
Design of Digital Circuits
Lecture 19: Branch Prediction II,

VLIW, Fine-Grained Multithreading

Prof. Onur Mutlu
ETH Zurich
Spring 2018
4 May 2018

Agenda for Today & Next Few Lectures
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms

2

Readings for Today
n Smith and Sohi, “The Microarchitecture of Superscalar

Processors,” Proceedings of the IEEE, 1995
q More advanced pipelining
q Interrupt and exception handling
q Out-of-order and superscalar execution concepts

n H&H Chapters 7.8 and 7.9

n Optional:
q Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
q McFarling, “Combining Branch Predictors,” DEC WRL

Technical Report, 1993.

3

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

4

Branch Prediction Wrap-Up

5

Recall: Alpha 21264 Tournament Predictor

n Minimum branch penalty: 7 cycles

n Typical branch penalty: 11+ cycles

n 48K bits of target addresses stored in I-cache

n Predictor tables are reset on a context switch

n Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
6

Recall: Are We Done w/ Branch Prediction?
n Hybrid branch predictors work well

q E.g., 90-97% prediction accuracy on average

n Some “difficult” workloads still suffer, though!
q E.g., gcc
q Max IPC with tournament prediction: 9
q Max IPC with perfect prediction: 35

7

Some Other Branch Predictor Types
n Loop branch detector and predictor

q Loop iteration count detector/predictor

q Works well for loops with small number of iterations, where

iteration count is predictable

q Used in Intel Pentium M

n Perceptron branch predictor

q Learns the direction correlations between individual branches

q Assigns weights to correlations

q Jimenez and Lin, “Dynamic Branch Prediction with

Perceptrons,” HPCA 2001.

n Hybrid history length based predictor

q Uses different tables with different history lengths

q Seznec, “Analysis of the O-Geometric History Length branch

predictor,” ISCA 2005.
8

Intel Pentium M Predictors

9

Gochman et al.,
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.

Perceptrons for Learning Linear Functions

n A perceptron is a simplified model of a biological neuron
n It is also a simple binary classifier

n A perceptron maps an input vector X to a 0 or 1
q Input = Vector X
q Perceptron learns the linear function (if one exists) of how

each element of the vector affects the output (stored in an
internal Weight vector)

q Output = Weight.X + Bias > 0

n In the branch prediction context
q Vector X: Branch history register bits
q Output: Prediction for the current branch

10

Perceptron Branch Predictor (I)
n Idea: Use a perceptron to learn the correlations between branch history

register bits and branch outcome
n A perceptron learns a target Boolean function of N inputs

n Jimenez and Lin, �Dynamic Branch Prediction with Perceptrons,� HPCA 2001.
n Rosenblatt, �Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,� 1962

11

Each branch associated with a perceptron

A perceptron contains a set of weights wi
à Each weight corresponds to a bit in

the GHR
àHow much the bit is correlated with the

direction of the branch
à Positive correlation: large + weight
à Negative correlation: large - weight

Prediction:
à Express GHR bits as 1 (T) and -1 (NT)
à Take dot product of GHR and weights
à If output > 0, predict taken

Perceptron Branch Predictor (II)

12

Bias weight
(bias of branch, independent of
the history)

Dot product of GHR
and perceptron weights

Output
compared
to 0

Prediction function:

Training function:

Perceptron Branch Predictor (III)
n Advantages

+ More sophisticated learning mechanism à better accuracy

n Disadvantages
-- Hard to implement (adder tree to compute perceptron output)
-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history
bits and branch outcome

13

Prediction Using Multiple History Lengths
n Observation: Different

branches require
different history lengths
for better prediction
accuracy

n Idea: Have multiple
PHTs indexed with
GHRs with different
history lengths and
intelligently allocate
PHT entries to different
branches

14

Seznec and Michaud, “A case for (partially) tagged Geometric History Length
Branch Prediction,” JILP 2006.

State of the Art in Branch Prediction
n See the Branch Prediction Championship

q https://www.jilp.org/cbp2016/program.html

15

Andre Seznec,
“TAGE-SC-L branch predictors,”
CBP 2014.

Andre Seznec,
“TAGE-SC-L branch predictors
again,” CBP 2016.

https://www.jilp.org/cbp2016/program.html

Branch Confidence Estimation
n Idea: Estimate if the prediction is likely to be correct

q i.e., estimate how “confident” you are in the prediction

n Why?
q Could be very useful in deciding how to speculate:

n What predictor/PHT to choose/use
n Whether to keep fetching on this path
n Whether to switch to some other way of handling the branch,

e.g. dual-path execution (eager execution) or dynamic
predication

n …

n Jacobsen et al., “Assigning Confidence to Conditional Branch
Predictions,” MICRO 1996.

