Design of Digital Circuits
Lecture 17: Out-of-Ozrder,
DataFlow, Superscalar Execution

Prof. Onur Mutlu
ETH Zurich
Spring 2018

27 April 2018

Agenda for Today & Next Few Lectures

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

s QOut-of-Order Execution

= Other Execution Paradigms

Reminder: Optional Homeworks

= Posted online
o 3 Optional Homeworks

= Optional
= Good for your learning

= https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id
=homeworks

Readings for Today

Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
a Out-of-order and superscalar execution concepts

H&H Chapters 7.8 and 7.9

Optional:
o Kessler, "The Alpha 21264 Microprocessor,” IEEE Micro 1999.

Lecture Announcement

= Monday, April 30, 2018

= 16:15-17:15

= CABG61

= Apéro after the lecture ©

= Prof. Wen-Mei Hwu (University of Illinois at Urbana-Champaign)

= D-INFK Distinguished Colloquium

= Innovative Applications and Technology Pivots —
A Perfect Storm in Computing

= https://www.inf.ethz.ch/news-and-
events/colloguium/event-detail.html?eventFeedld=40447

General Suggestion

= Attend the Computer Science Distinguished Colloquia

= Happens on some Mondays
o 16:15-17:15, followed by an apero

s https://www.inf.ethz.ch/news-and-events/colloguium.html

= Great way of learning about key developments in the field
o And, meeting leading researchers

Out-of-Order Execution
(Dynamic Instruction Scheduling)

Review: Dataflow Graph tfor Our Example

MUL R3 €< R1,R2
ADD R5 ¢ R3,R4
ADD R7 € R2,R6
ADD R10 € R8,R9
MUL R11 € R7,R10
ADD RS € R5,R11

Review: State of RAT and RS in Cycle 7

ehdofoydc =+

Vv volve.
1 24 4:3 |
R\ ~ T 2.
K3 X ~
‘“D__E_J‘ |
“ ~o
e 1| ~ 6
RE || —~ Q
RY | i q
gb'o C A
N0l Y | ~

Qe brs

x Al £ msindwns yereved .
— Noke whd= Rhopperaet 40 RS

Review: Corresponding Dataflow Graph

[Datafions oo
MUL. RJ ,R2.— R (X) 273
AOO R3 Ry —> rG (o) Ncdee: ppotioms pofomed &y e
ADD R2,R6E — RF (b) MsHudsen
Ao R8,R9 — R10 () Acs : fouss i Temesolo's algofvmg
mol. RF RI0 — R [y
i [- L Ke

APD RS,RA1 — RS (d) /;QZ-\
' A3 kL
1] (x) Z
1 + |

£\

RS [dY

Some More Questions (Design Choices)
When is a reservation station entry deallocated?
Exactly when does an instruction broadcast its tag?

Should the reservation stations be dedicated to each
functional unit or global across functional units?

o Centralized vs. Distributed: What are the tradeoffs?

Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?

o What are the tradeoffs?

Many other design choices for OoO engines

11

For You: An Exercise, w/ Precise Exceptions

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2
R5 < R3, R4
R7 < R2, R6 FIDIE|R|W
R10 < R38, R9
R11 < R7, R10
R5 < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

a

a

in @ non-pipelined machine

in an in-order-dispatch pipelined machine with reorder buffer
(no forwarding and full forwarding)

in an out-of-order dispatch pipelined machine with reorder
buffer (full forwarding)

12

Out-of-Order Execution with Precise Exceptions

Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

An instruction updates the RAT when it completes execution
o Also called frontend register file

An instruction updates a separate architectural register file
when it retires

o i.e., when it is the oldest in the machine and has completed
execution

o In other words, the architectural register file is always updated in
program order

On an exception: flush pipeline, copy architectural register file

into frontend register file
13

Out-of-Order Execution with Precise Exceptions

TAG and VALUE Broadcast Bus

pd

g E Integer add R
H Integer mul E)
F D E E |E |E |E R
D FP mul D W
U E |E|E |E |E |E |E |E c
L
- E|E|E|E|E|E|E|E|sss [R
Load/store
in order out of order in order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

14

Two Humps in a Modern Pipeline

Photo credit: http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

Modern OoO Execution w/ Precise Exceptions

Most modern processors use the following
Reorder buffer to support in-order retirement of instructions

