Design of Digital Circuits
Lecture 16: Out-of-Order Execution

Prof. Onur Mutlu
ETH Zurich
Spring 2018

26 April 2018

Agenda for Today & Next Few Lectures

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

s Out-of-Order Execution

= Other Execution Paradigms

Reminder: Optional Homeworks

= Posted online
o 3 Optional Homeworks

= Optional
= Good for your learning

= https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id
=homeworks

Readings Specifically for Today

Smith and Sohi, “"The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
a Out-of-order and superscalar execution concepts

Optional:
o Kessler, "The Alpha 21264 Microprocessor,” IEEE Micro 1999.

Lecture Announcement

= Monday, April 30, 2018

= 16:15-17:15

= CABG61

= Apéro after the lecture ©

= Prof. Wen-Mei Hwu (University of Illinois at Urbana-Champaign)

= D-INFK Distinguished Colloquium

= Innovative Applications and Technology Pivots —
A Perfect Storm in Computing

= https://www.inf.ethz.ch/news-and-
events/colloguium/event-detail.html?eventFeedld=40447

General Suggestion

= Attend the Computer Science Distinguished Colloquia

= Happens on some Mondays
o 16:15-17:15, followed by an apero

s https://www.inf.ethz.ch/news-and-events/colloguium.html

= Great way of learning about key developments in the field
o And, meeting leading researchers

Review: In-Order Pipeline with Reorder Buttfer

Decode (D): Access regfile/ROB, allocate entry in ROB, check if instruction
can execute, if so dispatch instruction (send to functional unit)

Execute (E): Instructions can complete out-of-order
Completion (R): Write result to reorder buffer

Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline and start from
exception handler

In-order dispatch/execution, out-of-order completion, in-order retirement

E Integer add
Integer mul
E |E |E|E
F |ID FP mul R W
R E|E|E |E|E |E|E |E

E|E|E|E |E|E|E|E |«

Load/store

Remember: Register Renaming with a Reorder Buffer

Output and anti dependencies are not true dependencies

a WHY? The same register refers to values that have nothing to
do with each other

o They exist due to lack of register ID’s (i.e. names) in
the ISA

The register ID is renamed to the reorder buffer entry that
will hold the register’s value

o Register ID - ROB entry ID
o Architectural register ID - Physical register ID
o After renaming, ROB entry ID used to refer to the register

This eliminates anti and output dependencies
o Gives the illusion that there are a large number of registers

Remember: Renaming Example

Assume

o Register file has a pointer to the reorder buffer entry that
contains or will contain the value, if the register is not valid

o Reorder buffer works as described before

Where is the latest definition of R3 for each instruction
below in sequential order?

LD RO(0) > R3

LD R3, R1 > R10
MUL R1, R2 > R3
MUL R3, R4 > R11
ADD R5, R6 > R3
ADD R7, R8 > R12

Reorder Buffer Tradeoffs

Advantages

o Conceptually simple for supporting precise exceptions
o Can eliminate false dependences

Disadvantages

o Reorder buffer needs to be accessed to get the results that
are yet to be written to the register file

CAM or indirection = increased latency and complexity

Other solutions aim to eliminate the disadvantages

o History buffer
o Future file We will not cover these

o Checkpointing

10

Out-of-Order Execution
(Dynamic Instruction Scheduling)

An In-order Pipeline

Integer add

Integer mul

E|E |E |E

F ID FP mul
E |E|E |E |E |E |E|E

E|E|E|E |E|E|E |E |«

Cache miss

Dispatch: Act of sending an instruction to a functional unit
Renaming with ROB eliminates stalls due to false dependencies

Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

12

Can We Do Better?

What do the following two pieces of code have in common
(with respect to execution in the previous design)?