16

Other Ways of Handling
Branches

17

How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of

dynamic instructions.

n Potential solutions if the instruction is a control-flow
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses

of both possible paths) (multipath execution)
18

Delayed Branching (I)
n Change the semantics of a branch instruction

q Branch after N instructions
q Branch after N cycles

n Idea: Delay the execution of a branch. N instructions (delay
slots) that come after the branch are always executed
regardless of branch direction.

n Problem: How do you find instructions to fill the delay
slots?
q Branch must be independent of delay slot instructions

n Unconditional branch: Easier to find instructions to fill the delay slot
n Conditional branch: Condition computation should not depend on

instructions in delay slots à difficult to fill the delay slot
19

Delayed Branching (II)

20

A
B
C
BC X
D
E
F

if ex

A
AB
BC

CBC
BC

GX:
--

A

B

C
BC X

D
E
F
GX:

if ex

A
AC
CBC

BCB
BG

--G

Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles

Fancy Delayed Branching (III)
n Delayed branch with squashing

q In SPARC
q Semantics: If the branch falls through (i.e., it is not taken),

the delay slot instruction is not executed
q Why could this help?

21

A
B
C
BC X
D
E

X:

Normal code: Delayed branch code:

A
B
C
BC X

D
E

X:

NOP

Delayed branch w/ squashing:

A
B
C
BC X

D
E

X:

A

Delayed Branching (IV)
n Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming
1. Number of delay slots == number of instructions to keep the pipeline

full before the branch resolves
2. All delay slots can be filled with useful instructions

n Disadvantages:
-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar
execution width

2. Number of delay slots should be variable with variable latency
operations. Why?

-- Ties ISA semantics to hardware implementation
-- SPARC, MIPS, HP-PA: 1 delay slot
-- What if pipeline implementation changes with the next design?

22

An Aside: Filling the Delay Slot

23

a. From before b. From target c. From fall through
sub $t4, $t5, $t6

…

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

if $s2 = 0 then

 add $s1, $s2, $s3

within same
basic block

For correctness:
add a new instruction
to the not-taken path?

For correctness:
add a new instruction
to the taken path?

Safe?

reordering data
independent
(RAW, WAW,
WAR)
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of

dynamic instructions.

n Potential solutions if the instruction is a control-flow
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses

of both possible paths) (multipath execution)
24

Predicate Combining (not Predicated Execution)

n Complex predicates are converted into multiple branches
q if ((a == b) && (c < d) && (a > 5000)) { … }

n 3 conditional branches

n Problem: This increases the number of control
dependencies

n Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each
q Predicates stored and operated on using condition registers

q A single branch checks the value of the combined predicate

+ Fewer branches in code à fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

n Condition registers exist in IBM RS6000 and the POWER architecture

25

Predication (Predicated Execution)
n Idea: Convert control dependence to data dependence

n Simple example: Suppose we had a Conditional Move
instruction…
q CMOV condition, R1 ß R2
q R1 = (condition == true) ? R2 : R1
q Employed in most modern ISAs (x86, Alpha)

n Code example with branches vs. CMOVs
if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;
CMOV condition, b ß 4;
CMOV !condition, b ß 3;

26

D D

Predication (Predicated Execution)
n Idea: Compiler converts control dependence into data

dependence à branch is eliminated
q Each instruction has a predicate bit set based on the predicate computation
q Only instructions with TRUE predicates are committed (others turned into NOPs)

27

(normal branch code)

C B

D

A
T N

p1 = (cond)
branch p1, TARGET

mov b, 1
jmp JOIN

TARGET:
mov b, 0

A

B

C

B
C
D

A

(predicated code)

A

B

C

if (cond) {
b = 0;

}
else {

b = 1;
} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0
add x, b, 1add x, b, 1

Predicated Execution References
n Allen et al., “Conversion of control dependence to data

dependence,” POPL 1983.

n Kim et al., “Wish Branches: Combining Conditional
Branching and Predication for Adaptive Predicated
Execution,” MICRO 2005.

