Design of Digital Circuits
Lecture 19: Branch Prediction 11,
VLIW, Fine-Grained Multithreading

Prof. Onur Mutlu
ETH Zurich
Spring 2018
4 May 2018

Agenda for Today & Next Few Lectures

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

s Out-of-Order Execution

= Other Execution Paradigms

Readings for Today

Smith and Sohi, "The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
a Out-of-order and superscalar execution concepts

H&H Chapters 7.8 and 7.9

Optional:
o Kessler, "The Alpha 21264 Microprocessor,” IEEE Micro 1999.

o McFarling, "Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUs)
= Decoupled Access Execute

= Systolic Arrays

Branch Prediction Wrap-Up

Recall: Alpha 21264 Tournament Predictor

Program Clobal History
Counter [1]

Global
Predict]

412

4,096 [*
x
2 bits

Global
Prediction

Prediction

Final Prediction

= Minimum branch penalty: 7 cycles
= Typical branch penalty: 11+ cycles
= 48K bits of target addresses stored in I-cache
= Predictor tables are reset on a context switch

= Kessler, “"The Alpha 21264 Microprocessor,” IEEE Micro 1999.

6

Recall: Are We Done w/ Branch Prediction?

Hybrid branch predictors work well
o E.g., 90-97% prediction accuracy on average

Some “difficult” workloads still suffer, though!
o E.g., gcc

a Max IPC with tournament prediction: 9

o Max IPC with perfect prediction: 35

Some Other Branch Predictor Types

Loop branch detector and predictor
o Loop iteration count detector/predictor

o Works well for loops with small number of iterations, where
iteration count is predictable

o Used in Intel Pentium M

Perceptron branch predictor

o Learns the direction correlations between individual branches
o Assigns weights to correlations

o Jimenez and Lin, “"Dynamic Branch Prediction with
Perceptrons,” HPCA 2001.

Hybrid history length based predictor

o Uses different tables with different history lengths

o Seznec, “Analysis of the O-Geometric History Length branch
predictor,” ISCA 2005.

Intel Pentium M Predictors

The advanced branch prediction in the Pentium M
processor is based on the Intel Pentium” 4 processor’s
[6] branch predictor.
predictors to capture special program flows. were added:

On top of that. two additional

a Loop Detector and an Indirect Branch Predictor. Instruction
Pointer
« l
Count | Limit | Prediction
"'j 10 Target : type : hit

Figure 2: The Loop Detector logic

Gochman

“The Intel Pentium M Processor: Microarchitecture and Performance,”

V

Global
History

)

target : hit

N

et al.,

N N
N\ i

Intel Technology Journal, May 2003.

&

~

Figure 3: The Indirect Branch Predictor logic

Perceptrons for Learning Linear Functions

A perceptron is a simplified model of a biological neuron
It is also a simple binary classifier

A perceptron maps an input vector Xtoa O or 1
o Input = Vector X

o Perceptron learns the linear function (if one exists) of how
each element of the vector affects the output (stored in an
internal Weight vector)

o Output = Weight.X + Bias > 0

In the branch prediction context
o Vector X: Branch history register bits
o Output: Prediction for the current branch

10

Perceptron Branch Predictor (I)

Idea: Use a perceptron to learn the correlations between branch history

register bits and branch outcome

A perceptron learns a target Boolean function of N inputs

77N\ 77\ 77N 7N\
ONORIORO

——

Wq w1 \

Ly
N

n
Yy = wo + E TiWi.
i=1

Each branch associated with a perceptron

A perceptron contains a set of weights wi

- Each weight corresponds to a bit in
the GHR

—->How much the bit is correlated with the
direction of the branch

-> Positive correlation: large + weight

- Negative correlation: large - weight

Prediction:

- Express GHR bits as 1 (T) and -1 (NT)
- Take dot product of GHR and weights
- If output > 0, predict taken

Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.
Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962

11

Perceptron Branch Predictor (II)

Branch Address

History Register Branch Outcome

Prediction

»(Training

é

| Selected Pe1cept10n B

Y

Table

&Q}\ of
Entry /™" [Perceptrons

Prediction function:

Dot product of GHR
and perceptron weights

&)

Output _ _
compared Bl_as weight |
to 0 (bias of branch, independent of

the history)

Training function:

if sign(yout) # tor your < 6 then
fori::=0ton do
w; = w; + tx;
end for
end if

12

Perceptron Branch Predictor (111

Advantages
+ More sophisticated learning mechanism - better accuracy

Disadvantages

-- Hard to implement (adder tree to compute perceptron output)
-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history
bits and branch outcome

