
Design of Digital Circuits
Lecture 17: Out-of-Order,

DataFlow, Superscalar Execution

Prof. Onur Mutlu
ETH Zurich
Spring 2018
27 April 2018

Agenda for Today & Next Few Lectures
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms

2

Reminder: Optional Homeworks
n Posted online

q 3 Optional Homeworks

n Optional

n Good for your learning

n https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id
=homeworks

3

Readings for Today
n Smith and Sohi, “The Microarchitecture of Superscalar

Processors,” Proceedings of the IEEE, 1995
q More advanced pipelining
q Interrupt and exception handling
q Out-of-order and superscalar execution concepts

n H&H Chapters 7.8 and 7.9

n Optional:
q Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.

4

Lecture Announcement
n Monday, April 30, 2018
n 16:15-17:15
n CAB G 61
n Apéro after the lecture J

n Prof. Wen-Mei Hwu (University of Illinois at Urbana-Champaign)
n D-INFK Distinguished Colloquium
n Innovative Applications and Technology Pivots –

A Perfect Storm in Computing

n https://www.inf.ethz.ch/news-and-
events/colloquium/event-detail.html?eventFeedId=40447

5

General Suggestion
n Attend the Computer Science Distinguished Colloquia

n Happens on some Mondays
q 16:15-17:15, followed by an apero

n https://www.inf.ethz.ch/news-and-events/colloquium.html

n Great way of learning about key developments in the field
q And, meeting leading researchers

6

Out-of-Order Execution
(Dynamic Instruction Scheduling)

Review: Dataflow Graph for Our Example

8

MUL R3 ß R1, R2
ADD R5 ß R3, R4
ADD R7 ß R2, R6
ADD R10 ß R8, R9
MUL R11 ß R7, R10
ADD R5 ß R5, R11

Review: State of RAT and RS in Cycle 7

9

Review: Corresponding Dataflow Graph

10

Some More Questions (Design Choices)
n When is a reservation station entry deallocated?

n Exactly when does an instruction broadcast its tag?

n Should the reservation stations be dedicated to each
functional unit or global across functional units?
q Centralized vs. Distributed: What are the tradeoffs?

n Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?
q What are the tradeoffs?

n Many other design choices for OoO engines
11

For You: An Exercise, w/ Precise Exceptions

n Assume ADD (4 cycle execute), MUL (6 cycle execute)
n Assume one adder and one multiplier
n How many cycles

q in a non-pipelined machine
q in an in-order-dispatch pipelined machine with reorder buffer

(no forwarding and full forwarding)
q in an out-of-order dispatch pipelined machine with reorder

buffer (full forwarding)
12

MUL R3 ß R1, R2
ADD R5 ß R3, R4
ADD R7 ß R2, R6
ADD R10 ß R8, R9
MUL R11 ß R7, R10
ADD R5 ß R5, R11

F D E R W

Out-of-Order Execution with Precise Exceptions
n Idea: Use a reorder buffer to reorder instructions before

committing them to architectural state

n An instruction updates the RAT when it completes execution
q Also called frontend register file

n An instruction updates a separate architectural register file
when it retires
q i.e., when it is the oldest in the machine and has completed

execution
q In other words, the architectural register file is always updated in

program order

n On an exception: flush pipeline, copy architectural register file
into frontend register file

13

Out-of-Order Execution with Precise Exceptions

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

14

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

Two Humps in a Modern Pipeline

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

15

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

Photo credit: http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

Modern OoO Execution w/ Precise Exceptions

n Most modern processors use the following

n Reorder buffer to support in-order retirement of instructions

n A single register file to store all registers
q Both speculative and architectural registers
q INT and FP are still separate

n Two register maps
q Future/frontend register map à used for renaming
q Architectural register map à used for maintaining precise state

16

An Example from Modern Processors

17
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001.