IMUL R3 € R1, R2 LD R3 < R1(0)
ADD R3 € R3, R1 ADD RS3 € R3, R1
ADD R4 < R6, R7 ADD R4 < R6, R7
IMUL R5 € R6, R8 IMUL RS < RG6, R8
ADD R7 € R9,R9 ADD R7 € R9,R9

Answer: First ADD stalls the whole pipeline!
o ADD cannot dispatch because its source registers unavailable
o Later independent instructions cannot get executed

How are the above code portions different?
o Answer: Load latency is variable (unknown until runtime)
o What does this affect? Think compiler vs. microarchitecture

13

Preventing Dispatch Stalls

Problem: in-order dispatch (scheduling, or execution)
Solution: out-of-order dispatch (scheduling, or execution)

Actually, we have seen the basic idea before:

o Dataflow: fetch and “fire” an instruction only when its inputs
are ready

o We will use similar principles, but not expose it in the ISA

Aside: Any other way to prevent dispatch stalls?
1. Compile-time instruction scheduling/reordering
2. Value prediction

3. Fine-grained multithreading
14

Out-of-order Execution (Dynamic Scheduling)

Idea: Move the dependent instructions out of the way of
independent ones (s.t. independent ones can execute)

o Rest areas for dependent instructions: Reservation stations

Monitor the source “values” of each instruction in the
resting area

When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

o Instructions dispatched in dataflow (not control-flow) order

Benefit:

o Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long-latency operation

15

In-order vs. Out-of-order Dispatch

In order dispatch + precise exceptions:

F | D|E|E|E|E|R|W
F D STALL |E |[R|W
F STALL |D |E |[R|W
F|D|E|E |E |E W
F |D STALL R

Out-of-order dispatch + precise exceptions:

F |D|E |E

E |E

R

W

F |D

WAIT

F |D

E |R

F

D |E

Py

16 vs. 12 cycles

F |D

2=

IMUL R3 € R1, R2
ADD R3 € R3, R1
ADD R1 € R6, R7
IMUL R5 < R6, R8
ADD R7 € R3,R5

16

Enabling OoO Execution

1.

2.

3.

Need to link the consumer of a value to the producer

o Register renaming: Associate a “tag” with each data value
Need to buffer instructions until they are ready to execute

o Insert instruction into reservation stations after renaming
Instructions need to keep track of readiness of source values
o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

. When all source values of an instruction are ready, need to

dispatch the instruction to its functional unit (FU)
o Instruction wakes up if all sources are ready
o If multiple instructions are awake, need to select one per FU

17

Tomasulo’s Algorithm for OoO Execution

000 with register renaming invented by Robert Tomasulo
o Used in IBM 360/91 Floating Point Units

o Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

What is the major difference today?
o Precise exceptions
o Provided by

Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

000 variants are used in most high-performance processors

o Initially in Intel Pentium Pro, AMD K5
o Alpha 21264, MIPS R10000, IBM POWERS, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15
18

Two Humps in a Modern Pipeline

TAG and VALUE Broadcast Bus

pd

g E Integer add R
H Integer mul E)
F D E E |E |E |E R
D FP mul D W
U E |E|E |E |E |E |E |E c
L
- E|E|E|E|E|E|E|E|sss [R
Load/store
in order out of order in order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

19

Two Humps in a Modern Pipeline

Photo credit: http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

General Organization of an OOQO Processor

pre- 1nstr.
decode cache

4

floating pt.

yiyy

register]
file
floating pt. . .
| mnstruction functional units
buffers S
) | memory
instr. |1 decode,) p
buffer : rename, mterface
L= &dispatch : , : o
|| L] integer/address functional units
mstruction and
buffers data cache |
integer M
register
file
Lo . |
—> re-order and commit

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.

21

Tomasulo’s Machine: IBM 360/91

: . : FP registers
from memory from instruction unit

load l l

buffers

store buffers

operation bus

|

to memory

reservation
stations

Common data bus

22

Register Renaming

Output and anti dependencies are not true dependencies

a WHY? The same register refers to values that have nothing to
do with each other

o They exist because not enough register ID’ s (i.e.
names) in the ISA

The register ID is renamed to the reservation station entry
that will hold the register’ s value

o Register ID - RS entry ID

o Architectural register ID - Physical register ID

o After renaming, RS entry ID used to refer to the register

This eliminates anti- and output- dependencies

o Approximates the performance effect of a large number of
registers even though ISA has a small number

23

Tomasulo’s Algorithm: Renaming

Register rename table (register alias table)

tag value valid?

