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Agenda for Today & Next Few Lectures
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms
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Readings for Today
n Smith and Sohi, “The Microarchitecture of Superscalar 

Processors,” Proceedings of the IEEE, 1995
q More advanced pipelining
q Interrupt and exception handling
q Out-of-order and superscalar execution concepts

n H&H Chapters 7.8 and 7.9

n Optional:
q Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
q McFarling, “Combining Branch Predictors,” DEC WRL 

Technical Report, 1993.
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Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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Branch Prediction Wrap-Up
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Recall: Alpha 21264 Tournament Predictor

n Minimum branch penalty: 7 cycles

n Typical branch penalty: 11+ cycles

n 48K bits of target addresses stored in I-cache

n Predictor tables are reset on a context switch

n Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
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Recall: Are We Done w/ Branch Prediction?
n Hybrid branch predictors work well

q E.g., 90-97% prediction accuracy on average

n Some “difficult” workloads still suffer, though!
q E.g., gcc
q Max IPC with tournament prediction: 9
q Max IPC with perfect prediction: 35
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Some Other Branch Predictor Types
n Loop branch detector and predictor

q Loop iteration count detector/predictor

q Works well for loops with small number of iterations, where 

iteration count is predictable

q Used in Intel Pentium M

n Perceptron branch predictor

q Learns the direction correlations between individual branches

q Assigns weights to correlations

q Jimenez and Lin, “Dynamic Branch Prediction with 

Perceptrons,” HPCA 2001.

n Hybrid history length based predictor

q Uses different tables with different history lengths

q Seznec, “Analysis of the O-Geometric History Length branch 

predictor,” ISCA 2005.
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Intel Pentium M Predictors
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Gochman et al., 
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.



Perceptrons for Learning Linear Functions

n A perceptron is a simplified model of a biological neuron
n It is also a simple binary classifier

n A perceptron maps an input vector X to a 0 or 1
q Input = Vector X
q Perceptron learns the linear function (if one exists) of how 

each element of the vector affects the output (stored in an 
internal Weight vector)

q Output = Weight.X + Bias > 0

n In the branch prediction context
q Vector X: Branch history register bits
q Output: Prediction for the current branch
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Perceptron Branch Predictor (I)
n Idea: Use a perceptron to learn the correlations between branch history 

register bits and branch outcome
n A perceptron learns a target Boolean function of N inputs

n Jimenez and Lin, �Dynamic Branch Prediction with Perceptrons,� HPCA 2001.
n Rosenblatt, �Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,� 1962
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Each branch associated with a perceptron

A perceptron contains a set of weights wi
à Each weight corresponds to a bit in 

the GHR 
àHow much the bit is correlated with the 

direction of the branch
à Positive correlation: large + weight
à Negative correlation: large - weight

Prediction:
à Express GHR bits as 1 (T) and -1 (NT)
à Take dot product of GHR and weights
à If output > 0, predict taken



Perceptron Branch Predictor (II)
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Bias weight
(bias of branch, independent of 
the history)

Dot product of GHR
and perceptron weights

Output
compared
to 0

Prediction function:

Training function:



Perceptron Branch Predictor (III)
n Advantages

+ More sophisticated learning mechanism à better accuracy

n Disadvantages
-- Hard to implement (adder tree to compute perceptron output)
-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history 
bits and branch outcome
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Prediction Using Multiple History Lengths
n Observation: Different 

branches require 
different history lengths 
for better prediction 
accuracy

n Idea: Have multiple 
PHTs indexed with 
GHRs with different 
history lengths and 
intelligently allocate 
PHT entries to different 
branches
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Seznec and Michaud, “A case for (partially) tagged Geometric History Length 
Branch Prediction,” JILP 2006.



State of the Art in Branch Prediction
n See the Branch Prediction Championship

q https://www.jilp.org/cbp2016/program.html
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Andre Seznec, 
“TAGE-SC-L branch predictors,”
CBP 2014.