Enabling OoO Execution, Revisited
1. Link the consumer of a value to the producer

q Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
q Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
q Broadcast the “tag” when the value is produced
q Instructions compare their “source tags” to the broadcast tag

à if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

q Wakeup and select/schedule the instruction

18

Summary of OOO Execution Concepts
n Register renaming eliminates false dependencies, enables

linking of producer to consumers

n Buffering enables the pipeline to move for independent ops

n Tag broadcast enables communication (of readiness of
produced value) between instructions

n Wakeup and select enables out-of-order dispatch

19

OOO Execution: Restricted Dataflow
n An out-of-order engine dynamically builds the dataflow

graph of a piece of the program
q which piece?

n The dataflow graph is limited to the instruction window
q Instruction window: all decoded but not yet retired

instructions

n Can we do it for the whole program?
n Why would we like to?
n In other words, how can we have a large instruction

window?
n Can we do it efficiently with Tomasulo’s algorithm?

20

Recall: Dataflow Graph for Our Example

21

MUL R3 ß R1, R2
ADD R5 ß R3, R4
ADD R7 ß R2, R6
ADD R10 ß R8, R9
MUL R11 ß R7, R10
ADD R5 ß R5, R11

Recall: State of RAT and RS in Cycle 7

22

Recall: Dataflow Graph

23

Questions to Ponder
n Why is OoO execution beneficial?

q What if all operations take a single cycle?
q Latency tolerance: OoO execution tolerates the latency of

multi-cycle operations by executing independent operations
concurrently

n What if an instruction takes 500 cycles?
q How large of an instruction window do we need to continue

decoding?
q How many cycles of latency can OoO tolerate?
q What limits the latency tolerance scalability of Tomasulo’s

algorithm?
n Active/instruction window size: determined by both scheduling

window and reorder buffer size
24

General Organization of an OOO Processor

n Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.
1995.

25

A Modern OoO Design: Intel Pentium 4

26Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.

Intel Pentium 4 Simplified

27

Mutlu+, “Runahead Execution,”
HPCA 2003.

Alpha 21264

28Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

MIPS R10000

29Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996

IBM POWER4
n Tendler et al.,
“POWER4 system
microarchitecture,”
IBM J R&D, 2002.

30

IBM POWER4
n 2 cores, out-of-order execution
n 100-entry instruction window in each core
n 8-wide instruction fetch, issue, execute
n Large, local+global hybrid branch predictor
n 1.5MB, 8-way L2 cache
n Aggressive stream based prefetching

31

IBM POWER5
n Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE

Micro 2004.

32

Handling Out-of-Order Execution
of Loads and Stores

Registers versus Memory
n So far, we considered mainly registers as part of state

n What about memory?

n What are the fundamental differences between registers
and memory?
q Register dependences known statically – memory

dependences determined dynamically
q Register state is small – memory state is large
q Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a
shared memory multiprocessor)

34

Memory Dependence Handling (I)
n Need to obey memory dependences in an out-of-order

machine
q and need to do so while providing high performance

n Observation and Problem: Memory address is not known until
a load/store executes

n Corollary 1: Renaming memory addresses is difficult
n Corollary 2: Determining dependence or independence of

loads/stores need to be handled after their (partial) execution
n Corollary 3: When a load/store has its address ready, there

may be younger/older loads/stores with undetermined
addresses in the machine

35

Memory Dependence Handling (II)
n When do you schedule a load instruction in an OOO engine?

q Problem: A younger load can have its address ready before an
older store’s address is known

q Known as the memory disambiguation problem or the unknown
address problem

n Approaches
q Conservative: Stall the load until all previous stores have

computed their addresses (or even retired from the machine)
q Aggressive: Assume load is independent of unknown-address

stores and schedule the load right away
q Intelligent: Predict (with a more sophisticated predictor) if the

load is dependent on the/any unknown address store

36

Handling of Store-Load Dependences
n A load’s dependence status is not known until all previous store

addresses are available.

n How does the OOO engine detect dependence of a load instruction on a
previous store?
q Option 1: Wait until all previous stores committed (no need to check

for address match)
q Option 2: Keep a list of pending stores in a store buffer and check

whether load address matches a previous store address

n How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?
q Option 1: Assume load dependent on all previous stores
q Option 2: Assume load independent of all previous stores
q Option 3: Predict the dependence of a load on an outstanding store

37

Memory Disambiguation (I)
n Option 1: Assume load is dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

n Option 2: Assume load is independent of all previous stores
+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

n Option 3: Predict the dependence of a load on an
outstanding store
+ More accurate. Load store dependencies persist over time
-- Still requires recovery/re-execution on misprediction
q Alpha 21264 : Initially assume load independent, delay loads found to be dependent
q Moshovos et al., “Dynamic speculation and synchronization of data dependences,”