28

Conditional Move Operations
n Very limited form of predicated execution

n CMOV R1 ß R2
q R1 = (ConditionCode == true) ? R2 : R1
q Employed in most modern ISAs (x86, Alpha)

29

Predicated Execution (II)
n Predicated execution can be high performance and energy-

efficient

30

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

nop

Fetch Decode Rename Schedule RegisterRead Execute

AB AC B AC BD AD C BE AE D CF B AF E D C B A AF BCDEF E D ABCF E ABCDF E D C B AF E D C ABE D C B AF AF BCDE

Predicated Execution
n Eliminates branches à enables straight line code (i.e.,

larger basic blocks in code)

n Advantages
q Eliminates hard-to-predict branches
q Always-not-taken prediction works better (no branches)
q Compiler has more freedom to optimize code (no branches)

n control flow does not hinder inst. reordering optimizations
n code optimizations hindered only by data dependencies

n Disadvantages
q Useless work: some instructions fetched/executed but

discarded (especially bad for easy-to-predict branches)
q Requires additional ISA (and hardware) support
q Can we eliminate all branches this way?

31

Predicated Execution vs. Branch Prediction
+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

-- Causes useless work for branches that are easy to predict
-- Reduces performance if misprediction cost < useless work
-- Adaptivity: Static predication is not adaptive to run-time branch
behavior. Branch behavior changes based on input set, program
phase, control-flow path.

32

Predicated Execution in Intel Itanium
n Each instruction can be separately predicated
n 64 one-bit predicate registers

each instruction carries a 6-bit predicate field
n An instruction is effectively a NOP if its predicate is false

33

cmp
br
else1
else2
br
then1
then2
join1
join2

p1 p2 ¬cmp

join1

join2

else1p2

then2p1
else2p2

then1p1

Conditional Execution in the ARM ISA
n Almost all ARM instructions can include an optional

condition code.
q Prior to ARM v8

n An instruction with a condition code is executed only if the
condition code flags in the CPSR meet the specified
condition.

34

Conditional Execution in ARM ISA

35

Conditional Execution in ARM ISA

36

Conditional Execution in ARM ISA

37

Conditional Execution in ARM ISA

38

Conditional Execution in ARM ISA

39

How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of

dynamic instructions.

n Potential solutions if the instruction is a control-flow
instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses

of both possible paths) (multipath execution)
40

Multi-Path Execution
n Idea: Execute both paths after a conditional branch

q For all branches: Riseman and Foster, �The inhibition of potential parallelism
by conditional jumps,� IEEE Transactions on Computers, 1972.

q For a hard-to-predict branch: Use dynamic confidence estimation

n Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

n Disadvantages:
-- What happens when the machine encounters another hard-to-predict

branch? Execute both paths again?
-- Paths followed quickly become exponential

-- Each followed path requires its own context (registers, PC, GHR)
-- Wasted work (and reduced performance) if paths merge

41

Dual-Path Execution versus Predication

42

Hard to predict

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2

C

D

E

F

B

path 1 path 2

Dual-path Predicated Execution

CFMergeCFMerge

Handling Other Types of
Branches

43

Remember: Branch Types
Type Direction at

fetch time
Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

44

How can we predict an indirect branch with many target addresses?

Call and Return Prediction
n Direct calls are easy to predict

q Always taken, single target
q Call marked in BTB, target predicted by BTB

n Returns are indirect branches
q A function can be called from many points in code
q A return instruction can have many target addresses

n Next instruction after each call point for the same function
q Observation: Usually a return matches a call
q Idea: Use a stack to predict return addresses (Return Address Stack)

n A fetched call: pushes the return (next instruction) address on the stack
n A fetched return: pops the stack and uses the address as its predicted

target
n Accurate most of the time: 8-entry stack à > 95% accuracy

45

Call X
…
Call X

…
Call X
…
Return

Return
Return

Indirect Branch Prediction (I)
n Register-indirect branches have multiple targets

n Used to implement
q Switch-case statements
q Virtual function calls
q Jump tables (of function pointers)
q Interface calls

46

TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]
branch R1

Indirect Branch Prediction (II)
n No direction prediction needed
n Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address
-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch

between different targets

n Idea 2: Use history based target prediction
q E.g., Index the BTB with GHR XORed with Indirect Branch PC
q Chang et al., �Target Prediction for Indirect Jumps,� ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses

47

Intel Pentium M Indirect Branch Predictor

48

Gochman et al.,
“The Intel Pentium M Processor: Microarchitecture and Performance,”
Intel Technology Journal, May 2003.