13

Prediction Using Multiple E

1story Lengths

= Observation: Different
branches require
different history lengths
for better prediction
accuracy

Idea: Have multiple
PHTs indexed with
GHRs with different
history lengths and
intelligently allocate
PHT entries to different
branches

pe, h[0:L(1)] pc, h[0:L(2)] pc, h[0:L(3)] pc, h[0:L(4)]
(hash) (has (hash) (has (hash) (has (hash) (has
TO T1 T2 T3 T4

3 : | | : : : : :

—g pred, tag |u pred, tag |u pred, tag |u pred, tag |u

& : : : | : : : :

% | : | : | : | :
ED— D ED— ED—

N -

prediction |

Figure 1: A 5-component TAGE predictor synopsis: a base predictor is backed with several
tagged predictor components indexed with increasing history lengths

Seznec and Michaud, “A case for (partially) tagged Geometric History Length
Branch Prediction,” JILP 2006.

14

State of the Art in Branch Prediction

= See the Branch Prediction Championship
a https://www.jilp.org/cbp2016/program.html

Global, local,
skeleton histories

Prediction +
Confidence

v

Figure 1. The TAGE-SC-L predictor: a TAGE
predictor backed with a Statistical Corrector
predictor and a loop predictor

Andre Seznec,
“TAGE-SC-L branch predictors,”
CBP 2014.

Andre Seznec,
“TAGE-SC-L branch predictors
again,” CBP 2016.

15

https://www.jilp.org/cbp2016/program.html

Branch Confidence Estimation

Idea: Estimate if the prediction is likely to be correct
o i.e., estimate how “confident” you are in the prediction

Why?

o Could be very useful in deciding how to speculate:
What predictor/PHT to choose/use
Whether to keep fetching on this path

Whether to switch to some other way of handling the branch,
e.g. dual-path execution (eager execution) or dynamic
predication

Jacobsen et al., “Assigning Confidence to Conditional Branch
Predictions,” MICRO 1996.

16

Other Ways of Handling

Branches

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot) ‘

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

18

Delayed Branching (I)

Change the semantics of a branch instruction

o Branch after N instructions

o Branch after N cycles

Idea: Delay the execution of a branch. N instructions (delay

slots) that come after the branch are always executed
regardless of branch direction.

Problem: How do you find instructions to fill the delay
slots?

o Branch must be independent of delay slot instructions

Unconditional branch: Easier to find instructions to fill the delay slot

Conditional branch: Condition computation should not depend on

instructions in delay slots = difficult to fill the delay slot
19

Delayed Branching (1)

Normal code:

Timeline:

if

ex

6 cycles

Delayed branch code:

A
BC X

Timeline:
if | ex
A

C A
BC C
B BC
G B
S cycles

20

Fancy Delayed Branching (11I)

Delayed branch with squashing
o In SPARC

o Semantics: If the branch falls through (i.e., it is not taken),
the delay slot instruction is not executed

o Why could this help?

Normal code: Delayed branch code: Delayed branch w/ squashing:
XA X A A
B B X |B)
C C C %
BC X BC X BC X
D NOP A
E D D

21

Delayed Branching (IV)

Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming

1. Number of delay slots == number of instructions to keep the pipeline
full before the branch resolves

2. All delay slots can be filled with useful instructions

Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar
execution width

2. Number of delay slots should be variable with variable latency
operations. Why?

-- Ties ISA semantics to hardware implementation
-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
22

An Aside: Filling the Delay Slot

a.

reordering data
independent
(RAW, WAW,

WAR)

instructions
does not change
program semantics

From before

b. From target

c. From fall through

add $s1, $s2, $s3

sub $t4, $t5, $t6 <

add $s1, $s2, $s3

if $s2 = 0 then —— if $s1 = 0 then
add $s1, $s2, $s3

| Delayslot | | Delaysiot |
if $s1 = 0 then —!

—— | Delayslot | sub $t4, $t5, $t6
Becomes ' Becomes | Becomes |
add $s1, $s2, $s3
if $s2 = 0 then — if $s1 = 0 then ——

ladd $s1, $s2, $s3 |

add $s1, $s2, $s3

if $s1 = 0 then ——

| sub $t4, $t5, $t6 |

[sub $t4, $t5, $t6 |

within same
basic block

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]

For correctness:
add a new instruction
to the not-taken path?

to the take

correctness:
add a new instruction

Safe?

