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Agenda for Today & Next Few Lectures
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms
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Reminder: Optional Homeworks
n Posted online

q 3 Optional Homeworks

n Optional

n Good for your learning

n https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id
=homeworks
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Readings for Today
n Smith and Sohi, “The Microarchitecture of Superscalar 

Processors,” Proceedings of the IEEE, 1995
q More advanced pipelining
q Interrupt and exception handling
q Out-of-order and superscalar execution concepts

n H&H Chapters 7.8 and 7.9

n Optional:
q Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999. 
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Lecture Announcement
n Monday, April 30, 2018
n 16:15-17:15
n CAB G 61
n Apéro after the lecture J

n Prof. Wen-Mei Hwu (University of Illinois at Urbana-Champaign)
n D-INFK Distinguished Colloquium
n Innovative Applications and Technology Pivots –

A Perfect Storm in Computing

n https://www.inf.ethz.ch/news-and-
events/colloquium/event-detail.html?eventFeedId=40447
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General Suggestion
n Attend the Computer Science Distinguished Colloquia

n Happens on some Mondays 
q 16:15-17:15, followed by an apero

n https://www.inf.ethz.ch/news-and-events/colloquium.html

n Great way of learning about key developments in the field
q And, meeting leading researchers
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Out-of-Order Execution
(Dynamic Instruction Scheduling)



Review: Dataflow Graph for Our Example
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MUL   R3 ß R1, R2
ADD   R5 ß R3, R4
ADD   R7 ß R2, R6
ADD   R10 ß R8, R9
MUL   R11 ß R7, R10
ADD   R5 ß R5, R11



Review: State of RAT and RS in Cycle 7
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Review: Corresponding Dataflow Graph
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Some More Questions (Design Choices)
n When is a reservation station entry deallocated?

n Exactly when does an instruction broadcast its tag?

n Should the reservation stations be dedicated to each 
functional unit or global across functional units?
q Centralized vs. Distributed: What are the tradeoffs?

n Should reservation stations and ROB store data values or 
should there be a centralized physical register file where all 
data values are stored?
q What are the tradeoffs?

n Many other design choices for OoO engines
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For You: An Exercise, w/ Precise Exceptions

n Assume ADD (4 cycle execute), MUL (6 cycle execute)
n Assume one adder and one multiplier
n How many cycles

q in a non-pipelined machine
q in an in-order-dispatch pipelined machine with reorder buffer 

(no forwarding and full forwarding)
q in an out-of-order dispatch pipelined machine with reorder 

buffer (full forwarding)
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MUL   R3 ß R1, R2
ADD   R5 ß R3, R4
ADD   R7 ß R2, R6
ADD   R10 ß R8, R9
MUL   R11 ß R7, R10
ADD   R5 ß R5, R11
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Out-of-Order Execution with Precise Exceptions
n Idea: Use a reorder buffer to reorder instructions before 

committing them to architectural state

n An instruction updates the RAT when it completes execution
q Also called frontend register file

n An instruction updates a separate architectural register file 
when it retires
q i.e., when it is the oldest in the machine and has completed 

execution
q In other words, the architectural register file is always updated in 

program order

n On an exception: flush pipeline, copy architectural register file 
into frontend register file

13



Out-of-Order Execution with Precise Exceptions

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window 

or active window)
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Two Humps in a Modern Pipeline

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window 

or active window)
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Modern OoO Execution w/ Precise Exceptions

n Most modern processors use the following

n Reorder buffer to support in-order retirement of instructions

n A single register file to store all registers 
q Both speculative and architectural registers
q INT and FP are still separate

n Two register maps 
q Future/frontend register map à used for renaming
q Architectural register map à used for maintaining precise state
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An Example from Modern Processors

17
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” 
Intel Technology Journal, 2001.