Issues in Branch Prediction (I)
n Need to identify a branch before it is fetched

n How do we do this?
q BTB hit à indicates that the fetched instruction is a branch
q BTB entry contains the �type� of the branch
q Pre-decoded “branch type” information stored in the

instruction cache identifies type of branch

n What if no BTB?
q Bubble in the pipeline until target address is computed
q E.g., IBM POWER4

49

Latency of Branch Prediction
n Latency: Prediction is latency critical

q Need to generate next fetch address for the next cycle
q Bigger, more complex predictors are more accurate but slower

50

PC + inst size

Next Fetch
Address

BTB target
Return Address Stack target

Indirect Branch Predictor target
Resolved target from Backend

???

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

51

VLIW

VLIW Concept
n Superscalar

q Hardware fetches multiple instructions and checks
dependencies between them

n VLIW (Very Long Instruction Word)
q Software (compiler) packs independent instructions in a larger

“instruction bundle” to be fetched and executed concurrently
q Hardware fetches and executes the instructions in the bundle

concurrently

n No need for hardware dependency checking between
concurrently-fetched instructions in the VLIW model

53

VLIW Concept

n Fisher, �Very Long Instruction Word architectures and the
ELI-512,� ISCA 1983.
q ELI: Enormously longword instructions (512 bits)

54

VLIW (Very Long Instruction Word)
n A very long instruction word consists of multiple

independent instructions packed together by the compiler
q Packed instructions can be logically unrelated (contrast with

SIMD/vector processors, which we will see soon)

n Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

n Traditional Characteristics
q Multiple functional units
q All instructions in a bundle are executed in lock step
q Instructions in a bundle statically aligned to be directly fed

into the functional units
55

Carnegie Mellon

56

VLIW Performance Example (2-wide bundles)
lw $t0, 40($s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40
$s0

RF

$t0
+

DMIM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2
$s1

+

RF
$s3
$s1

RF

$t2
-

DMIM

sub

and $t3
$s4
$s3

&

RF
$s5
$s1

RF

$t4
|

DMIM

or

sw 80
$s0

+ $s5

Ideal IPC = 2

Actual IPC = 2 (6 instructions issued in 3 cycles)

VLIW Lock-Step Execution
n Lock-step (all or none) execution: If any operation in a

VLIW instruction stalls, all instructions stall

n In a truly VLIW machine, the compiler handles all
dependency-related stalls, hardware does not perform
dependency checking
q What about variable latency operations?

57

VLIW Philosophy
n Philosophy similar to RISC (simple instructions and hardware)

q Except multiple instructions in parallel

n RISC (John Cocke, 1970s, IBM 801 minicomputer)
q Compiler does the hard work to translate high-level language

code to simple instructions (John Cocke: control signals)
n And, to reorder simple instructions for high performance

q Hardware does little translation/decoding à very simple

n VLIW (Josh Fisher, ISCA 1983)
q Compiler does the hard work to find instruction level parallelism
q Hardware stays as simple and streamlined as possible

n Executes each instruction in a bundle in lock step
n Simple à higher frequency, easier to design

58

Commercial VLIW Machines
n Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
n Cydrome Cydra 5, Bob Rau
n Transmeta Crusoe: x86 binary-translated into internal VLIW
n TI C6000, Trimedia, STMicro (DSP & embedded processors)

q Most successful commercially

n Intel IA-64
q Not fully VLIW, but based on VLIW principles
q EPIC (Explicitly Parallel Instruction Computing)
q Instruction bundles can have dependent instructions
q A few bits in the instruction format specify explicitly which

instructions in the bundle are dependent on which other ones

59

VLIW Tradeoffs
n Advantages

+ No need for dynamic scheduling hardware à simple hardware
+ No need for dependency checking within a VLIW instruction à

simple hardware for multiple instruction issue + no renaming
+ No need for instruction alignment/distribution after fetch to

different functional units à simple hardware

n Disadvantages
-- Compiler needs to find N independent operations per cycle

-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall
-- No instruction can progress until the longest-latency instruction completes

60

VLIW Summary
n VLIW simplifies hardware, but requires complex compiler

techniques
n Solely-compiler approach of VLIW has several downsides

that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

q Enable code optimizations
++ VLIW successful when parallelism is easier to find by the
compiler (traditionally embedded markets, DSPs)

61

An Example Work: Superblock

n Lecture Video on Static Instruction Scheduling
q https://www.youtube.com/watch?v=isBEVkIjgGA

62

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.
The Journal of Supercomputing, 1993.

https://www.youtube.com/watch?v=isBEVkIjgGA

Another Example Work: IMPACT

63Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991.