—

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9

—] - — L G R § 2\ —— —_— -_—

Tomasulo’s Algorithm

If reservation station available before renaming

o Instruction + renamed operands (source value/tag) inserted into the
reservation station

o Only rename if reservation station is available
Else stall

While in reservation station, each instruction:

o Watches common data bus (CDB) for tag of its sources

o When tag seen, grab value for the source and keep it in the reservation station
o When both operands available, instruction ready to be dispatched

Dispatch instruction to the Functional Unit when instruction is ready

After instruction finishes in the Functional Unit
o Arbitrate for CDB
o Put tagged value onto CDB (tag broadcast)
o Register file is connected to the CDB
Register contains a tag indicating the latest writer to the register

If the tag in the register file matches the broadcast tag, write broadcast value
into register (and set valid bit)

o Reclaim rename tag
no valid copy of tag in system!

25

An BExercise

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2
R5 < R3, R4
R7 < R2, R6 FIDIE |W
R10 < R38, R9
R11 < R7, R10
R5 < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

a

a

in @ non-pipelined machine
in an in-order-dispatch pipelined machine with imprecise
exceptions (no forwarding and full forwarding)

in an out-of-order dispatch pipelined machine imprecise
exceptions (full forwarding)

26

Exercise Continued

MUl R),_R2,— R3

ADD R3,RLU— RS
POV R2LRE — RTF-
APY RS ,Rq — RAQ
Mul- R3> RIO - R4
ADY RS RN 5 RS

ML dwes & oycles
ARD tHees 4 oyoles

Huwv ooy eyotes tobpl wjo oldin

W/

”

Proeime Shudhwre,

= D B W
s L
oL ¥
Cycles
£

R

?

27

Exercise Continued

FD123454 W

FD-=-- - -D1234 W
Bovoo- - o D123 4 W
P EDI23 4 W
Els - =DI3 3156 W),
Eraa=as. B Dliz34 W
y/
Eveatin trwime. w| Scurcbeadng
3} oycles
FD123L,s 46w
FD PER 3Ly W
= D 4. 23 (%l
E D42 3 Ll _
F D Y422, & 6W
£= D s BT TG T Y,

— : 2 cleg

28

Exercise Continued

MUL R3 €< R1,R2
ADD R5 € R3, R4
ADD R7 € R2,R6
ADD R10 € R8,R9
MUL R11 € R7,R10
ADD RS € R5,R11

TMO§JO'S Glgotnen 5 f w

20 oyeles

29

How It Works

Registo AMios Table

r\’-——m Malue.,

\.*W

SReq

Sara. | o
V odag wnlve NV dog wvebe N dws vee v e,
Xy B | X da
Shdun 2\ i
for— e | |
FOPER. ol |

\ﬁ "t/ i“/! /

Voke iy

0030"9.
rAplrer e,

. Seprde
v.u..;g, P

Cycle 0

;‘y cle O -

Rl

| R1]

o e o 0

v velue
“ | Sl
2

- IniHal cndndxs of e
regEle okas jeble

~ regovon shies gre oll ynvelrd

31

MUl R, R2 — RA _resds 4% Soweces Ao bre RAT

Cycle 2 o2 il i)
(renunes = destrrchor, B

—2 allecoles o resenphun Shobn enbry
— allccotes ¢ tag frrhe deshrcimn
h.srsk/—
= plees sbs Sevas m e resevoin shien
vy b5 allccoteot .

End of oyle. 2.c
V. 48y e
Ry |1 = T al V 4oy velve /. vl
Re|l | —~ | a2 b Xl ~110 0] ~ 1z
RO X | —~ ; ¥
il il 4 l]
b—ﬂ
Yk
= * -
Ryt~ L

-—_ Mul. o} ¥ &MM#WCW‘Q_,
{ Wind- §f muitple. meinainng becomre recdy od-
—be,.sonch«c.)

bd'ho{lﬂ-s SowceS Gwe, Vold e e
Tesevinn siebren X _32

3/

— MuL o X shods oneation

~ AP R3S Rl RS cete renemeel ond plused mivhres

AV PRBR. rescnrelen Shlsens,

doy whe V Jey whe
O B B) s,

L],

7

L O o
‘nr-_:toc

cyolc Y

end of oyde 3
RI (1] ~ 1
R[]~ 2.
R3[0O]| X AL
eyl ~ 4
RSO a | ~
RL[1 | ~ &
RiIl)) | ~ 1