ISCA 1997.
q Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

38

Memory Disambiguation (II)
n Chrysos and Emer, “Memory Dependence Prediction Using Store

Sets,” ISCA 1998.

n Predicting store-load dependencies important for performance
n Simple predictors (based on past history) can achieve most of

the potential performance

39

Data Forwarding Between Stores and Loads
n We cannot update memory out of program order

à Need to buffer all store and load instructions in instruction window

n Even if we know all addresses of past stores when we
generate the address of a load, two questions still remain:
1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

n Modern processors use a LQ (load queue) and an SQ for this
q Can be combined or separate between loads and stores
q A load searches the SQ after it computes its address. Why?
q A store searches the LQ after it computes its address. Why?

40

Out-of-Order Completion of Memory Ops
n When a store instruction finishes execution, it writes its

address and data in its reorder buffer entry

n When a later load instruction generates its address, it:
q searches the reorder buffer (or the SQ) with its address
q accesses memory with its address
q receives the value from the youngest older instruction that

wrote to that address (either from ROB or memory)

n This is a complicated “search logic” implemented as a
Content Addressable Memory
q Content is “memory address” (but also need size and age)
q Called store-to-load forwarding logic

41

Store-Load Forwarding Complexity

n Content Addressable Search (based on Load Address)

n Range Search (based on Address and Size of both the Load
and earlier Stores)

n Age-Based Search (for last written values)

n Load data can come from a combination of multiple places
q One or more stores in the Store Buffer (SQ)
q Memory/cache

42

Other Approaches to Concurrency
(or Instruction Level Parallelism)

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

44

Review: Data Flow:
Exploiting Irregular Parallelism

Data Flow Summary
n Availability of data determines order of execution
n A data flow node fires when its sources are ready
n Programs represented as data flow graphs (of nodes)

n Data Flow at the ISA level has not been (as) successful

n Data Flow implementations under the hood (while
preserving sequential ISA semantics) have been very
successful
q Out of order execution is the prime example

46

Pure Data Flow Advantages/Disadvantages

n Advantages
q Very good at exploiting irregular parallelism
q Only real dependencies constrain processing
q More parallelism can be exposed than von Neumann model

n Disadvantages
q No precise state semantics

n Debugging very difficult
n Interrupt/exception handling is difficult (what is precise state

semantics?)
q Too much parallelism? (Parallelism control needed)
q High bookkeeping overhead (tag matching, data storage)
q …

47

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

48

Superscalar Execution

Superscalar Execution
n Idea: Fetch, decode, execute, retire multiple instructions

per cycle
q N-wide superscalar à N instructions per cycle

n Need to add the hardware resources for doing so

n Hardware performs the dependence checking between
concurrently-fetched instructions

n Superscalar execution and out-of-order execution are
orthogonal concepts
q Can have all four combinations of processors:

[in-order, out-of-order] x [scalar, superscalar]
50

Carnegie Mellon

51

In-Order	Superscalar	Processor	Example

¢ Multiple	copies	of	datapath:	Can	issue	multiple	
instructions	at	per	cycle

¢ Dependencies	make	it	tricky	to	issue	multiple	instructions	
at	once

CLK CLK CLK CLK

A
RD A1

A2
RD1A3

WD3
WD6

A4
A5
A6

RD4

RD2
RD5

Instruction
Memory

Register
File Data

Memory

AL
U
s

PC

CLK

A1
A2

WD1
WD2

RD1
RD2

Here:	Ideal	IPC	=	2

Carnegie Mellon

52

In-Order	Superscalar	Performance	Example
lw $t0, 40($s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DMIM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DMIM

or

sw
80

$s0

+ $s5

Ideal	IPC	=	2

Actual	IPC	=	2 (6	instructions	issued	in	3	cycles)

Carnegie Mellon

53

Superscalar	Performance	with	Dependencies
lw $t0, 40($s0)
add $t1, $t0, $s1
sub $t0, $s2, $s3
and $t2, $s4, $t0
or $t3, $s5, $s6
sw $s7, 80($t3)

Stall

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw $s7, 80($t3)