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

64

Recall: How to Handle Data Dependences
n Anti and output dependences are easier to handle

q write to the destination in one stage and in program order

n Flow dependences are more interesting

n Five fundamental ways of handling flow dependences
q Detect and wait until value is available in register file
q Detect and forward/bypass data to dependent instruction
q Detect and eliminate the dependence at the software level

n No need for the hardware to detect dependence
q Predict the needed value(s), execute “speculatively”, and verify
q Do something else (fine-grained multithreading)

n No need to detect
65

How to Handle Control Dependences
n Critical to keep the pipeline full with correct sequence of

dynamic instructions.

n Potential solutions if the instruction is a control-
flow instruction:

n Stall the pipeline until we know the next fetch address
n Guess the next fetch address (branch prediction)
n Employ delayed branching (branch delay slot)
n Do something else (fine-grained multithreading)
n Eliminate control-flow instructions (predicated execution)
n Fetch from both possible paths (if you know the addresses

of both possible paths) (multipath execution)
66

Fine-Grained Multithreading

67

Fine-Grained Multithreading
n Idea: Hardware has multiple thread contexts (PC+registers).

Each cycle, fetch engine fetches from a different thread.
q By the time the fetched branch/instruction resolves, no

instruction is fetched from the same thread
q Branch/instruction resolution latency overlapped with execution

of other threads� instructions

+ No logic needed for handling control and
data dependences within a thread

-- Single thread performance suffers
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough

threads to cover the whole pipeline
68

Fine-Grained Multithreading (II)
n Idea: Switch to another thread every cycle such that no two

instructions from a thread are in the pipeline concurrently

n Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple
threads

n Thornton, �Parallel Operation in the Control Data 6600,� AFIPS
1964.

n Smith, �A pipelined, shared resource MIMD computer,� ICPP 1978.

69

Fine-Grained Multithreading: History
n CDC 6600�s peripheral processing unit is fine-grained

multithreaded
q Thornton, �Parallel Operation in the Control Data 6600,� AFIPS 1964.
q Processor executes a different I/O thread every cycle
q An operation from the same thread is executed every 10 cycles

n Denelcor HEP (Heterogeneous Element Processor)
q Smith, �A pipelined, shared resource MIMD computer,� ICPP 1978.
q 120 threads/processor
q available queue vs. unavailable (waiting) queue for threads
q each thread can have only 1 instruction in the processor pipeline; each thread

independent
q to each thread, processor looks like a non-pipelined machine
q system throughput vs. single thread performance tradeoff

70

Fine-Grained Multithreading in HEP
n Cycle time: 100ns

n 8 stages à 800 ns to
complete an
instruction
q assuming no memory

access

n No control and data
dependency checking

71

Burton Smith
(1941-2018)

Multithreaded Pipeline Example

72Slide credit: Joel Emer

Sun Niagara Multithreaded Pipeline

73
Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-grained Multithreading
n Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from

different threads

+ Improved system throughput, latency tolerance, utilization

n Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register

files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N

cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
74

Modern GPUs are
FGMT Machines

75

NVIDIA GeForce GTX 285 �core�

76

…

= instruction stream decode= data-parallel (SIMD) func. unit,
control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage
for thread contexts
(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 �core�

77

…
64 KB of storage
for thread contexts
(registers)

n Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

n Up to 32 warps are interleaved in an FGMT manner
n Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

78

30 cores on the GTX 285: 30,720 threads
Slide credit: Kayvon Fatahalian

End of
Fine-Grained Multithreading

79

In Memory of Burton Smith

80

Burton Smith
(1941-2018)

In Memory of Burton Smith (II)

81

Design of Digital Circuits
Lecture 19: Branch Prediction II,

VLIW, Fine-Grained Multithreading

Prof. Onur Mutlu
ETH Zurich
Spring 2018
4 May 2018

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Burton Smith
• Technical Fellow at Microsoft
• Past: Co-founder, chief scientist, chairman of Tera/Cray, Denelcor,

Professor at Colorado
• Eckert-Mauchly Award in 1991, Seymour Cray Award, US National

Academy of Engineering, AAAS/ACM/IEEE Fellow and many other
honors

• Many wide-range contributions spanning architecture, system
software, compilers, …, including:
– Denelcor HEP, Tera MTA
– fine-grained synchronization, communication, multithreading
– parallel architectures, resource management, interconnection networks
– …

• One I would like to share:
– Smith, “A pipelined, shared resource MIMD computer”, ICPP 1978.