Enabling OoO Execution, Revisited
1. Link the consumer of a value to the producer

q Register renaming: Associate a “tag” with each data value 

2. Buffer instructions until they are ready
q Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
q Broadcast the “tag” when the value is produced
q Instructions compare their “source tags” to the broadcast tag 

à if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

q Wakeup and select/schedule the instruction
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Summary of OOO Execution Concepts
n Register renaming eliminates false dependencies, enables 

linking of producer to consumers

n Buffering enables the pipeline to move for independent ops

n Tag broadcast enables communication (of readiness of 
produced value) between instructions

n Wakeup and select enables out-of-order dispatch
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OOO Execution: Restricted Dataflow
n An out-of-order engine dynamically builds the dataflow 

graph of a piece of the program
q which piece?

n The dataflow graph is limited to the instruction window
q Instruction window: all decoded but not yet retired 

instructions

n Can we do it for the whole program? 
n Why would we like to?
n In other words, how can we have a large instruction 

window?
n Can we do it efficiently with Tomasulo’s algorithm?

20



Recall: Dataflow Graph for Our Example
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MUL   R3 ß R1, R2
ADD   R5 ß R3, R4
ADD   R7 ß R2, R6
ADD   R10 ß R8, R9
MUL   R11 ß R7, R10
ADD   R5 ß R5, R11



Recall: State of RAT and RS in Cycle 7
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Recall: Dataflow Graph
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Questions to Ponder
n Why is OoO execution beneficial?

q What if all operations take a single cycle?
q Latency tolerance: OoO execution tolerates the latency of 

multi-cycle operations by executing independent operations 
concurrently

n What if an instruction takes 500 cycles?
q How large of an instruction window do we need to continue 

decoding?
q How many cycles of latency can OoO tolerate?
q What limits the latency tolerance scalability of Tomasulo’s 

algorithm?
n Active/instruction window size: determined by both scheduling 

window and reorder buffer size
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General Organization of an OOO Processor

n Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 
1995.
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A Modern OoO Design: Intel Pentium 4

26Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.



Intel Pentium 4 Simplified
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Mutlu+, “Runahead Execution,”
HPCA 2003.



Alpha 21264

28Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.



MIPS R10000

29Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996



IBM POWER4
n Tendler et al., 
“POWER4 system 
microarchitecture,”
IBM J R&D, 2002.
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IBM POWER4
n 2 cores, out-of-order execution
n 100-entry instruction window in each core
n 8-wide instruction fetch, issue, execute
n Large, local+global hybrid branch predictor
n 1.5MB, 8-way L2 cache
n Aggressive stream based prefetching
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IBM POWER5
n Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 

Micro 2004.
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Handling Out-of-Order Execution 
of Loads and Stores



Registers versus Memory
n So far, we considered mainly registers as part of state

n What about memory?

n What are the fundamental differences between registers 
and memory?
q Register dependences known statically – memory 

dependences determined dynamically
q Register state is small – memory state is large
q Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a 
shared memory multiprocessor)
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Memory Dependence Handling (I)
n Need to obey memory dependences in an out-of-order 

machine 
q and need to do so while providing high performance

n Observation and Problem: Memory address is not known until 
a load/store executes

n Corollary 1: Renaming memory addresses is difficult
n Corollary 2: Determining dependence or independence of 

loads/stores need to be handled after their (partial) execution
n Corollary 3: When a load/store has its address ready, there 

may be younger/older loads/stores with undetermined 
addresses in the machine
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Memory Dependence Handling (II)
n When do you schedule a load instruction in an OOO engine?

q Problem: A younger load can have its address ready before an 
older store’s address is known

q Known as the memory disambiguation problem or the unknown 
address problem

n Approaches
q Conservative: Stall the load until all previous stores have 

computed their addresses (or even retired from the machine)
q Aggressive: Assume load is independent of unknown-address 

stores and schedule the load right away
q Intelligent: Predict (with a more sophisticated predictor) if the 

load is dependent on the/any unknown address store
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Handling of Store-Load Dependences
n A load’s dependence status is not known until all previous store 

addresses are available. 

n How does the OOO engine detect dependence of a load instruction on a 
previous store?
q Option 1: Wait until all previous stores committed (no need to check 

for address match) 
q Option 2: Keep a list of pending stores in a store buffer and check 

whether load address matches a previous store address

n How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?
q Option 1: Assume load dependent on all previous stores
q Option 2: Assume load independent of all previous stores
q Option 3: Predict the dependence of a load on an outstanding store