A single register file to store all registers
o Both speculative and architectural registers
o INT and FP are still separate

Two register maps
o Future/frontend register map - used for renaming
o Architectural register map - used for maintaining precise state

16

An Example from Modern Processors

Pentium III ;5 NetBurst RF ROB
Data Status Data Status

Frontend RAT
E e V'V
E BV'V
FECX
EDX
RAT £S1
X ENl
EBX ESP
_ECX EBP <
EDX e ———— Nl LTS
ESI] PR SO
T Retirement RAT\.7 .
ESP E e VI ..----:..:'-.-.-.\‘nl
EBP EB S I N
N
EDX B PN, SBarems amtnamenn;
ES| """""":::_'M':::::)
— Tol TN D
——IRRF B
I— EBP I T
............................. >N

Boggs et al., "The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001. 17

Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
o Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

o Wakeup and select/schedule the instruction

18

Summary of OOQO Execution Concepts

Register renaming eliminates false dependencies, enables
linking of producer to consumers

Buffering enables the pipeline to move for independent ops

Tag broadcast enables communication (of readiness of
produced value) between instructions

Wakeup and select enables out-of-order dispatch

19

OO0 Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

o which piece?

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?
Why would we like to?

In other words, how can we have a large instruction
window?

Can we do it efficiently with Tomasulo’s algorithm?

20

Recall: Datatlow Graph for Our Example

MUL R3 €< R1,R2
ADD R5 ¢ R3,R4
ADD R7 € R2,R6
ADD R10 € R8,R9
MUL R11 € R7,R10
ADD RS € R5,R11

Recall: State of RAT and RS 1n Cycle 7

ehdofoydc =+

Vv volve.
1 24 4:3 |
R\ ~ T 2.
K3 X ~
‘“D__E_J‘ |
“ ~o
e 1| ~ 6
RE || —~ Q
RY | i q
gb'o C A
N0l Y | ~

Qe brs

x Al £ msindwns yereved .
— Noke whd= Rhopperaet 40 RS

22

Recall: Datatlow Graph

[Datafions oo
MUL. RJ ,R2.— R (X) —
AO0 RET Ry rg (o) Ncdee - opothions P forved o e
ADD R2 R — RF (b) MsHUGseN
Ao R8,R9 — R10 () Acs : fouss i Temesolo's algofvmg
mobL. RF RI0 — R [Y) - ke
APD RS, R4} — RS (d 22 29
||) Z e :
A3 R10 (&)
)
== |
RS
(a)

RS [(dY

23

Questions to Ponder

Why is 00O execution beneficial?
o What if all operations take a single cycle?

o Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if an instruction takes 500 cycles?

o How large of an instruction window do we need to continue
decoding?

o How many cycles of latency can OoO tolerate?

a What limits the latency tolerance scalability of Tomasulo’s
algorithm?

Active/instruction window size: determined by both scheduling
window and reorder buffer size

24

General Organization of an OOQO Processor

pre- 1nstr.
decode cache

4

floating pt.

yiyy

register]
file
floating pt. . .
| mnstruction functional units
buffers S
) | memory
instr. |1 decode,) p
buffer : rename, mterface
L= &dispatch : , : o
|| L] integer/address functional units
mstruction and
buffers data cache |
integer M
register
file
Lo . |
—> re-order and commit

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.

25

A Modern OoO Design: Intel Pentium 4

Front-End BTB Instruction T wide
(4K Entries) TLB/Prefetcher sl
¥ Y™
Instruction Decoder Microcode
¥ ROM
e e B e el |
Hop - Pumped
I Allocator / Register Re‘namer | 3.2 GBIs
[Memory uop Queue | | Integer/Floating Point uop Queue . Bus
[Memory Scheduler | [Fast | [Slow/General FP Scheduler | [Simple FP Interface
Unit
| Integer Register File / Bypass Network e=»> FP Register / Bypass |
1 ry 4 A . .L‘ Y 7Y E
| Imy. 1]
AGU AGU 2x ALU ||| 2xALu || | stow ALu Fp L2 Cache
MMX Fp (256K Byte
Load Store Simple Simple Complex SSE Move 8-wa)
Address | | Address Instr. Instr. Instr. SSE2 y
| |
: . ¢ 48GB/s

L1 Data Cache (8Kbyte 4-way)

T

Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001T.