[N\

— ADD ot 0 cannd—be resdy +o eweote becase.
e Gf-rfs Swwteg (& nd- e
— T+ 15 wolng for Hie vale wihh e Fag X
b be bracdesst by he muL m X)

Agides Doeg Hre 4ug need 42 ke ocscomwkd win
e RS eviry of e Pridveer?
Avrnswer: No: 1'35 15 o tog for-dre udue o~

s Ccorvrprvmnifcoled .
/ RS 55 & ploce 4o held he rcinars
evebles dolo-floan Wihive hoy becore reody .

cyde 4+

end o foycle L
RET ~ Tt |
Ri |l | ~ z
o hr=te
il ~1Z
A?-._Q__b ~
_enll] — N

ADD R2,R6— RZ wxww ploced mbp RS @

|2

Soe 08 Oyde 3

£

" A s e
\ = . /
— ADD g+ b becores recdyin @eote.

(ba gowees cre reody!)
— Aropde S, i+ 18 gent & e adder cut-of-pregyaa

—-QIJ-ISOVQN‘C‘L‘C&‘M add ™M O

2 0 b

34

e'\dofwdc =+

v velve S pros ' & S
I 4:3 i 2 { 7 “ — 2‘ ;(rl ~ ’l 1| ~ 2z
*3.01 X dol a [~ oy~ Y& A e
rb[i [~ 17, - d
rs|0l o | 2’ \ " il N
e\ ~~ '
RE || —~ e \
K_c, [-~ L B ' ——
Rk.o C P '
RN Y 1~)

x Al & msindans perewved.
— Neoke whd- hoppert 40 RS

35

=
- MUl at X and ADD or b R

brvodcost 1rer fygeond voles

— RS orvhtesvwosimg fo- hese brgs cypbve e vohes
acdd sed Ne \Jolud bD—'oew"mﬂxf
—s (Whd—r3 reedded m HW o octmalich Hxe?)

- CAM on +ras tnd-oe brcodcost fo-all 2S
erbfes § Scmwces

- PRAT edries watng /zflfhcg hess Glse c:,obrt—ht.
Volves ond geb he oo s acar-dnrs/y

36

Some (Questions

What is needed in hardware to perform tag broadcast and
value capture?

- make a value valid
- wake up an instruction

Does the tag have to be the ID of the Reservation Station
Entry?

What can potentially become the critical path?
o Tag broadcast - value capture - instruction wake up

How can you reduce the potential critical paths?

37

Datatlow Graph tfor Our Example

MUL R3 €< R1,R2
ADD R5 ¢ R3,R4
ADD R7 € R2,R6
ADD R10 € R8,R9
MUL R11 € R7,R10
ADD RS € R5,R11

State of RAT and RS in Cycle 7

ehdofoydcq‘i

V}q.: vehe. o =

- SREERERE AT~ 1=
A§X’%—°'~g'”q)”0b~0ic,w
[38 il W 2 dipl a |~ JlOoly [~ {

ns.o__d__'v_lr \

e 1| ~ 6 N b &

RE || —~ Q \

RY | i q 0

R0 C A ;

N0l Y | ~

2 Al & msindans yereved .
— Neobe whd- hoppenaed 41 RS

39

Dataflow Graph

AOO R Ry—> rS (o)
Ao R8,R9 — R10 ()
APD RS,RA} — RS (d)

Dataflon oaph

Nedeo - Opohiens roformved oy T
Ares -

msiudhsen
Foss n Temesolo's algefbvg

40

Design of Digital Circuits
Lecture 16: Out-of-Order Execution

Prof. Onur Mutlu
ETH Zurich
Spring 2018

26 April 2018

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

An Exercise, with Precise Exceptions

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2
R5 < R3, R4
R7 < R2, R6 FIDIE|R|W
R10 < R38, R9
R11 < R7, R10
R5 < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

a

a

in @ non-pipelined machine

in an in-order-dispatch pipelined machine with reorder buffer
(no forwarding and full forwarding)

in an out-of-order dispatch pipelined machine with reorder
buffer (full forwarding)

43

Out-of-Order Execution with Precise Exceptions

Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

An instruction updates the RAT when it completes execution
o Also called frontend register file

An instruction updates a separate architectural register file
when it retires

o i.e., when it is the oldest in the machine and has completed
execution

o In other words, the architectural register file is always updated in
program order

