

Remember: Register Renaming with a Reorder Buffer

n Output and anti dependencies are not true dependencies
q WHY? The same register refers to values that have nothing to

do with each other
q They exist due to lack of register ID’s (i.e. names) in

the ISA

n The register ID is renamed to the reorder buffer entry that
will hold the register’s value
q Register ID à ROB entry ID
q Architectural register ID à Physical register ID
q After renaming, ROB entry ID used to refer to the register

n This eliminates anti and output dependencies
q Gives the illusion that there are a large number of registers

8

Remember: Renaming Example
n Assume

q Register file has a pointer to the reorder buffer entry that
contains or will contain the value, if the register is not valid

q Reorder buffer works as described before

n Where is the latest definition of R3 for each instruction
below in sequential order?

LD R0(0) à R3
LD R3, R1 à R10
MUL R1, R2 à R3
MUL R3, R4 à R11
ADD R5, R6 à R3
ADD R7, R8 à R12

9

Reorder Buffer Tradeoffs
n Advantages

q Conceptually simple for supporting precise exceptions
q Can eliminate false dependences

n Disadvantages
q Reorder buffer needs to be accessed to get the results that

are yet to be written to the register file
n CAM or indirection à increased latency and complexity

n Other solutions aim to eliminate the disadvantages
q History buffer
q Future file
q Checkpointing

10

We will not cover these

Out-of-Order Execution
(Dynamic Instruction Scheduling)

An In-order Pipeline

n Dispatch: Act of sending an instruction to a functional unit
n Renaming with ROB eliminates stalls due to false dependencies
n Problem: A true data dependency stalls dispatch of younger

instructions into functional (execution) units

12

F D

E

R
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W

Can We Do Better?
n What do the following two pieces of code have in common

(with respect to execution in the previous design)?

n Answer: First ADD stalls the whole pipeline!
q ADD cannot dispatch because its source registers unavailable
q Later independent instructions cannot get executed

n How are the above code portions different?
q Answer: Load latency is variable (unknown until runtime)
q What does this affect? Think compiler vs. microarchitecture

13

IMUL R3 ß R1, R2
ADD R3 ß R3, R1
ADD R4 ß R6, R7
IMUL R5 ß R6, R8
ADD R7 ß R9, R9

LD R3 ß R1 (0)
ADD R3 ß R3, R1
ADD R4 ß R6, R7
IMUL R5 ß R6, R8
ADD R7 ß R9, R9

Preventing Dispatch Stalls
n Problem: in-order dispatch (scheduling, or execution)

n Solution: out-of-order dispatch (scheduling, or execution)

n Actually, we have seen the basic idea before:
q Dataflow: fetch and “fire” an instruction only when its inputs

are ready
q We will use similar principles, but not expose it in the ISA

n Aside: Any other way to prevent dispatch stalls?
1. Compile-time instruction scheduling/reordering
2. Value prediction
3. Fine-grained multithreading

14

Out-of-order Execution (Dynamic Scheduling)

n Idea: Move the dependent instructions out of the way of
independent ones (s.t. independent ones can execute)
q Rest areas for dependent instructions: Reservation stations

n Monitor the source “values” of each instruction in the
resting area

n When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction
q Instructions dispatched in dataflow (not control-flow) order

n Benefit:
q Latency tolerance: Allows independent instructions to execute

and complete in the presence of a long-latency operation

15

In-order vs. Out-of-order Dispatch
n In order dispatch + precise exceptions:

n Out-of-order dispatch + precise exceptions:

n 16 vs. 12 cycles
16

F D WE E E E R
F D E R W

F

IMUL R3 ß R1, R2
ADD R3 ß R3, R1
ADD R1 ß R6, R7
IMUL R5 ß R6, R8
ADD R7 ß R3, R5

D E R W
F D E R W

F D E R W

F D WE E E E R
F D

STALL
STALL

E R W
F D

E E E E
STALL

E R
F D E E E E R W

F D E R W

WAIT

WAIT

W

Enabling OoO Execution
1. Need to link the consumer of a value to the producer

q Register renaming: Associate a “tag” with each data value
2. Need to buffer instructions until they are ready to execute

q Insert instruction into reservation stations after renaming
3. Instructions need to keep track of readiness of source values

q Broadcast the “tag” when the value is produced
q Instructions compare their “source tags” to the broadcast tag