Figure 4: Pentium® 4 processor microarchitecture

N

Intel Penttum 4 Simplified

Mutlu+, “Runahead Execution,”

Checkpointed
H PCA 2003 oy Architectural
P FP Register File
FP = PHYSICAL|{—= EXEC
REORDER
* BUFFER
TRACE Frontend INT ’ 2 [T
(i;.;fél}f op Queue RAT Int Uop Queue S CHEDULER NT - .
UNIT PHYSICAL || |UNITS
RENAMER / REG. FILE OhR i
[i
Lo em Uop Queu MEM 4 GEN - |
o SCHEDULER UNITS L1
- N (] | | e
' SR ! R I E | Selectiop RAT
* | Stream—based : === - Logif
:) : Hardware f@------ 1| ! | —
nstruction I I
Prefetcher] 1
Decoder ! ¢ | | ! | | STORE
! | : . BUFFER
: v | | |
1 : | | :
i ---» L2 Access Queue - — e : !
| |
| T
| % e eee.-—-———— [S —— I
1]
: ¥ ! RUNAHEAD
I CACHE
From memory
L2 CACHE = o e e e oo
Front Side Bus To memory
_______________ = Access Queue [T

Alpha 21264

Rename Issue Register read Execute ; Memory
Gl 2 3 4 5 6
Integer
: Integer |- integer execution
| Branch Integer | issue Fegsier - Addr
| predictor register f~#- queue [=» file Integer | "™
rename | : (20 : (80) execution |
AR B entries)
B & Level-
; : Data
- Integer Integer cache | th _
e T : : . execution | - (64 Kbytes, [™| cache 1
: Lpmi register : ~+ 7 land system|
: é file Addr| two-way) interfface |
: 5 Integer | 5.
IO R M (80) execution |
Line/set | | A
prediction [~ i i<
Init;zﬁteion g Floating- Flgﬁ?;&g- Floating- Floating-point
LR int : ! : iol i
oiToven = fom, | e [poil [T ey ot
two-way) rename qaes“;e file Floating-point
: (72) add execution

Figure 2. Stages of the Alpha 21264 instmctibglpi.'

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

28

MIPS R10000

External interface

Data cache refill and write-back

B-bit physical register numbers
A

6-bit data paths

|
Syslem ?
interface s -
| (64 bits)
Secondary
cache ctlr. |t
| (128 bits)
B
i . Instr.
Instr. : cache
cecod® m| Koytes)
l_—]
Instruction
cache refill

-

instruction fetch

~

r N
- c Sk (ol '
. FPadder |
FP Tile Align | Add/N | Pack |
— - queue ‘ R Fr-\» ::rn; T“-’ff_v‘_.'._".:f : ;;zz"léiﬁ :
(16 (64x64) A R T H
. - - b FP multiplier
Register renaming entries) —1 5 read :
5 write Mul(| Sum.l\.l Pack :
Ac::it;.le Free | ¢ Busz"b"
('32 —=| register tables
! . lists Load
ﬁntr:es;] - ' StO'e
_\\L Address |*| ™| Load
- Instz, Registor| | dUeUe Store ORI]
| decode | gl nigp e (16 Irlffr.;g\;;er » 1 Ad dress':: 5
Branch | tables entrigs) [—m re-‘.?.nlster Y ale [
. _~_> ile e
e ff
Instruction decode Integer 7reag |
, | dueue 3 write
(16 |
entrics) | g

5-bit logical register numbers

(@)

instruction i issue

5 pipelined execution umts

Yeager, “The MIPS R10000 Superscalar Mlcroprocessor” IEEE Mlcro April 1996

IBM POWERA4

= Tendler et al.,
“POWER4 system
microarchitecture,”
IBM J R&D, 2002.

IBM POWER4

2 cores, out-of-order execution

100-entry instruction window in each core
8-wide instruction fetch, issue, execute
Large, local+global hybrid branch predictor
1.5MB, 8-way L2 cache

Aggressive stream based prefetching

31

IBM POWERS5

= Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

. Dynamic
! Branch prediction J instruction
t selection
Shared Sharqd
Program Branch| || Return| | Target - execution
counter nistory | li| stack | | cache queues units
tables LSUO
Sz Allernate [Fxuol
Instruction LSU1
. buffer 0 Group formation - . = =
Inzt;gggon Instruction decode [— ¢ g * s EXUTl—= =
Dispatch FPUOD!
Instruction
translation [FB‘::}]
TQread CRL
priority Shared- Read Write
reqister shared- shared-
mappers register files reqister files
[—)Shared by two threads [0) Thread 0 resources [l Thread 1 resources

Data Data

translation | |cache
L2

cache

Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).