Andre Seznec,
“TAGE-SC-L branch predictors 
again,” CBP 2016.

https://www.jilp.org/cbp2016/program.html


Branch Confidence Estimation
n Idea: Estimate if the prediction is likely to be correct 

q i.e., estimate how “confident” you are in the prediction 

n Why?
q Could be very useful in deciding how to speculate:

n What predictor/PHT to choose/use
n Whether to keep fetching on this path
n Whether to switch to some other way of handling the branch, 

e.g. dual-path execution (eager execution) or dynamic 
predication 

n …

n Jacobsen et al., “Assigning Confidence to Conditional Branch 
Predictions,” MICRO 1996.
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Other Ways of Handling 
Branches
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How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-flow 
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
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Delayed Branching (I)
n Change the semantics of a branch instruction

q Branch after N instructions
q Branch after N cycles

n Idea: Delay the execution of a branch. N instructions (delay 
slots) that come after the branch are always executed 
regardless of branch direction.

n Problem: How do you find instructions to fill the delay 
slots?
q Branch must be independent of delay slot instructions

n Unconditional branch: Easier to find instructions to fill the delay slot
n Conditional branch: Condition computation should not depend on 

instructions in delay slots à difficult to fill the delay slot
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Delayed Branching (II)
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A
B
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D
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F

if ex

A
AB
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C
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if ex

A
AC
CBC

BCB
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Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles



Fancy Delayed Branching (III)
n Delayed branch with squashing

q In SPARC
q Semantics: If the branch falls through (i.e., it is not taken), 

the delay slot instruction is not executed
q Why could this help?
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Delayed Branching (IV)
n Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming 
1. Number of delay slots == number of instructions to keep the pipeline 

full before the branch resolves
2. All delay slots can be filled with useful instructions

n Disadvantages:
-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar 
execution width

2. Number of delay slots should be variable with variable latency 
operations. Why?

-- Ties ISA semantics to hardware implementation
-- SPARC, MIPS, HP-PA: 1 delay slot
-- What if pipeline implementation changes with the next design?
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An Aside: Filling the Delay Slot
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a.  From before b.  From target c.  From fall through
sub $t4, $t5, $t6 
 
… 
 
add $s1, $s2, $s3 
 
if $s1 = 0 then 
 
 

add $s1, $s2, $s3 
 
if $s1 = 0 then 
 
  
 
 

add $s1, $s2, $s3 
 
if $s1 = 0 then 
 
  sub $t4, $t5, $t6 
 

 
 
 
add $s1, $s2, $s3 
 
if $s1 = 0 then 
 
   sub $t4, $t5, $t6

add $s1, $s2, $s3 
 
if $s2 = 0 then 
 
    

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

 
 
if $s2 = 0 then 
 
 add $s1, $s2, $s3

within same
basic block

For correctness: 
add a new instruction
to the not-taken path?

For correctness: 
add a new instruction
to the taken path?

Safe?

reordering data 
independent
(RAW, WAW,
WAR)
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]



How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-flow 
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
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Predicate Combining (not Predicated Execution)

n Complex predicates are converted into multiple branches
q if ((a == b) && (c < d) && (a > 5000))  { … }

n 3 conditional branches

n Problem: This increases the number of control 
dependencies

n Idea: Combine predicate operations to feed a single branch 
instruction instead of having one branch for each
q Predicates stored and operated on using condition registers

q A single branch checks the value of the combined predicate

+ Fewer branches in code à fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

n Condition registers exist in IBM RS6000 and the POWER architecture
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Predication (Predicated Execution)
n Idea: Convert control dependence to data dependence

n Simple example: Suppose we had a Conditional Move 
instruction…
q CMOV condition, R1 ß R2
q R1 = (condition == true) ? R2 : R1
q Employed in most modern ISAs (x86, Alpha)

n Code example with branches vs. CMOVs
if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;
CMOV condition, b ß 4;
CMOV !condition, b ß 3;
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D D

Predication (Predicated Execution)
n Idea: Compiler converts control dependence into data 

dependence à branch is eliminated
q Each instruction has a predicate bit set based on the predicate computation
q Only instructions with TRUE predicates are committed (others turned into NOPs)
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(normal branch code)

C B

D

A
T N

p1 = (cond)
branch p1, TARGET

mov b, 1 
jmp JOIN

TARGET:
mov b, 0

A

B

C

B
C
D

A

(predicated code) 

A

B

C

if (cond) {
b = 0;

}
else {

b = 1;
} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0
add   x, b, 1add   x, b, 1



Predicated Execution References
n Allen et al., “Conversion of control dependence to data 

dependence,” POPL 1983.