à if match, source value becomes ready
4. When all source values of an instruction are ready, need to

dispatch the instruction to its functional unit (FU)
q Instruction wakes up if all sources are ready
q If multiple instructions are awake, need to select one per FU

17

Tomasulo’s Algorithm for OoO Execution
n OoO with register renaming invented by Robert Tomasulo

q Used in IBM 360/91 Floating Point Units
q Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple

Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

n What is the major difference today?
q Precise exceptions
q Provided by

n Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

n Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

n OoO variants are used in most high-performance processors
q Initially in Intel Pentium Pro, AMD K5
q Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15

18

Two Humps in a Modern Pipeline

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

19

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

Two Humps in a Modern Pipeline

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

20

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

Photo credit: http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

General Organization of an OOO Processor

n Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.
1995.

21

Tomasulo’s Machine: IBM 360/91

22

FP FU FP FU

from memory

load
buffers

from instruction unit FP registers

store buffers

to memory

operation bus

reservation
stations

Common data bus

Register Renaming
n Output and anti dependencies are not true dependencies

q WHY? The same register refers to values that have nothing to
do with each other

q They exist because not enough register ID’s (i.e.
names) in the ISA

n The register ID is renamed to the reservation station entry
that will hold the register’s value
q Register ID à RS entry ID
q Architectural register ID à Physical register ID
q After renaming, RS entry ID used to refer to the register

n This eliminates anti- and output- dependencies
q Approximates the performance effect of a large number of

registers even though ISA has a small number
23

n Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming

24

R0
R1
R2
R3

tag value valid?

R4
R5
R6
R7
R8
R9

1

1
1

1
1
1
1

1
1
1

Tomasulo’s Algorithm
n If reservation station available before renaming

q Instruction + renamed operands (source value/tag) inserted into the
reservation station

q Only rename if reservation station is available
n Else stall
n While in reservation station, each instruction:

q Watches common data bus (CDB) for tag of its sources
q When tag seen, grab value for the source and keep it in the reservation station
q When both operands available, instruction ready to be dispatched

n Dispatch instruction to the Functional Unit when instruction is ready
n After instruction finishes in the Functional Unit

q Arbitrate for CDB
q Put tagged value onto CDB (tag broadcast)
q Register file is connected to the CDB

n Register contains a tag indicating the latest writer to the register
n If the tag in the register file matches the broadcast tag, write broadcast value

into register (and set valid bit)
q Reclaim rename tag

n no valid copy of tag in system!

25

An Exercise

n Assume ADD (4 cycle execute), MUL (6 cycle execute)
n Assume one adder and one multiplier
n How many cycles

q in a non-pipelined machine
q in an in-order-dispatch pipelined machine with imprecise

exceptions (no forwarding and full forwarding)
q in an out-of-order dispatch pipelined machine imprecise

exceptions (full forwarding)
26

MUL R3 ß R1, R2
ADD R5 ß R3, R4
ADD R7 ß R2, R6
ADD R10 ß R8, R9
MUL R11 ß R7, R10
ADD R5 ß R5, R11

F D E W

Exercise Continued

27

Exercise Continued

28

Exercise Continued

29

MUL R3 ß R1, R2
ADD R5 ß R3, R4
ADD R7 ß R2, R6
ADD R10 ß R8, R9
MUL R11 ß R7, R10
ADD R5 ß R5, R11

How It Works

30

Cycle 0

31

Cycle 2

32

33

Cycle 3

Cycle 4

34

Cycle 7

35

Cycle 8

36

Some Questions
n What is needed in hardware to perform tag broadcast and

value capture?
à make a value valid
à wake up an instruction

n Does the tag have to be the ID of the Reservation Station
Entry?

n What can potentially become the critical path?
q Tag broadcast à value capture à instruction wake up

n How can you reduce the potential critical paths?