32

Handling Out-of-Order Execution
of LLoads and Stores

Registers versus Memory

So far, we considered mainly registers as part of state
What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)

34

Memory Dependence Handling (I)

Need to obey memory dependences in an out-of-order
machine

o and need to do so while providing high performance

Observation and Problem: Memory address is not known until
a load/store executes

Corollary 1: Renaming memory addresses is difficult

Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their (partial) execution

Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

35

Memory Dependence Handling (1I)

When do you schedule a load instruction in an OOO engine?

o Problem: A younger load can have its address ready before an
older store’s address is known

o Known as the memory disambiguation problem or the unknown
address problem

Approaches

o Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

o Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

o Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store

36

Handling of Store-l.oad Dependences

A load’s dependence status is not known until all previous store
addresses are available.

How does the OO0 engine detect dependence of a load instruction on a
previous store?

o Option 1: Wait until all previous stores committed (no need to check
for address match)

o Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the OO0 engine treat the scheduling of a load instruction wrt
previous stores?

o Option 1: Assume load dependent on all previous stores
o Option 2: Assume load independent of all previous stores
o Option 3: Predict the dependence of a load on an outstanding store

37

Memory Disambiguation (I)

Option 1: Assume load is dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 2: Assume load is independent of all previous stores

+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction
o Alpha 21264 : Initially assume load independent, delay loads found to be dependent

a Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

o Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.
38

Memory Disambiguation (II)

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

IPC
O = NWHA G O

xlisp [EEaCmes

swim
tomcatv
turb3d R
vortex
wave

ljpeg
88ksim
mgrid SR
perl prim
perl scr Eetees

compress Eaa

‘ano speculaﬁbﬁ naive spéculatiOn [} ﬁerfect |

Predicting store-load dependencies important for performance

Simple predictors (based on past history) can achieve most of
the potential performance

39

Data Forwarding Between Stores and Loads

We cannot update memory out of program order
- Need to buffer all store and load instructions in instruction window

Even if we know all addresses of past stores when we
generate the address of a load, two questions still remain:

1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

Modern processors use a LQ (load queue) and an SQ for this
o Can be combined or separate between loads and stores

o A load searches the SQ after it computes its address. Why?

o A store searches the LQ after it computes its address. Why?

40

Out-of-Order Completion of Memory Ops

When a store instruction finishes execution, it writes its
address and data in its reorder buffer entry

When a later load instruction generates its address, it:
o searches the reorder buffer (or the SQ) with its address
o accesses memory with its address

o receives the value from the youngest older instruction that
wrote to that address (either from ROB or memory)

This is a complicated “search logic” implemented as a
Content Addressable Memory

o Content is "memory address” (but also need size and age)
o Called store-to-load forwarding logic

41

Store-l.oad Forwarding Complexity

Content Addressable Search (based on Load Address)

Range Search (based on Address and Size of both the Load
and earlier Stores)

Age-Based Search (for last written values)

Load data can come from a combination of multiple places
o One or more stores in the Store Buffer (SQ)
o Memory/cache

42

Other Approaches to Concurrency
(or Instruction Level Parallelism)

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUS)
= Decoupled Access Execute

= Systolic Arrays

44

Review: Data Flow:
Exploiting Irregular Parallelism

Data Flow Summary

Availability of data determines order of execution
A data flow node fires when its sources are ready
Programs represented as data flow graphs (of nodes)

Data Flow at the ISA level has not been (as) successful

Data Flow implementations under the hood (while
preserving sequential ISA semantics) have been very
successful

o Out of order execution is the prime example

46

Pure Data Flow Advantages/Disadvantages

Advantages

o Very good at exploiting irregular parallelism

o Only real dependencies constrain processing

o More parallelism can be exposed than von Neumann model

Disadvantages

2 No precise state semantics
Debugging very difficult

Interrupt/exception handling is difficult (what is precise state
semantics?)