37



Memory Disambiguation (I)
n Option 1: Assume load is dependent on all previous stores

+ No need for recovery 
-- Too conservative: delays independent loads unnecessarily

n Option 2: Assume load is independent of all previous stores
+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

n Option 3: Predict the dependence of a load on an 
outstanding store
+ More accurate. Load store dependencies persist over time
-- Still requires recovery/re-execution on misprediction
q Alpha 21264 : Initially assume load independent, delay loads found to be dependent
q Moshovos et al., “Dynamic speculation and synchronization of data dependences,”

ISCA 1997.
q Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.
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Memory Disambiguation (II)
n Chrysos and Emer, “Memory Dependence Prediction Using Store 

Sets,” ISCA 1998.

n Predicting store-load dependencies important for performance
n Simple predictors (based on past history) can achieve most of 

the potential performance 
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Data Forwarding Between Stores and Loads
n We cannot update memory out of program order

à Need to buffer all store and load instructions in instruction window

n Even if we know all addresses of past stores when we 
generate the address of a load, two questions still remain:
1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

n Modern processors use a LQ (load queue) and an SQ for this
q Can be combined or separate between loads and stores
q A load searches the SQ after it computes its address. Why?
q A store searches the LQ after it computes its address. Why?
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Out-of-Order Completion of Memory Ops 
n When a store instruction finishes execution, it writes its 

address and data in its reorder buffer entry

n When a later load instruction generates its address, it:
q searches the reorder buffer (or the SQ) with its address
q accesses memory with its address
q receives the value from the youngest older instruction that 

wrote to that address (either from ROB or memory)

n This is a complicated “search logic” implemented as a 
Content Addressable Memory
q Content is “memory address” (but also need size and age)
q Called store-to-load forwarding logic
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Store-Load Forwarding Complexity

n Content Addressable Search (based on Load Address)

n Range Search (based on Address and Size of both the Load 
and earlier Stores)

n Age-Based Search (for last written values)

n Load data can come from a combination of multiple places
q One or more stores in the Store Buffer (SQ)
q Memory/cache
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Other Approaches to Concurrency 
(or Instruction Level Parallelism)



Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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Review: Data Flow:
Exploiting Irregular Parallelism



Data Flow Summary
n Availability of data determines order of execution
n A data flow node fires when its sources are ready
n Programs represented as data flow graphs (of nodes)

n Data Flow at the ISA level has not been (as) successful

n Data Flow implementations under the hood (while 
preserving sequential ISA semantics) have been very 
successful
q Out of order execution is the prime example
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Pure Data Flow Advantages/Disadvantages

n Advantages
q Very good at exploiting irregular parallelism
q Only real dependencies constrain processing
q More parallelism can be exposed than von Neumann model

n Disadvantages
q No precise state semantics

n Debugging very difficult
n Interrupt/exception handling is difficult (what is precise state 

semantics?)
q Too much parallelism? (Parallelism control needed)
q High bookkeeping overhead (tag matching, data storage)
q …
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Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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Superscalar Execution



Superscalar Execution
n Idea: Fetch, decode, execute, retire multiple instructions 

per cycle 
q N-wide superscalar à N instructions per cycle

n Need to add the hardware resources for doing so

n Hardware performs the dependence checking between 
concurrently-fetched instructions

n Superscalar execution and out-of-order execution are 
orthogonal concepts
q Can have all four combinations of processors:

[in-order, out-of-order] x [scalar, superscalar]
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Carnegie Mellon
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In-Order	Superscalar	Processor	Example

¢ Multiple	copies	of	datapath:	Can	issue	multiple	
instructions	at	per	cycle

¢ Dependencies	make	it	tricky	to	issue	multiple	instructions	
at	once
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Here:	Ideal	IPC	=	2



Carnegie Mellon
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In-Order	Superscalar	Performance	Example
lw $t0, 40($s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s0)

Time (cycles)
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Ideal	IPC	=	2

Actual	IPC	=	2 (6	instructions	issued	in	3	cycles)



Carnegie Mellon
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Superscalar	Performance	with	Dependencies
lw $t0, 40($s0)
add $t1, $t0, $s1
sub $t0, $s2, $s3
and $t2, $s4, $t0
or $t3, $s5, $s6
sw $s7, 80($t3)

Stall
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Actual	IPC	=	1.2 (6	instructions	issued	in	5	cycles)



Superscalar Tradeoffs
n Advantages

q Higher IPC (instructions per cycle)

n Disadvantages
q Higher complexity for dependency checking

n Require checking within a pipeline stage
n Renaming becomes more complex in an OoO processor

q More hardware resources needed
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We did not cover the following slides in lecture. 
These are for your preparation for the next lecture. 



Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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VLIW



VLIW Concept
n Superscalar

q Hardware fetches multiple instructions and checks 
dependencies between them

n VLIW (Very Long Instruction Word)
q Software (compiler) packs independent instructions in a larger 

“instruction bundle” to be fetched and executed concurrently
q Hardware fetches and executes the instructions in the bundle 

concurrently

n No need for hardware dependency checking between 
concurrently-fetched instructions in the VLIW model
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VLIW Concept

n Fisher, “Very Long Instruction Word architectures and the 
ELI-512,” ISCA 1983.
q ELI: Enormously longword instructions (512 bits)
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VLIW (Very Long Instruction Word)
n A very long instruction word consists of multiple 

independent instructions packed together by the compiler
q Packed instructions can be logically unrelated (contrast with 

SIMD/vector processors, which we will see soon)

n Idea: Compiler finds independent instructions and statically 
schedules (i.e. packs/bundles) them into a single VLIW 
instruction

n Traditional Characteristics
q Multiple functional units
q All instructions in a bundle are executed in lock step
q Instructions in a bundle statically aligned to be directly fed 

into the functional units
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Carnegie Mellon
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VLIW	Performance	Example	(2-wide	bundles)
lw $t0, 40($s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s0)

Time (cycles)
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Ideal	IPC	=	2

Actual	IPC	=	2 (6	instructions	issued	in	3	cycles)



VLIW Lock-Step Execution
n Lock-step (all or none) execution: If any operation in a 

VLIW instruction stalls, all instructions stall

n In a truly VLIW machine, the compiler handles all 
dependency-related stalls, hardware does not perform 
dependency checking
q What about variable latency operations?
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VLIW Philosophy
n Philosophy similar to RISC (simple instructions and hardware)

q Except multiple instructions in parallel

n RISC (John Cocke, 1970s, IBM 801 minicomputer)
q Compiler does the hard work to translate high-level language 

code to simple instructions (John Cocke: control signals)
n And, to reorder simple instructions for high performance

q Hardware does little translation/decoding à very simple

n VLIW (Josh Fisher, ISCA 1983)
q Compiler does the hard work to find instruction level parallelism 
q Hardware stays as simple and streamlined as possible

n Executes each instruction in a bundle in lock step
n Simple à higher frequency, easier to design
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Commercial VLIW Machines
n Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
n Cydrome Cydra 5, Bob Rau
n Transmeta Crusoe: x86 binary-translated into internal VLIW
n TI C6000, Trimedia, STMicro (DSP & embedded processors)

q Most successful commercially

n Intel IA-64
q Not fully VLIW, but based on VLIW principles
q EPIC (Explicitly Parallel Instruction Computing)
q Instruction bundles can have dependent instructions
q A few bits in the instruction format specify explicitly which 

instructions in the bundle are dependent on which other ones
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VLIW Tradeoffs
n Advantages

+ No need for dynamic scheduling hardware à simple hardware
+ No need for dependency checking within a VLIW instruction à

simple hardware for multiple instruction issue + no renaming
+ No need for instruction alignment/distribution after fetch to 

different functional units à simple hardware

n Disadvantages
-- Compiler needs to find N independent operations per cycle

-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction 
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall
-- No instruction can progress until the longest-latency instruction completes
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VLIW Summary
n VLIW simplifies hardware, but requires complex compiler 

techniques
n Solely-compiler approach of VLIW has several downsides 

that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed 
in optimizing compilers (for superscalar compilation)

q Enable code optimizations
++ VLIW successful when parallelism is easier to find by the 
compiler (traditionally embedded markets, DSPs)
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An Example Work: Superblock

n Lecture Video on Static Instruction Scheduling
q https://www.youtube.com/watch?v=isBEVkIjgGA

68

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.
The Journal of Supercomputing, 1993.