RF
$s1

$t0
add

RF
$s1

$t0

RF

$t1
+

DM

RF
$t0

$s4

RF

$t2
&

DMIM

and

IM
or

and

sub

|$s6

$s5
$t3

RF
80

$t3

RF
+

DM
sw

IM

$s7

9

$s3

$s2

$s3

$s2
-

$t0

oror $t3, $s5, $s6

IM

Ideal	IPC	=	2

Actual	IPC	=	1.2 (6	instructions	issued	in	5	cycles)

Superscalar Tradeoffs
n Advantages

q Higher IPC (instructions per cycle)

n Disadvantages
q Higher complexity for dependency checking

n Require checking within a pipeline stage
n Renaming becomes more complex in an OoO processor

q More hardware resources needed

54

Design of Digital Circuits
Lecture 17: Out-of-Order,

DataFlow, Superscalar Execution

Prof. Onur Mutlu
ETH Zurich
Spring 2018
27 April 2018

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

57

VLIW

VLIW Concept
n Superscalar

q Hardware fetches multiple instructions and checks
dependencies between them

n VLIW (Very Long Instruction Word)
q Software (compiler) packs independent instructions in a larger

“instruction bundle” to be fetched and executed concurrently
q Hardware fetches and executes the instructions in the bundle

concurrently

n No need for hardware dependency checking between
concurrently-fetched instructions in the VLIW model

59

VLIW Concept

n Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.
q ELI: Enormously longword instructions (512 bits)

60

VLIW (Very Long Instruction Word)
n A very long instruction word consists of multiple

independent instructions packed together by the compiler
q Packed instructions can be logically unrelated (contrast with

SIMD/vector processors, which we will see soon)

n Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

n Traditional Characteristics
q Multiple functional units
q All instructions in a bundle are executed in lock step
q Instructions in a bundle statically aligned to be directly fed

into the functional units
61

Carnegie Mellon

62

VLIW	Performance	Example	(2-wide	bundles)
lw $t0, 40($s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DMIM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DMIM

or

sw
80

$s0

+ $s5

Ideal	IPC	=	2

Actual	IPC	=	2 (6	instructions	issued	in	3	cycles)

VLIW Lock-Step Execution
n Lock-step (all or none) execution: If any operation in a

VLIW instruction stalls, all instructions stall

n In a truly VLIW machine, the compiler handles all
dependency-related stalls, hardware does not perform
dependency checking
q What about variable latency operations?

63

VLIW Philosophy
n Philosophy similar to RISC (simple instructions and hardware)

q Except multiple instructions in parallel

n RISC (John Cocke, 1970s, IBM 801 minicomputer)
q Compiler does the hard work to translate high-level language

code to simple instructions (John Cocke: control signals)
n And, to reorder simple instructions for high performance

q Hardware does little translation/decoding à very simple

n VLIW (Josh Fisher, ISCA 1983)
q Compiler does the hard work to find instruction level parallelism
q Hardware stays as simple and streamlined as possible

n Executes each instruction in a bundle in lock step
n Simple à higher frequency, easier to design

64

Commercial VLIW Machines
n Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
n Cydrome Cydra 5, Bob Rau
n Transmeta Crusoe: x86 binary-translated into internal VLIW
n TI C6000, Trimedia, STMicro (DSP & embedded processors)

q Most successful commercially

n Intel IA-64
q Not fully VLIW, but based on VLIW principles
q EPIC (Explicitly Parallel Instruction Computing)
q Instruction bundles can have dependent instructions
q A few bits in the instruction format specify explicitly which

instructions in the bundle are dependent on which other ones

65

VLIW Tradeoffs
n Advantages

+ No need for dynamic scheduling hardware à simple hardware
+ No need for dependency checking within a VLIW instruction à

simple hardware for multiple instruction issue + no renaming
+ No need for instruction alignment/distribution after fetch to

different functional units à simple hardware

n Disadvantages
-- Compiler needs to find N independent operations per cycle

-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall
-- No instruction can progress until the longest-latency instruction completes

66

VLIW Summary
n VLIW simplifies hardware, but requires complex compiler

techniques
n Solely-compiler approach of VLIW has several downsides

that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

q Enable code optimizations
++ VLIW successful when parallelism is easier to find by the
compiler (traditionally embedded markets, DSPs)

67

An Example Work: Superblock

n Lecture Video on Static Instruction Scheduling
q https://www.youtube.com/watch?v=isBEVkIjgGA

68

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.
The Journal of Supercomputing, 1993.