o Too much parallelism? (Parallelism control needed)
o High bookkeeping overhead (tag matching, data storage)

Q ...
47

Approaches to (Instruction-Level) Concurrency

= Pipelining

= QOut-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUS)
= Decoupled Access Execute

= Systolic Arrays

48

Superscalar Execution

Superscalar Execution

Idea: Fetch, decode, execute, retire multiple instructions
per cycle

o N-wide superscalar = N instructions per cycle
Need to add the hardware resources for doing so

Hardware performs the dependence checking between
concurrently-fetched instructions

Superscalar execution and out-of-order execution are
orthogonal concepts

o Can have all four combinations of processors:
[in-order, out-of-order] x [scalar, superscalar]

50

In-Order Superscalar Processor Example

m Multiple copies of datapath: Can issue multiple
instructions at per cycle

m Dependencies make it tricky to issue multiple instructions
at once

CLK CLK CLK CLK
CLK _
PC RD A1 I_
- A2
A = A3 RD1 h =
Ad RD4 8 A1 RD1
Instruction |: A5 Register %4 A2 RD2 J_
Memory A6 File ~ RD2 < Data
RD5
wes 11— Memory
WD1
WD2

Here: Ideal IPC = 2

In-Order Superscalar Performance Example

lw $t6, 40(3$s0) Ideal IPC = 2
add $t1, $s1, $s2

sub $t2, $s1, $s3
and $t3, $s3, $s4
or 9$t4, $s1, $s5
sw $s5, 80($s09)

1 2 3 4 5 6 7 8
|
Time (cycles)
¥ $s0f M Y
1w $t0, 40($s0) — 40 :B— —
M RF [5s1 U oa|BF
add $tl1, sl, Ss2 2dd 52 :B— ||
Y 55107 Y Mo
sub $t2, $sl, $s3 == :B— —
IM RF [5s3 DM - RF
and $t3, $s3, $s4 nd -[Ss4 :B— -
Y 5512 M Mo
or $td4, S$sl, $sb5 -[$s5 :D— A
M RF [550 E'Vé RF
S
sw $s5, 80(5s0) Sy -[80 :B— -

Actual IPC = 2 (6 instructions issued in 3 cycles)

Superscalar Performance with Dependencies

or

lw $to,
add $t1,
sub $t0,
and $t2,
$t3,
sw $s7,

40($s0)
$t0, $s1
$s2, $s3
$s4, $t0
$s5, $s6
80($t3)

1w

add

sub

and

or

SW

$t0, 40($s0)

st1, , $s1

$t0, $s2,

$s3

st

$t3, S$s5,

$s7, 80

$s6

)

Ideal IPC = 2

6 7 8 9

1w

DM

Time (cycles)

7$t0

RF

H
[
==

RF

<7$t1

DM RF
5t0

St3

M

$s4v¢8 Y Ms: o
stol wp & —
DM RF
2]
/

<) L

sw N SE3R v ss71] M

80 1
RF DM RF

==

Actual IPC = 1.2 (6 instructions issued in 5 cycles)

Superscalar Tradeofts

Advantages
o Higher IPC (instructions per cycle)

Disadvantages
o Higher complexity for dependency checking

Require checking within a pipeline stage

Renaming becomes more complex in an OoO processor
o More hardware resources needed

54

Design of Digital Circuits
Lecture 17: Out-of-Ozrder,
DataFlow, Superscalar Execution

Prof. Onur Mutlu
ETH Zurich
Spring 2018

27 April 2018

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUS)
= Decoupled Access Execute

= Systolic Arrays

57

VLIW

VLIW Concept

Superscalar

o Hardware fetches multiple instructions and checks
dependencies between them

VLIW (Very Long Instruction Word)

a Software (compiler) packs independent instructions in a larger
“instruction bundle” to be fetched and executed concurrently

o Hardware fetches and executes the instructions in the bundle
concurrently

No need for hardware dependency checking between
concurrently-fetched instructions in the VLIW model

59

VLIW Concept

Memory

add r1.r2,r3 load r4,r5+4 mov r6,r2 mul r7.r8.r9

Erograml
ounter

Instruction
Execution

= Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

o ELI: Enormously longword instructions (512 bits)

60

VLIW (Very Long Instruction Word)