Another Example Work: IMPACT

69Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991.



Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle 

q write to the destination in one stage and in program order

n Flow dependences are more interesting

n Five fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
71



Fine-Grained Multithreading

72



Fine-Grained Multithreading
n Idea: Hardware has multiple thread contexts (PC+registers). 

Each cycle, fetch engine fetches from a different thread.
q By the time the fetched branch/instruction resolves, no 

instruction is fetched from the same thread
q Branch/instruction resolution latency overlapped with execution 

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread 

-- Single thread performance suffers 
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough 

threads to cover the whole pipeline
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Fine-Grained Multithreading (II)
n Idea: Switch to another thread every cycle such that no two 

instructions from a thread are in the pipeline concurrently

n Tolerates the control and data dependency latencies by 
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple 
threads

n Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

n Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Fine-Grained Multithreading: History
n CDC 6600’s peripheral processing unit is fine-grained 

multithreaded
q Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
q Processor executes a different I/O thread every cycle
q An operation from the same thread is executed every 10 cycles

n Denelcor HEP (Heterogeneous Element Processor)
q Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
q 120 threads/processor 
q available queue vs. unavailable (waiting) queue for threads 
q each thread can have only 1 instruction in the processor pipeline; each thread 

independent 
q to each thread, processor looks like a non-pipelined machine
q system throughput vs. single thread performance tradeoff 

75



Fine-Grained Multithreading in HEP
n Cycle time: 100ns

n 8 stages à 800 ns to 
complete an 
instruction
q assuming no memory 

access

n No control and data 
dependency checking

76

Burton Smith
(1941-2018)



Multithreaded Pipeline Example

77Slide credit: Joel Emer



Sun Niagara Multithreaded Pipeline

78
Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.



Fine-grained Multithreading
n Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic
+ Otherwise-bubble cycles used for executing useful instructions from 

different threads
+ Improved system throughput, latency tolerance, utilization

n Disadvantages
- Extra hardware complexity: multiple hardware contexts (PCs, register 

files, …), thread selection logic
- Reduced single thread performance (one instruction fetched every N 

cycles from the same thread) 
- Resource contention between threads in caches and memory
- Some dependency checking logic between threads remains (load/store)
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Modern GPUs are 
FGMT Machines
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NVIDIA GeForce GTX 285 “core”
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…

= instruction stream decode= data-parallel (SIMD) func. unit, 
control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 
for thread contexts 
(registers)

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”

82

…
64 KB of storage 
for thread contexts 
(registers)

n Groups of 32 threads share instruction stream (each group is 
a Warp): they execute the same instruction on different data

n Up to 32 warps are interleaved in an FGMT manner
n Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian



End of
Fine-Grained Multithreading
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In Memory of Burton Smith

85

Burton Smith
(1941-2018)



In Memory of Burton Smith (II)

86



Burton	J.	Smith
Microsoft

Resource	Management	in	PACORA

Wednesday	Keynote	(HiPEAC	2015)



Burton	Smith
• Technical	Fellow	at	Microsoft
• Past:	Co-founder,	chief	scientist,	chairman	of	Tera/Cray,	Denelcor,	

Professor	at	Colorado
• Eckert-Mauchly	Award	in	1991,	Seymour	Cray	Award,	US	National	

Academy	of	Engineering,	AAAS/ACM/IEEE	Fellow	and	many	other	
honors

• Many	wide-range	contributions	spanning	architecture,	system	
software,	compilers,	…,	including:	
– Denelcor	HEP,	Tera	MTA
– fine-grained	synchronization,	communication,	multithreading
– parallel	architectures,	resource	management,	interconnection	networks	
– …

• One	I	would	like	to	share:
– Smith,	“A	pipelined,	shared	resource	MIMD	computer”,	ICPP	1978.



Fine-grained Multithreading in HEP
n 128 processes 

(hardware contexts)

n Cycle time: 100ns

n 8 stages à 800 ns to 
complete an 
instruction
q assuming no memory 

access

n No control and data
dependency checking
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