n Kim et al., “Wish Branches: Combining Conditional 
Branching and Predication for Adaptive Predicated 
Execution,” MICRO 2005.
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Conditional Move Operations
n Very limited form of predicated execution

n CMOV R1 ß R2
q R1 = (ConditionCode == true) ? R2 : R1
q Employed in most modern ISAs (x86, Alpha)
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Predicated Execution (II)
n Predicated execution can be high performance and energy-

efficient
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Fetch  Decode  Rename  Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

nop

Fetch  Decode  Rename  Schedule RegisterRead Execute

AB AC B AC BD AD C BE AE D CF B AF E D C B A AF BCDEF E D ABCF E ABCDF E D C B AF E D C ABE D C B AF AF BCDE



Predicated Execution
n Eliminates branches à enables straight line code (i.e., 

larger basic blocks in code)

n Advantages
q Eliminates hard-to-predict branches
q Always-not-taken prediction works better (no branches)
q Compiler has more freedom to optimize code (no branches)

n control flow does not hinder inst. reordering optimizations
n code optimizations hindered only by data dependencies

n Disadvantages
q Useless work: some instructions fetched/executed but 

discarded (especially bad for easy-to-predict branches)
q Requires additional ISA (and hardware) support
q Can we eliminate all branches this way?

31



Predicated Execution vs. Branch Prediction
+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

-- Causes useless work for branches that are easy to predict
-- Reduces performance if misprediction cost < useless work
-- Adaptivity: Static predication is not adaptive to run-time branch 
behavior. Branch behavior changes based on input set, program 
phase, control-flow path.
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Predicated Execution in Intel Itanium
n Each instruction can be separately predicated 
n 64 one-bit predicate registers

each instruction carries a 6-bit predicate field
n An instruction is effectively a NOP if its predicate is false
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cmp
br
else1
else2
br
then1
then2
join1
join2

p1 p2 ¬cmp

join1

join2

else1p2

then2p1
else2p2

then1p1



Conditional Execution in the ARM ISA
n Almost all ARM instructions can include an optional 

condition code. 
q Prior to ARM v8

n An instruction with a condition code is executed only if the 
condition code flags in the CPSR meet the specified 
condition. 
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-flow 
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
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Multi-Path Execution
n Idea: Execute both paths after a conditional branch

q For all branches: Riseman and Foster, �The inhibition of potential parallelism 
by conditional jumps,� IEEE Transactions on Computers, 1972.

q For a hard-to-predict branch: Use dynamic confidence estimation

n Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

n Disadvantages:
-- What happens when the machine encounters another hard-to-predict 

branch? Execute both paths again?
-- Paths followed quickly become exponential

-- Each followed path requires its own context (registers, PC, GHR)
-- Wasted work (and reduced performance) if paths merge
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Dual-Path Execution versus Predication
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Hard to predict

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2 

C

D

E

F

B

path 1 path 2 

Dual-path Predicated Execution

CFMergeCFMerge



Handling Other Types of 
Branches
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Remember: Branch Types
Type Direction at 

fetch time
Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)

44

How can we predict an indirect branch with many target addresses?



Call and Return Prediction
n Direct calls are easy to predict

q Always taken, single target
q Call marked in BTB, target predicted by BTB

n Returns are indirect branches 
q A function can be called from many points in code
q A return instruction can have many target addresses

n Next instruction after each call point for the same function
q Observation: Usually a return matches a call
q Idea: Use a stack to predict return addresses (Return Address Stack)

n A fetched call: pushes the return (next instruction) address on the stack
n A fetched return: pops the stack and uses the address as its predicted 

target
n Accurate most of the time: 8-entry stack à > 95% accuracy
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Call X
…
Call X

…
Call X
…
Return

Return
Return



Indirect Branch Prediction (I)
n Register-indirect branches have multiple targets

n Used to implement 
q Switch-case statements
q Virtual function calls
q Jump tables (of function pointers)
q Interface calls 
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TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]
branch R1



Indirect Branch Prediction (II)
n No direction prediction needed
n Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address
-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch 

between different targets

n Idea 2: Use history based target prediction 
q E.g., Index the BTB with GHR XORed with Indirect Branch PC
q Chang et al., �Target Prediction for Indirect Jumps,� ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses
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Intel Pentium M Indirect Branch Predictor

48

Gochman et al., 
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.