A very long instruction word consists of multiple
independent instructions packed together by the compiler

o Packed instructions can be logically unrelated (contrast with
SIMD/vector processors, which we will see soon)

Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
Instruction

Traditional Characteristics
o Multiple functional units
o All instructions in a bundle are executed in lock step

o Instructions in a bundle statically aligned to be directly fed

into the functional units
61

VLIW Performance Example (2-wide bundles)

lw $t6, 40(3$s0) Ideal IPC = 2
add $t1, $s1, $s2

sub $t2, $s1, $s3
and $t3, $s3, $s4
or 9$t4, $s1, $s5
sw $s5, 80($s09)

1 2 3 4 5 6 7 8
|
Time (cycles)
¥ $s0f M Y
lw $t0, 40($s0) — 40 :B— —
IM RF [5s1 U oa|BF
add $t1, $s1, $s2 add > :B— ||
Y 55107 Y Mo
sub $t2, $sl, $s3 =l e :B— —
IM RF [5s3 DM - RF
and $t3, $s3, $s4 and -[Ss4 :B— -
Y 5512 Y Mo
or $td4, S$sl, $sb5 -[$s5 :D— A
M RF [550 E'Vé RF
S
sw $s5, 80(5s0) Sy -[80 :B— -

Actual IPC = 2 (6 instructions issued in 3 cycles)

VLIW Lock-Step Execution

Lock-step (all or none) execution: If any operation in a
VLIW instruction stalls, all instructions stall

In a truly VLIW machine, the compiler handles all
dependency-related stalls, hardware does not perform
dependency checking

o What about variable latency operations?

03

VLIW Philosophy

Philosophy similar to RISC (simple instructions and hardware)
o Except multiple instructions in parallel

RISC (John Cocke, 1970s, IBM 801 minicomputer)

o Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

And, to reorder simple instructions for high performance
o Hardware does little translation/decoding - very simple

VLIW (Josh Fisher, ISCA 1983)
o Compiler does the hard work to find instruction level parallelism

o Hardware stays as simple and streamlined as possible
Executes each instruction in a bundle in lock step

Simple = higher frequency, easier to design
64

Commercial VLIW Machines

Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

Cydrome Cydra 5, Bob Rau

Transmeta Crusoe: x86 binary-translated into internal VLIW
TI C6000, Trimedia, STMicro (DSP & embedded processors)
o Most successful commercially

Intel TA-64

o Not fully VLIW, but based on VLIW principles

o EPIC (Explicitly Parallel Instruction Computing)

o Instruction bundles can have dependent instructions

o A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

65

VLIW Tradeoffs

Advantages
+ No need for dynamic scheduling hardware - simple hardware

+ No need for dependency checking within a VLIW instruction -
simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units = simple hardware

Disadvantages

-- Compiler needs to find N independent operations per cycle
-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
66

VLIW Summary

VLIW simplifies hardware, but requires complex compiler
techniques

Solely-compiler approach of VLIW has several downsides
that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

o Enable code optimizations

++ VLIW successful when parallelism is easier to find by the

compiler (traditionally embedded markets, DSPs)
67

An Example Work: Superblock

The Superblock: An Effective Technique

for VLIW and Superscalar Compilation

Wen-mei W. Hwu Scott A. Mahlke William Y. Chen Pohua P. Chang
Nancy J. Warter Roger A. Bringmann Roland G. Ouellette Richard E. Hank

Tokuzo Kiyohara Grant E. Haab John G. Holm Daniel M. Lavery *

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.

The Journal of Supercomputing, 1993.

= Lecture Video on Static Instruction Scheduling
o https://www.youtube.com/watch?v=isBEVKIjgGA

068

Another Example Work: IMPACT

Pohua P. Chang

IMPACT: An Architectural Framework for

Multiple-Instruction-Issue Processors

Scott A. Mahlke William Y. Chen Nancy J. Warter

Center for Reliable and High-Performance Computing
University of Illinois
Urbana, IL 61801

The performance of multiple-instruction-issue processors
can be severely limited by the compiler’s ability to gen-
erate efficient code for concurrent hardware. In the IM-
PACT project, we have developed IMPACT-I, a highly
optimizing C compiler to exploit instruction level concur-
rency. The optimization capabilities of the IMPACT-I
(C compiler are summarized in this paper. Using the
IMPACT-I C compiler, we ran experiments to analyze
the performance of multiple-instruction-issue processors ex-
ecuting some important non-numerical programs. The
multiple-instruction-issue processors achieve solid speedup
over high-performance single-instruction-issue processors.