37

Dataflow Graph for Our Example

38

MUL R3 ß R1, R2
ADD R5 ß R3, R4
ADD R7 ß R2, R6
ADD R10 ß R8, R9
MUL R11 ß R7, R10
ADD R5 ß R5, R11

State of RAT and RS in Cycle 7

39

Dataflow Graph

40

Design of Digital Circuits
Lecture 16: Out-of-Order Execution

Prof. Onur Mutlu
ETH Zurich
Spring 2018
26 April 2018

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

An Exercise, with Precise Exceptions

n Assume ADD (4 cycle execute), MUL (6 cycle execute)
n Assume one adder and one multiplier
n How many cycles

q in a non-pipelined machine
q in an in-order-dispatch pipelined machine with reorder buffer

(no forwarding and full forwarding)
q in an out-of-order dispatch pipelined machine with reorder

buffer (full forwarding)
43

MUL R3 ß R1, R2
ADD R5 ß R3, R4
ADD R7 ß R2, R6
ADD R10 ß R8, R9
MUL R11 ß R7, R10
ADD R5 ß R5, R11

F D E R W

Out-of-Order Execution with Precise Exceptions
n Idea: Use a reorder buffer to reorder instructions before

committing them to architectural state

n An instruction updates the RAT when it completes execution
q Also called frontend register file

n An instruction updates a separate architectural register file
when it retires
q i.e., when it is the oldest in the machine and has completed

execution
q In other words, the architectural register file is always updated in

program order

n On an exception: flush pipeline, copy architectural register file
into frontend register file

44

Out-of-Order Execution with Precise Exceptions

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

45

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

Two Humps in a Modern Pipeline

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

46

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

Photo credit: http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

Modern OoO Execution w/ Precise Exceptions

n Most modern processors use the following

n Reorder buffer to support in-order retirement of instructions

n A single register file to store all registers
q Both speculative and architectural registers
q INT and FP are still separate

n Two register maps
q Future/frontend register map à used for renaming
q Architectural register map à used for maintaining precise state

47

An Example from Modern Processors

48
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001.

Enabling OoO Execution, Revisited
1. Link the consumer of a value to the producer

q Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
q Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
q Broadcast the “tag” when the value is produced
q Instructions compare their “source tags” to the broadcast tag

à if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

q Wakeup and select/schedule the instruction

49

Summary of OOO Execution Concepts
n Register renaming eliminates false dependencies, enables

linking of producer to consumers

n Buffering enables the pipeline to move for independent ops

n Tag broadcast enables communication (of readiness of
produced value) between instructions

n Wakeup and select enables out-of-order dispatch

50

OOO Execution: Restricted Dataflow
n An out-of-order engine dynamically builds the dataflow

graph of a piece of the program
q which piece?

n The dataflow graph is limited to the instruction window
q Instruction window: all decoded but not yet retired

instructions

n Can we do it for the whole program?
n Why would we like to?
n In other words, how can we have a large instruction

window?
n Can we do it efficiently with Tomasulo’s algorithm?

51

Recall: Dataflow Graph for Our Example

52

MUL R3 ß R1, R2
ADD R5 ß R3, R4
ADD R7 ß R2, R6
ADD R10 ß R8, R9
MUL R11 ß R7, R10
ADD R5 ß R5, R11

Recall: State of RAT and RS in Cycle 7

53

Recall: Dataflow Graph

54

Questions to Ponder
n Why is OoO execution beneficial?

q What if all operations take single cycle?
q Latency tolerance: OoO execution tolerates the latency of

multi-cycle operations by executing independent operations
concurrently

n What if an instruction takes 500 cycles?
q How large of an instruction window do we need to continue

decoding?
q How many cycles of latency can OoO tolerate?
q What limits the latency tolerance scalability of Tomasulo’s

algorithm?
n Active/instruction window size: determined by both scheduling

window and reorder buffer size
55

General Organization of an OOO Processor

n Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.
1995.

56

A Modern OoO Design: Intel Pentium 4

57Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.

Intel Pentium 4 Simplified

58

Mutlu+, “Runahead Execution,”
HPCA 2003.

Alpha 21264

59Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

MIPS R10000

60Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996

IBM POWER4
n Tendler et al.,
“POWER4 system
microarchitecture,”
IBM J R&D, 2002.