Another Example Work: IMPACT

69Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991.

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

70

Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle

q write to the destination in one stage and in program order

n Flow dependences are more interesting

n Five fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
71

Fine-Grained Multithreading

72

Fine-Grained Multithreading
n Idea: Hardware has multiple thread contexts (PC+registers).

Each cycle, fetch engine fetches from a different thread.
q By the time the fetched branch/instruction resolves, no

instruction is fetched from the same thread
q Branch/instruction resolution latency overlapped with execution

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread

-- Single thread performance suffers
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough

threads to cover the whole pipeline
73

Fine-Grained Multithreading (II)
n Idea: Switch to another thread every cycle such that no two

instructions from a thread are in the pipeline concurrently

n Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple
threads

n Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

n Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

74

Fine-Grained Multithreading: History
n CDC 6600’s peripheral processing unit is fine-grained

multithreaded
q Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
q Processor executes a different I/O thread every cycle
q An operation from the same thread is executed every 10 cycles

n Denelcor HEP (Heterogeneous Element Processor)
q Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
q 120 threads/processor
q available queue vs. unavailable (waiting) queue for threads
q each thread can have only 1 instruction in the processor pipeline; each thread

independent
q to each thread, processor looks like a non-pipelined machine
q system throughput vs. single thread performance tradeoff

75

Fine-Grained Multithreading in HEP
n Cycle time: 100ns

n 8 stages à 800 ns to
complete an
instruction
q assuming no memory

access

n No control and data
dependency checking

76

Burton Smith
(1941-2018)

Multithreaded Pipeline Example

77Slide credit: Joel Emer

Sun Niagara Multithreaded Pipeline

78
Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-grained Multithreading
n Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic
+ Otherwise-bubble cycles used for executing useful instructions from

different threads
+ Improved system throughput, latency tolerance, utilization

n Disadvantages
- Extra hardware complexity: multiple hardware contexts (PCs, register

files, …), thread selection logic
- Reduced single thread performance (one instruction fetched every N

cycles from the same thread)
- Resource contention between threads in caches and memory
- Some dependency checking logic between threads remains (load/store)

79

Modern GPUs are
FGMT Machines

80

NVIDIA GeForce GTX 285 “core”

81

…

= instruction stream decode= data-parallel (SIMD) func. unit,
control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage
for thread contexts
(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

82

…
64 KB of storage
for thread contexts
(registers)

n Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

n Up to 32 warps are interleaved in an FGMT manner
n Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

83

30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian

End of
Fine-Grained Multithreading

84

In Memory of Burton Smith

85

Burton Smith
(1941-2018)

In Memory of Burton Smith (II)

86

Burton	J.	Smith
Microsoft

Resource	Management	in	PACORA

Wednesday	Keynote	(HiPEAC	2015)

Burton	Smith
• Technical	Fellow	at	Microsoft
• Past:	Co-founder,	chief	scientist,	chairman	of	Tera/Cray,	Denelcor,	

Professor	at	Colorado
• Eckert-Mauchly	Award	in	1991,	Seymour	Cray	Award,	US	National	

Academy	of	Engineering,	AAAS/ACM/IEEE	Fellow	and	many	other	
honors

• Many	wide-range	contributions	spanning	architecture,	system	
software,	compilers,	…,	including:	
– Denelcor	HEP,	Tera	MTA
– fine-grained	synchronization,	communication,	multithreading
– parallel	architectures,	resource	management,	interconnection	networks	
– …

• One	I	would	like	to	share:
– Smith,	“A	pipelined,	shared	resource	MIMD	computer”,	ICPP	1978.

Fine-grained Multithreading in HEP
n 128 processes

(hardware contexts)

n Cycle time: 100ns

n 8 stages à 800 ns to
complete an
instruction
q assuming no memory

access

n No control and data
dependency checking

89

Burton	J.	Smith
Microsoft

Resource	Management	in	PACORA

Wednesday	Keynote	(HiPEAC	2015)