Wen-me: W. Hwu

Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991. 69

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUS)
= Decoupled Access Execute

= Systolic Arrays

70

Recall: How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences

o Detect and wait until value is available in register file

o Detect and forward/bypass data to dependent instruction

o Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence

o Predict the needed value(s), execute “speculatively”, and verify

o Do something else (fine-grained multithreading)
No need to detect

71

Fine-Grained Multithreading

Fine-Grained Multithreading

= Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for handling control and | nstruction Fetch

Stream 2 Instruction

data dependences within a thread Operand Fetch

Stream 1 Instruction
Executicn Phase

-- Single thread performance suffers e A Tnstraction
. - Execution Phase
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough
.) Stream 4 Instruction
threads to cover the whole pipeline Result Store

73

Fine-Grained Multithreading (II)

Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

74

Fine-Grained Multithreading: History

CDC 6600’ s peripheral processing unit is fine-grained
multithreaded

o Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
o Processor executes a different I/O thread every cycle

o An operation from the same thread is executed every 10 cycles

Denelcor HEP (Heterogeneous Element Processor)
Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
120 threads/processor

available queue vs. unavailable (waiting) queue for threads

each thread can have only 1 instruction in the processor pipeline; each thread
independent

to each thread, processor looks like a non-pipelined machine
o system throughput vs. single thread performance tradeoff

o O 0O O

(W

75

Fine-Grained Multithreading in HEP

FROM DATA MEMORY TO DATA MEMORY

= Cycle time: 100ns VIA SWITCH VIA SWITCH

QUEUE

= 8 stages - 800 ns to

PERFORM
complete an FUNCTION
Instruction

. PERFORM
a assuming no memory FUNCTION
access

REGISTER
MEMORY

STORE
RESULT

FETCH
OPERANDS

= No control and data
dependency checking

C FETCH > e
] INSTRUCTION '
Burton Smith

(1941-2018) I

PROGRAM
MEMORY

AN

Multithreaded Pipeline Example

_ — : > X >
N — 1$ —(IR—I gpR1 =
1 A g Y g
n N |
+1}
A

_‘u II :I_l ,’ :l_l
2 Thread N 2 W

select

Slide credit: Joel Emer 77

Sun Niagara Mult

ded Pipeline

e CcOde

<— Instruction type
<+—— Misses
<——— Traps and interrupty

Crossbar
Interface

Resource conflicts

Kongetira et al., "Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

78

Fine-grained Multithreading

Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, ...), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
79

Modern GPUs are
FGMT Machines

NVIDIA GeForce GTX 285 “core’”

64 KB of storage
for thread contexts

.

= multiply-add
B = multiply

| = data-parallel (SIMD) func. unit,
control shared across 8 units

(registers)

- = 1nstruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian

81

NVIDIA GeForce GTX 285 “core’”

64 KB of storage

for thread contexts
(registers)

-

= Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

= Up to 32 warps are interleaved in an FGMT manner
= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

82

NVIDIA GeForce GTX 285

[=]=] | [=]=]{[=]=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=[=]{[=]=] [=[=]| [=]=]|

 [=[=]{[=]=]| [=[=]| [=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=[=]{[=]=] [=[=]| [=]=]|

| [T=] [T [wT=] | [<T]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

[=]=]1{ [=I=]{ [=I=]{ [=]=]|

| [=]=]{[=I=]{[=I=]| [=]=]|

CLirtr--T111]

L1100

CLiitr--T111]

 [=[=]{[=I=]{ [=I=]| [=]=]|

[T | [T | [T=] | [wT]|

[=[=] | (I=] | [S[=] | =[=],

[=[=]| (=[5} [[=]| =[=],

[m]=] | [=[=] | [=[=] | [=]=]|

[=]=]|[=]=]|[=]=]{[=]=]|

INNEEDEEER

| [=]=]{[=]=]{[=I=]| [=]=]|

1] | T=] | T=] | [ST=])

| [T=] [T [wT=] | [<T]|

| [=]=]{[=]=]{[=I=]| [=]=]|

[=1=] | [T=] | [ST=]} ES[=],

| [=T=]) [ST] [wT=] | [ST]]