23

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution) ‘

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

24

Predicate Combining (7of Predicated Execution)

Complex predicates are converted into multiple branches
o if ((@a==Db) && (c < d) && (a > 5000)) { ...}
3 conditional branches

Problem: This increases the number of control
dependencies

Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

o Predicates stored and operated on using condition registers
o A single branch checks the value of the combined predicate

+ Fewer branches in code - fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
Condition registers exist in IBM RS6000 and the POWER architecture

25

Predication (Predicated Execution)
Idea: Convert control dependence to data dependence

Simple example: Suppose we had a Conditional Move
instruction...

o CMOV condition, R1 €« R2
o R1 = (condition == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

Code example with branches vs. CMOVs
if (@==05){b=4;}else {b=3;}

CMPEQ condition, a, 5;
CMOV condition, b < 4;
CMOV Icondition, b €« 3;

26

Predication (Predicated Execution)

Idea: Compiler converts control dependence into data
dependence - branch is eliminated

o Each instruction has a predicate bit set based on the predicate computation

o Only instructions with TRUE predicates are committed (others turned into NOPs)

if (cond) {

b=0;

b

else {

b

(normal branch code) (predicated code)
A
T/ N A
C| |B B
N C
D D
A pl =(cond) A
branch pl, TARGET pl — (cond)
5 mov b, 1
jmp JOIN ’ (!p1) mov b, 1
C
TAR(foTvzb 0 y (p1) mov b, 0
°| add x,b, 1 ° add x, b, 1| 2

Predicated Execution References

Allen et al., “"Conversion of control dependence to data
dependence,” POPL 1983.

Kim et al., "Wish Branches: Combining Conditional
Branching and Predication for Adaptive Predicated
Execution,” MICRO 2005.

28

Conditional Move Operations

Very limited form of predicated execution

CMOV R1 < R2
o R1 = (ConditionCode == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

29

Predicated Execution (1I)

= Predicated execution can be high performance and energy-
efficient

Predicated Execution

A Fetch Decode Rename Schedule RegisterRead Execute
C B ,7%
Branch Prediction
D Fetch Decode Rename Schedule RegisterRead Execute
- L] felele]e]a

v Pipeline flush!!

Predicated Execution

Eliminates branches - enables straight line code (i.e.,
larger basic blocks in code)

Advantages
o Eliminates hard-to-predict branches
o Always-not-taken prediction works better (no branches)

o Compiler has more freedom to optimize code (no branches)
control flow does not hinder inst. reordering optimizations
code optimizations hindered only by data dependencies

Disadvantages

o Useless work: some instructions fetched/executed but
discarded (especially bad for easy-to-predict branches)

o Requires additional ISA (and hardware) support

o Can we eliminate all branches this way?
31

Predicated Execution vs. Branch Prediction

+ Eliminates mispredictions for hard-to-predict branches
+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

-- Causes useless work for branches that are easy to predict
-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch
behavior. Branch behavior changes based on input set, program
phase, control-flow path.

32

Predicated Execution in Intel Itanium

Each instruction can be separately predicated
64 one-bit predicate registers

each instruction carries a 6-bit predicate field
An instruction is effectively a NOP if its predicate is false

cmp pl p2 <cmp
br p2elsel
~Teol plthenl
else? loind
] ‘ oThen
Thenl D:!.el_sez
then?2 loin2
» joinl

join2

Conditional Execution in the ARM ISA

Almost all ARM instructions can include an optional
condition code.

a Prior to ARM v8

An instruction with a condition code is executed only if the
condition code flags in the CPSR meet the specified
condition.

34

Conditional Execution in ARM ISA

31 2827 1615 87 0 Instruction type
Cond 0 0 § Opcode | S Rn Rd Operand2 Data processing / PSR Transfer
Cond 00000O0OB&ls Rd Rn Rs 100 1] Rm Multiply
Cond 0000 1u/als| Rdui RdLo Rs 100 1| Rm Long Multiply ~ (v3M / v4 only)
cond 00010BO0O Rn Rd 00001001 Rm Swap
cond 0 1" 1 B UIBI Wl L Rn Rd offset Load/Store Byte/Word
Cond 1 a B UI S| W| L Rn Register List Load/Store Multiplc
Ccond 00qHy 1wL Rn Rd offsetl| 1| s| H| 1| offset2| Halfword transfer : Immediate offset (v4 only)
cond [0 00|Hulo w"L Rn Rd 00o0o0f1s|lgll] =rm Halfword transfer: Register offset (v4 only)
Cond 10 1 1 offset Branch
Cond |[0001|J00101111f1111f(11130001 Rn Branch Exchange (v4T only)
cond 11dp u” ul Wl L Rn CRd CPNum offset Coprocessor data transfer
Cond 1110 opl CRn CRd ceNum | op2 [0] crm | Coprocessor data operation
Cond 1110 opl|L|l CRn Rd CPNum | Op2 |1 CRm Coprocessor register transfer
cCond |1111 SWI Number Software interrupt