On an exception: flush pipeline, copy architectural register file

into frontend register file
44

Out-of-Order Execution with Precise Exceptions

TAG and VALUE Broadcast Bus

pd

g E Integer add R
H Integer mul E)
F D E E |E |E |E R
D FP mul D W
U E |E|E |E |E |E |E |E c
L
- E|E|E|E|E|E|E|E|sss [R
Load/store
in order out of order in order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

45

Two Humps in a Modern Pipeline

Photo credit: http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

Modern OoO Execution w/ Precise Exceptions

Most modern processors use the following
Reorder buffer to support in-order retirement of instructions

A single register file to store all registers
o Both speculative and architectural registers
o INT and FP are still separate

Two register maps
o Future/frontend register map - used for renaming
o Architectural register map - used for maintaining precise state

47

An Example from Modern Processors

Pentium III ;5 NetBurst RF ROB
Data Status Data Status

Frontend RAT
E e V'V
E BV'V
FECX
EDX
RAT £S1
X ENl
EBX ESP
_ECX EBP <
EDX e ———— Nl LTS
ESI] PR SO
T Retirement RAT\.7 .
ESP E e VI ..----:..:'-.-.-.\‘nl
EBP EB S I N
N
EDX B PN, SBarems amtnamenn;
ES| """""":::_'M':::::)
— Tol TN D
——IRRF B
I— EBP I T
............................. >N

Boggs et al., "The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001. 48

Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
o Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

o Wakeup and select/schedule the instruction

49

Summary of OOQO Execution Concepts

Register renaming eliminates false dependencies, enables
linking of producer to consumers

Buffering enables the pipeline to move for independent ops

Tag broadcast enables communication (of readiness of
produced value) between instructions

Wakeup and select enables out-of-order dispatch

50

OO0 Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

o which piece?

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?
Why would we like to?

In other words, how can we have a large instruction
window?

Can we do it efficiently with Tomasulo’s algorithm?

51

Recall: Datatlow Graph for Our Example

MUL R3 €< R1,R2
ADD R5 ¢ R3,R4
ADD R7 € R2,R6
ADD R10 € R8,R9
MUL R11 € R7,R10
ADD RS € R5,R11

Recall: State of RAT and RS 1n Cycle 7

ehdofoydc =+

Vv volve.
1 24 4:3 |
R\ ~ T 2.
K3 X ~
‘“D__E_J‘ |
“ ~o
e 1| ~ 6
RE || —~ Q
RY | i q
gb'o C A
N0l Y | ~

Qe brs

x Al £ msindwns yereved .
— Noke whd= Rhopperaet 40 RS

53

Recall: Datatlow Graph

[Datafions oo
MUL. RJ ,R2.— R (X) —
AO0 RET Ry rg (o) Ncdee - opothions P forved o e
ADD R2 R — RF (b) MsHUGseN
Ao R8,R9 — R10 () Acs : fouss i Temesolo's algofvmg
mobL. RF RI0 — R [Y) - ke
APD RS, R4} — RS (d 22 29
||) Z e :
A3 R10 (&)
)
== |
RS
(a)

RS [(dY

54

Questions to Ponder

Why is 00O execution beneficial?
o What if all operations take single cycle?

o Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if an instruction takes 500 cycles?

o How large of an instruction window do we need to continue
decoding?

o How many cycles of latency can OoO tolerate?

a What limits the latency tolerance scalability of Tomasulo’s
algorithm?

Active/instruction window size: determined by both scheduling
window and reorder buffer size

55

General Organization of an OOQO Processor

pre- 1nstr.
decode cache

4

floating pt.

yiyy

register]
file
floating pt. . .
| mnstruction functional units
buffers S
) | memory
instr. |1 decode,) p
buffer : rename, mterface
L= &dispatch : , : o
|| L] integer/address functional units
mstruction and
buffers data cache |
integer M
register
file
Lo . |
—> re-order and commit

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.