CLirt--T1111

L1100

CLiit--T111]

[=[=]| [STE]| [ST=] | ST=])

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

[=1=]] [ST=]) ST=]) [S[=])

[=[=]| (STE] | ST=]| [ST=]]

INNEEnEEER

CLLf---TT11]

INNEEnEEER

 [=]=]{[=]=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

L1111

INNEEnEEER

 [=]=]{[=]=]{[=[=]| [=]=]|

[T [T [T=] | [wT]|

[=[=] | (I=] | [S[=] | (<[=])

 [=[=]{[=I=]{ [=I=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

INREEDEEER

L1111

INNEEnEEER

| [T=] [T [wT=] | [<T]|

[=]=]{[=I=]| [=I=]| [=]=]|

[==]{[=I=]{[=I=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

CLirtr--T111]

L1100

CLirt---T111]

| [=]=]{[=]=]{[=I=]| [=]=]|

1] | T=] | T=] | [ST=])

| [T=] [T [wT=] | [<T]|

[=]=]{[=I=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

INNEENEEER

CLift--T111]

INNNEnEEER

| [T=] [T [wT=] | [<T]|

[=]=]1{ [=I=]{ [=I=]{ [=]=]|

| [=]=]{[=I=]{[=I=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

INNNEDEEER

CLift---T1111

INNNEN R

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

83

End of
Fine-Grained Multithreading

In Memory of Burton Smith

A PIPELINED, SHARED RESOUCE MIMD COMPUTEK

Burton J. Smith

Denelcor, Inc.
Denver, Colorado 80205

Burton Smith
(1941-2018)

Architecture and applications of the HEP multiprocessor computer system

Burton J. Smith
Denelcor, Inc., 14221 E. 4th Avenue, Aurora, Colorado 80011

In Memory of Burton Smith (II)

Robert Alverson

David Callahan
Allan Porterfield

The Tera Computer System”

Tera Computer Company

Seattle, Washington USA

4 Processors

Each processor in a Tera computer can execute multiple
instruction streams simultaneously. In the current im-
plementation, as few as one or as many as 128 program
counters may be active at once. On every tick of the
clock, the processor logic selects a stream that is ready
to execute and allows it to issue its next instruction.
Since instruction interpretation is completely pipelined
by the processor and by the network and memories as
well, a new instruction from a different stream may be
1ssued in each tick without interfering with its predeces-
sors. When an instruction finishes, the stream to which
it belongs thereby becomes ready to execute the next
instruction. As long as there are enough instruction
streams in the processor so that the average instruction
latency is filled with instructions from other streams,
the processor is being fully utilized. Thus, it is only
necessary to have enough streams to hide the expected
latency (perhaps 70 ticks on average); once latency is
hidden the processor is running at peak performance
and additional streams do not speed the result.

Daniel Cummings
Burton Smith

Brian Koblenz

86

Wednesday Keynote (HiPEAC 2015)

Resource Management in PACORA

Burton J. Smith
Microsoft

Burton Smith

Technical Fellow at Microsoft

Past: Co-founder, chief scientist, chairman of Tera/Cray, Denelcor,
Professor at Colorado

Eckert-Mauchly Award in 1991, Seymour Cray Award, US National
Academy of Engineering, AAAS/ACM/IEEE Fellow and many other
honors

Many wide-range contributions spanning architecture, system
software, compilers, ..., including:

— Denelcor HEP, Tera MTA

— fine-grained synchronization, communication, multithreading

— parallel architectures, resource management, interconnection networks

One | would like to share:
— Smith, “A pipelined, shared resource MIMD computer”, ICPP 1978.

Fine-grained Multithreading in HEP

FROM DATA MEMORY

= 128 processes VIA SWITCH
(hardware contexts)

10 DATA MEMORY
VIA SWITCH

QUEUE

PERFORM

FUNCTION

-
-
PERFORM
FUNCTION

= Cycle time: 100ns

= 8 stages - 800 ns to

complete an
. . REGISTER
Instruction MEMORY
0 assuming no memory
access
IS;:’TE'}:IOD_— QUEUE
= No control and data I
dependency checking S

oY

Wednesday Keynote (HiPEAC 2015)

Resource Management in PACORA

Burton J. Smith
Microsoft