61

IBM POWER4
n 2 cores, out-of-order execution
n 100-entry instruction window in each core
n 8-wide instruction fetch, issue, execute
n Large, local+global hybrid branch predictor
n 1.5MB, 8-way L2 cache
n Aggressive stream based prefetching

62

IBM POWER5
n Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE

Micro 2004.

63

Handling Out-of-Order Execution
of Loads and Stores

Recall: Registers versus Memory
n So far, we considered mainly registers as part of state

n What about memory?

n What are the fundamental differences between registers
and memory?
q Register dependences known statically – memory

dependences determined dynamically
q Register state is small – memory state is large
q Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a
shared memory multiprocessor)

65

Memory Dependence Handling (I)
n Need to obey memory dependences in an out-of-order

machine
q and need to do so while providing high performance

n Observation and Problem: Memory address is not known until
a load/store executes

n Corollary 1: Renaming memory addresses is difficult
n Corollary 2: Determining dependence or independence of

loads/stores need to be handled after their (partial) execution
n Corollary 3: When a load/store has its address ready, there

may be younger/older loads/stores with undetermined
addresses in the machine

66

Memory Dependence Handling (II)
n When do you schedule a load instruction in an OOO engine?

q Problem: A younger load can have its address ready before an
older store’s address is known

q Known as the memory disambiguation problem or the unknown
address problem

n Approaches
q Conservative: Stall the load until all previous stores have

computed their addresses (or even retired from the machine)
q Aggressive: Assume load is independent of unknown-address

stores and schedule the load right away
q Intelligent: Predict (with a more sophisticated predictor) if the

load is dependent on the/any unknown address store

67

Handling of Store-Load Dependences
n A load’s dependence status is not known until all previous store

addresses are available.

n How does the OOO engine detect dependence of a load instruction on a
previous store?
q Option 1: Wait until all previous stores committed (no need to check

for address match)
q Option 2: Keep a list of pending stores in a store buffer and check

whether load address matches a previous store address

n How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?
q Option 1: Assume load dependent on all previous stores
q Option 2: Assume load independent of all previous stores
q Option 3: Predict the dependence of a load on an outstanding store

68

Memory Disambiguation (I)
n Option 1: Assume load dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

n Option 2: Assume load independent of all previous stores
+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

n Option 3: Predict the dependence of a load on an
outstanding store
+ More accurate. Load store dependencies persist over time
-- Still requires recovery/re-execution on misprediction
q Alpha 21264 : Initially assume load independent, delay loads found to be dependent
q Moshovos et al., “Dynamic speculation and synchronization of data dependences,”

ISCA 1997.
q Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

69

Memory Disambiguation (II)
n Chrysos and Emer, “Memory Dependence Prediction Using Store

Sets,” ISCA 1998.

n Predicting store-load dependencies important for performance
n Simple predictors (based on past history) can achieve most of

the potential performance

70

Data Forwarding Between Stores and Loads
n We cannot update memory out of program order

à Need to buffer all store and load instructions in instruction window

n Even if we know all addresses of past stores when we
generate the address of a load, two questions still remain:
1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

n Modern processors use a LQ (load queue) and an SQ for this
q Can be combined or separate between loads and stores
q A load searches the SQ after it computes its address. Why?
q A store searches the LQ after it computes its address. Why?

71

Out-of-Order Completion of Memory Ops
n When a store instruction finishes execution, it writes its

address and data in its reorder buffer entry

n When a later load instruction generates its address, it:
q searches the reorder buffer (or the SQ) with its address
q accesses memory with its address
q receives the value from the youngest older instruction that

wrote to that address (either from ROB or memory)

n This is a complicated “search logic” implemented as a
Content Addressable Memory
q Content is “memory address” (but also need size and age)
q Called store-to-load forwarding logic

72

Store-Load Forwarding Complexity

n Content Addressable Search (based on Load Address)

n Range Search (based on Address and Size)

n Age-Based Search (for last written values)

n Load data can come from a combination of
q One or more stores in the Store Buffer (SQ)
q Memory/cache

73

Food for Thought for You
n Many other design choices for OoO engines

n Should reservation stations be centralized or distributed
across functional units?
q What are the tradeoffs?

n Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?
q What are the tradeoffs?

n Exactly when does an instruction broadcast its tag?
n …

74