56

A Modern OoO Design: Intel Pentium 4

Front-End BTB Instruction T wide
(4K Entries) TLB/Prefetcher sl
¥ Y™
Instruction Decoder Microcode
¥ ROM
e e B e el |
Hop - Pumped
I Allocator / Register Re‘namer | 3.2 GBIs
[Memory uop Queue | | Integer/Floating Point uop Queue . Bus
[Memory Scheduler | [Fast | [Slow/General FP Scheduler | [Simple FP Interface
Unit
| Integer Register File / Bypass Network e=»> FP Register / Bypass |
1 ry 4 A . .L‘ Y 7Y E
| Imy. 1]
AGU AGU 2x ALU ||| 2xALu || | stow ALu Fp L2 Cache
MMX Fp (256K Byte
Load Store Simple Simple Complex SSE Move 8-wa)
Address | | Address Instr. Instr. Instr. SSE2 y
| |
: . ¢ 48GB/s

L1 Data Cache (8Kbyte 4-way)

T

Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.

Figure 4: Pentium® 4 processor microarchitecture

/

Intel Penttum 4 Simplified

Mutlu+, “Runahead Execution,”

Checkpointed
H PCA 2003 oy Architectural
P FP Register File
FP = PHYSICAL|{—= EXEC
REORDER
* BUFFER
TRACE Frontend INT ’ 2 [T
(i;.;fél}f op Queue RAT Int Uop Queue S CHEDULER NT - .
UNIT PHYSICAL || |UNITS
RENAMER / REG. FILE OhR i
[i
Lo em Uop Queu MEM 4 GEN - |
o SCHEDULER UNITS L1
- N (] | | e
' SR ! R I E | Selectiop RAT
* | Stream—based : === - Logif
:) : Hardware f@------ 1| ! | —
nstruction I I
Prefetcher] 1
Decoder ! ¢ | | ! | | STORE
! | : . BUFFER
: v | | |
1 : | | :
i ---» L2 Access Queue - — e : !
| |
| T
| % e eee.-—-———— [S —— I
1]
: ¥ ! RUNAHEAD
I CACHE
From memory
L2 CACHE = o e e e oo
Front Side Bus To memory
_______________ = Access Queue [T

Alpha 21264

Rename Issue Register read Execute ; Memory
Gl 2 3 4 5 6
Integer
: Integer |- integer execution
| Branch Integer | issue Fegsier - Addr
| predictor register f~#- queue [=» file Integer | "™
rename | : (20 : (80) execution |
AR B entries)
B & Level-
; : Data
- Integer Integer cache | th _
e T : : . execution | - (64 Kbytes, [™| cache 1
: Lpmi register : ~+ 7 land system|
: é file Addr| two-way) interfface |
: 5 Integer | 5.
IO R M (80) execution |
Line/set | | A
prediction [~ i i<
Init;zﬁteion g Floating- Flgﬁ?;&g- Floating- Floating-point
LR int : ! : iol i
oiToven = fom, | e [poil [T ey ot
two-way) rename qaes“;e file Floating-point
: (72) add execution

Figure 2. Stages of the Alpha 21264 instmctibglpi.'

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

59

MIPS R10000

External interface

Data cache refill and write-back

B-bit physical register numbers
A

6-bit data paths

|
Syslem ?
interface s -
| (64 bits)
Secondary
cache ctlr. |t
| (128 bits)
B
i . Instr.
Instr. : cache
cecod® m| Koytes)
l_—]
Instruction
cache refill

-

instruction fetch

~

r N
- c Sk (ol '
. FPadder |
FP Tile Align | Add/N | Pack |
— - queue ‘ R Fr-\» ::rn; T“-’ff_v‘_.'._".:f : ;;zz"léiﬁ :
(16 (64x64) A R T H
. - - b FP multiplier
Register renaming entries) —1 5 read :
5 write Mul(| Sum.l\.l Pack :
Ac::it;.le Free | ¢ Busz"b"
('32 —=| register tables
! . lists Load
ﬁntr:es;] - ' StO'e
_\\L Address |*| ™| Load
- Instz, Registor| | dUeUe Store ORI]
| decode | gl nigp e (16 Irlffr.;g\;;er » 1 Ad dress':: 5
Branch | tables entrigs) [—m re-‘.?.nlster Y ale [
. _~_> ile e
e ff
Instruction decode Integer 7reag |
, | dueue 3 write
(16 |
entrics) | g

5-bit logical register numbers

(@)

instruction i issue

5 pipelined execution umts

Yeager, “The MIPS R10000 Superscalar Mlcroprocessor” IEEE Mlcro April 1996

IBM POWERA4

= Tendler et al.,
“POWER4 system
microarchitecture,”
IBM J R&D, 2002.