—

35

Conditional Execution in ARM ISA

31 28 24 20 16 12 8 4 0
-yt + -+t 1rr+ >t >ttt rrrtrt >t 1T T T 1T 1 1T/
Cond |
I—
0000 = EQ - Z set (equal) 1001 =LS - C clear or Z (set unsigned
0001 = NE - Z clear (not equal) lower or same)

1010 =GE - N set and V set. or N clear

0010 =HS /CS - C set (unsigned and V clear (>or =)

higher or same)

0011 =10/ CC - C clear (unsigned oL =T et and Vlear, or N clear
lower)
0100 = MI -N set (negative) 1100 = GT - Z clear. and either N set and

V set, or N clear and V set (>)

1101 =LE - Z set. or N set and V clear.or
N clear and V set (<, or =)

1110 = AL - always
1111 =NV - reserved.

0101 = PL - N clear (positive or
Zero)

0110 =VS -V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear

o

The ARM Instruction Set - ARM University Program - V1.0

Conditional Execution in ARM ISA

* To execute an instruction conditionally, simply postfix it with the
appropriate condition:

* For example an add instruction takes the form:
— ADD r0O,rl,xr2 ; rO = rl + r2 (ADDAL)

* To execute this only if the zero flag 1s set:

— ADDEQ r0O,rl,xr2 If zero flag set then...

’

7 «.. r0 = rl + r2

* By default, data processing operations do not affect the condition flags
(apart from the comparisons where this is the only effect). To cause the
condition flags to be updated, the S bit of the instruction needs to be set

by postfixing the instruction (and any condition code) with an *“S™.
* For example to add two numbers and set the condition flags:

— ADDS rO,rl,xr2 r0 rl + r2
... and set flags

- =

The ARM Instruction Set - ARM University Program - V1.0

37

Conditional Execution in ARM ISA

A
No
Yes @\ No
r0o=r0-ri r=r1-r0
<

The ARM Instruction Set - ARM University Program - V1.0

*

Convert the GCD
algorithm given in this
flowchart into

1) “Normal” assembler,

where only branches can
be conditional.

2) ARM assembler, where
all instructions are
conditional, thus
improving code density.

* The only instructions you
need are CMP, B and SUB.

o 24

Conditional Execution in ARM ISA

“Normal’ Assembler

gcd

less

stop

cmp
beq
blt
sub
bal
sub
bal

r0, rl
stop
less
r0,
gecd

r0O, rl

rl, rl, r0

gecd

;reached the end?

;if r0 > ri

;subtract rl1l from rO

;subtract r0 from rl

ARM Conditional Assembler

gcd

cmp

subgt r0, r0, ril
sublt ri1,

bne

r0o, rl

rl,

gcd

The ARM Instruction Set - ARM University Program - V1.0

;if rO0 > ri
;subtract rl from rO
;else subtract r0 from rl

;reached the end?

39

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

40

Multi-Path Execution

Idea: Execute both paths after a conditional branch

o For all branches: Riseman and Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, 1972.

o For a hard-to-predict branch: Use dynamic confidence estimation

Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

Disadvantages:

-- What happens when the machine encounters another hard-to-predict
branch? Execute both paths again?

-- Paths followed quickly become exponential
-- Each followed path requires its own context (registers, PC, GHR)

-- Wasted work (and reduced performance) if paths merge
41

Dual-Path

Dual-path
A | Hard to predict palth 1 palth 2
C B C B
> D >
: : :
= - F

Hxecution versus Predication

Predicated Execution

path 1

l

C

l

CFMerge

O

path 2

l

B

l

CFMerge

42

Handling Other Types of

Branches

Remember: Branch Types

Type Direction at Number of When is next
fetch time possible next fetch address
fetch addresses? | resolved?
Conditional Unknown 2 Execution (register
dependent)
Unconditional Always taken 1 Decode (PC +
offset)
Call Always taken 1 Decode (PC +
offset)
Return Always taken Many Execution (register
dependent)
Indirect Always taken Many Execution (register
dependent)

How can we predict an indirect branch with many target addresses?