Issues in Branch Prediction (I)
n Need to identify a branch before it is fetched

n How do we do this?
q BTB hit à indicates that the fetched instruction is a branch
q BTB entry contains the �type� of the branch
q Pre-decoded “branch type” information stored in the 

instruction cache identifies type of branch

n What if no BTB?
q Bubble in the pipeline until target address is computed
q E.g., IBM POWER4
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Latency of Branch Prediction
n Latency: Prediction is latency critical

q Need to generate next fetch address for the next cycle
q Bigger, more complex predictors are more accurate but slower
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PC + inst size

Next Fetch
Address

BTB target
Return Address Stack target

Indirect Branch Predictor target
Resolved target from Backend

???



Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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VLIW



VLIW Concept
n Superscalar

q Hardware fetches multiple instructions and checks 
dependencies between them

n VLIW (Very Long Instruction Word)
q Software (compiler) packs independent instructions in a larger 

“instruction bundle” to be fetched and executed concurrently
q Hardware fetches and executes the instructions in the bundle 

concurrently

n No need for hardware dependency checking between 
concurrently-fetched instructions in the VLIW model
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VLIW Concept

n Fisher, �Very Long Instruction Word architectures and the 
ELI-512,� ISCA 1983.
q ELI: Enormously longword instructions (512 bits)
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VLIW (Very Long Instruction Word)
n A very long instruction word consists of multiple 

independent instructions packed together by the compiler
q Packed instructions can be logically unrelated (contrast with 

SIMD/vector processors, which we will see soon)

n Idea: Compiler finds independent instructions and statically 
schedules (i.e. packs/bundles) them into a single VLIW 
instruction

n Traditional Characteristics
q Multiple functional units
q All instructions in a bundle are executed in lock step
q Instructions in a bundle statically aligned to be directly fed 

into the functional units
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Carnegie Mellon
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VLIW Performance Example (2-wide bundles)
lw $t0, 40($s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40
$s0

RF

$t0
+

DMIM

lw

add

lw  $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or  $t4, $s1, $s5

sw  $s5, 80($s0)

$t1
$s2
$s1

+

RF
$s3
$s1

RF

$t2
-

DMIM

sub

and $t3
$s4
$s3

&

RF
$s5
$s1

RF

$t4
|

DMIM

or

sw 80
$s0

+ $s5

Ideal IPC = 2

Actual IPC = 2 (6 instructions issued in 3 cycles)



VLIW Lock-Step Execution
n Lock-step (all or none) execution: If any operation in a 

VLIW instruction stalls, all instructions stall

n In a truly VLIW machine, the compiler handles all 
dependency-related stalls, hardware does not perform 
dependency checking
q What about variable latency operations?
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VLIW Philosophy
n Philosophy similar to RISC (simple instructions and hardware)

q Except multiple instructions in parallel

n RISC (John Cocke, 1970s, IBM 801 minicomputer)
q Compiler does the hard work to translate high-level language 

code to simple instructions (John Cocke: control signals)
n And, to reorder simple instructions for high performance

q Hardware does little translation/decoding à very simple

n VLIW (Josh Fisher, ISCA 1983)
q Compiler does the hard work to find instruction level parallelism 
q Hardware stays as simple and streamlined as possible

n Executes each instruction in a bundle in lock step
n Simple à higher frequency, easier to design
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Commercial VLIW Machines
n Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
n Cydrome Cydra 5, Bob Rau
n Transmeta Crusoe: x86 binary-translated into internal VLIW
n TI C6000, Trimedia, STMicro (DSP & embedded processors)

q Most successful commercially

n Intel IA-64
q Not fully VLIW, but based on VLIW principles
q EPIC (Explicitly Parallel Instruction Computing)
q Instruction bundles can have dependent instructions
q A few bits in the instruction format specify explicitly which 

instructions in the bundle are dependent on which other ones
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VLIW Tradeoffs
n Advantages

+ No need for dynamic scheduling hardware à simple hardware
+ No need for dependency checking within a VLIW instruction à

simple hardware for multiple instruction issue + no renaming
+ No need for instruction alignment/distribution after fetch to 

different functional units à simple hardware

n Disadvantages
-- Compiler needs to find N independent operations per cycle

-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction 
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall
-- No instruction can progress until the longest-latency instruction completes
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VLIW Summary
n VLIW simplifies hardware, but requires complex compiler 

techniques
n Solely-compiler approach of VLIW has several downsides 

that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed 
in optimizing compilers (for superscalar compilation)

q Enable code optimizations
++ VLIW successful when parallelism is easier to find by the 
compiler (traditionally embedded markets, DSPs)
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An Example Work: Superblock

n Lecture Video on Static Instruction Scheduling
q https://www.youtube.com/watch?v=isBEVkIjgGA
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Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.
The Journal of Supercomputing, 1993.

https://www.youtube.com/watch?v=isBEVkIjgGA


Another Example Work: IMPACT

63Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991.



Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle 

q write to the destination in one stage and in program order

n Flow dependences are more interesting

n Five fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
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How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of 

dynamic instructions. 

n Potential solutions if the instruction is a control-
flow instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses 

of both possible paths) (multipath execution)
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Fine-Grained Multithreading
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Fine-Grained Multithreading
n Idea: Hardware has multiple thread contexts (PC+registers). 

Each cycle, fetch engine fetches from a different thread.
q By the time the fetched branch/instruction resolves, no 

instruction is fetched from the same thread
q Branch/instruction resolution latency overlapped with execution 

of other threads� instructions

+ No logic needed for handling control and
data dependences within a thread 

-- Single thread performance suffers 
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough 

threads to cover the whole pipeline
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Fine-Grained Multithreading (II)
n Idea: Switch to another thread every cycle such that no two 

instructions from a thread are in the pipeline concurrently

n Tolerates the control and data dependency latencies by 
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple 
threads

n Thornton, �Parallel Operation in the Control Data 6600,� AFIPS 
1964.

n Smith, �A pipelined, shared resource MIMD computer,� ICPP 1978.
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Fine-Grained Multithreading: History
n CDC 6600�s peripheral processing unit is fine-grained 

multithreaded
q Thornton, �Parallel Operation in the Control Data 6600,� AFIPS 1964.
q Processor executes a different I/O thread every cycle
q An operation from the same thread is executed every 10 cycles

n Denelcor HEP (Heterogeneous Element Processor)
q Smith, �A pipelined, shared resource MIMD computer,� ICPP 1978.
q 120 threads/processor 
q available queue vs. unavailable (waiting) queue for threads 
q each thread can have only 1 instruction in the processor pipeline; each thread 

independent 
q to each thread, processor looks like a non-pipelined machine
q system throughput vs. single thread performance tradeoff 
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Fine-Grained Multithreading in HEP
n Cycle time: 100ns

n 8 stages à 800 ns to 
complete an 
instruction
q assuming no memory 

access

n No control and data 
dependency checking

71

Burton Smith
(1941-2018)



Multithreaded Pipeline Example

72Slide credit: Joel Emer



Sun Niagara Multithreaded Pipeline

73
Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.



Fine-grained Multithreading
n Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from 

different threads

+ Improved system throughput, latency tolerance, utilization

n Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register 

files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N 

cycles from the same thread) 

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
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Modern GPUs are 
FGMT Machines
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NVIDIA GeForce GTX 285 �core�
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…

= instruction stream decode= data-parallel (SIMD) func. unit, 
control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 
for thread contexts 
(registers)

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 �core�
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…
64 KB of storage 
for thread contexts 
(registers)

n Groups of 32 threads share instruction stream (each group is 
a Warp): they execute the same instruction on different data

n Up to 32 warps are interleaved in an FGMT manner
n Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian



End of
Fine-Grained Multithreading
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In Memory of Burton Smith
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In Memory of Burton Smith (II)

81



Design of Digital Circuits
Lecture 19: Branch Prediction II, 

VLIW, Fine-Grained Multithreading

Prof. Onur Mutlu
ETH Zurich
Spring 2018
4 May 2018



We did not cover the following slides in lecture. 
These are for your preparation for the next lecture. 



Burton Smith
• Technical Fellow at Microsoft
• Past: Co-founder, chief scientist, chairman of Tera/Cray, Denelcor, 

Professor at Colorado
• Eckert-Mauchly Award in 1991, Seymour Cray Award, US National 

Academy of Engineering, AAAS/ACM/IEEE Fellow and many other 
honors

• Many wide-range contributions spanning architecture, system 
software, compilers, …, including: 
– Denelcor HEP, Tera MTA
– fine-grained synchronization, communication, multithreading
– parallel architectures, resource management, interconnection networks 
– …

• One I would like to share:
– Smith, “A pipelined, shared resource MIMD computer”, ICPP 1978.