IBM POWER4

2 cores, out-of-order execution

100-entry instruction window in each core
8-wide instruction fetch, issue, execute
Large, local+global hybrid branch predictor
1.5MB, 8-way L2 cache

Aggressive stream based prefetching

62

IBM POWERS5

= Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

. Dynamic
! Branch prediction J instruction
t selection
Shared Sharqd
Program Branch| || Return| | Target - execution
counter nistory | li| stack | | cache queues units
tables LSUO
Sz Allernate [Fxuol
Instruction LSU1
. buffer 0 Group formation - . = =
Inzt;gggon Instruction decode [— ¢ g * s EXUTl—= =
Dispatch FPUOD!
Instruction
translation [FB‘::}]
TQread CRL
priority Shared- Read Write
reqister shared- shared-
mappers register files reqister files
[—)Shared by two threads [0) Thread 0 resources [l Thread 1 resources

Data Data

translation | |cache
L2

cache

Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).

03

Handling Out-of-Order Execution
of LLoads and Stores

Recall: Registers versus Memory

So far, we considered mainly registers as part of state
What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)

65

Memory Dependence Handling (I)

Need to obey memory dependences in an out-of-order
machine

o and need to do so while providing high performance

Observation and Problem: Memory address is not known until
a load/store executes

Corollary 1: Renaming memory addresses is difficult

Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their (partial) execution

Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

06

Memory Dependence Handling (1I)

When do you schedule a load instruction in an OOO engine?

o Problem: A younger load can have its address ready before an
older store’s address is known

o Known as the memory disambiguation problem or the unknown
address problem

Approaches

o Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

o Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

o Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store

67

Handling of Store-l.oad Dependences

A load’ s dependence status is not known until all previous store
addresses are available.

How does the OO0 engine detect dependence of a load instruction on a
previous store?

o Option 1: Wait until all previous stores committed (no need to check
for address match)

o Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the OO0 engine treat the scheduling of a load instruction wrt
previous stores?

o Option 1: Assume load dependent on all previous stores
o Option 2: Assume load independent of all previous stores
o Option 3: Predict the dependence of a load on an outstanding store

068

Memory Disambiguation (I)

Option 1: Assume load dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 2: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction
o Alpha 21264 : Initially assume load independent, delay loads found to be dependent

a Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

o Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.
69

Memory Disambiguation (II)

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

IPC
O = NWHA G O

xlisp [EEaCmes

swim
tomcatv
turb3d R
vortex
wave

ljpeg
88ksim
mgrid SR
perl prim
perl scr Eetees

compress Eaa

‘ano speculaﬁbﬁ naive spéculatiOn [} ﬁerfect |

Predicting store-load dependencies important for performance

Simple predictors (based on past history) can achieve most of
the potential performance

70

Data Forwarding Between Stores and Loads

We cannot update memory out of program order
- Need to buffer all store and load instructions in instruction window

Even if we know all addresses of past stores when we
generate the address of a load, two questions still remain:

1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

Modern processors use a LQ (load queue) and an SQ for this
o Can be combined or separate between loads and stores

o A load searches the SQ after it computes its address. Why?

o A store searches the LQ after it computes its address. Why?

71

Out-of-Order Completion of Memory Ops

When a store instruction finishes execution, it writes its
address and data in its reorder buffer entry

When a later load instruction generates its address, it:
o searches the reorder buffer (or the SQ) with its address
o accesses memory with its address

o receives the value from the youngest older instruction that
wrote to that address (either from ROB or memory)

This is a complicated “search logic” implemented as a
Content Addressable Memory

o Content is "memory address” (but also need size and age)
o Called store-to-load forwarding logic

72

Store-l.oad Forwarding Complexity

Content Addressable Search (based on Load Address)
Range Search (based on Address and Size)
Age-Based Search (for last written values)

Load data can come from a combination of
o One or more stores in the Store Buffer (5Q)
o Memory/cache

73

Food for Thought for You

Many other design choices for Oo0O engines

Should reservation stations be centralized or distributed
across functional units?

o What are the tradeoffs?

Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?

o What are the tradeoffs?

Exactly when does an instruction broadcast its tag?

74