44

Call and Return Prediction

. . Call X
Direct calls are easy to predict
o Always taken, single target Call X
o Call marked in BTB, target predicted by BTB Call X
Ii’éturn
Returns are indirect branches ReturF;eturn

o A function can be called from many points in code
o A return instruction can have many target addresses
Next instruction after each call point for the same function
o Observation: Usually a return matches a call
o Idea: Use a stack to predict return addresses (Return Address Stack)

A fetched call: pushes the return (next instruction) address on the stack

A fetched return: pops the stack and uses the address as its predicted
target

Accurate most of the time: 8-entry stack 2> > 95% accuracy

45

Indirect Branch Prediction (I)

Register-indirect branches have multiple targets

A br.cond TARGET A R1 = MEM[R2]
‘y \NA 7 branch R1
A+1 A’/ 4 < 4
TARG o[B8 o
Conditional (Direct) Branch Indirect Jump

Used to implement

o Switch-case statements

o Virtual function calls

o Jump tables (of function pointers)
o Interface calls

46

Indirect Branch Prediction (1)

No direction prediction needed

Idea 1: Predict the last resolved target as the next fetch address
+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

Idea 2: Use history based target prediction
o E.g., Index the BTB with GHR XORed with Indirect Branch PC
a Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB
-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses

47

Intel Pentium M Indirect Branch Predictor

The advanced branch prediction in the Pentium M
processor is based on the Intel Pentium” 4 processor’s
[6] branch predictor.
predictors to capture special program flows. were added:

On top of that. two additional

a Loop Detector and an Indirect Branch Predictor. Instruction
Pointer
« l
Count | Limit | Prediction
"'j 10 Target : type : hit

Figure 2: The Loop Detector logic

Gochman

“The Intel Pentium M Processor: Microarchitecture and Performance,”

V

Global
History

)

target : hit

N

et al.,

N N
N\ i

Intel Technology Journal, May 2003.

&

~

Figure 3: The Indirect Branch Predictor logic

48

Issues 1n Branch Prediction (I)

Need to identify a branch before it is fetched

How do we do this?
o BTB hit = indicates that the fetched instruction is a branch
o BTB entry contains the “type” of the branch

o Pre-decoded “branch type” information stored in the
instruction cache identifies type of branch

What if no BTB?
o Bubble in the pipeline until target address is computed
o E.g., IBM POWER4

49

Latency of Branch Prediction

Latency: Prediction is latency critical
o Need to generate next fetch address for the next cycle
o Bigger, more complex predictors are more accurate but slower

PC + inst size —»
BTB target ' Next Fetch
Return Address Stack target > > Address

Indirect Branch Predictor target ——
Resolved target from Backend —

?7?

50

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUs)
= Decoupled Access Execute

= Systolic Arrays

51

VLIW

VLIW Concept

Superscalar

o Hardware fetches multiple instructions and checks
dependencies between them

VLIW (Very Long Instruction Word)

a Software (compiler) packs independent instructions in a larger
“instruction bundle” to be fetched and executed concurrently

o Hardware fetches and executes the instructions in the bundle
concurrently

No need for hardware dependency checking between
concurrently-fetched instructions in the VLIW model

53

VLIW Concept

Memory

add r1,r2.r3 |Ioad r4 r5+4 I mov re,r2 I mul r7 r8,r9

Erograml
ounter

Instruction
Execution

= Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

o ELI: Enormously longword instructions (512 bits)

54

VLIW (Very Long Instruction Word)

A very long instruction word consists of multiple
independent instructions packed together by the compiler

o Packed instructions can be logically unrelated (contrast with
SIMD/vector processors, which we will see soon)

Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
Instruction

Traditional Characteristics
o Multiple functional units
o All instructions in a bundle are executed in lock step

o Instructions in a bundle statically aligned to be directly fed

into the functional units
55

VLIW Performance Example (2-wide bundles)

w $t0, 40($s0) Ideal IPC = 2
add $t1, $s1, $s2

sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80(%$s0)

1 2 4 5 6 7 8

3
|
Time (cycles)
¥ $SOf N Ms:o
lw $t0, 40($s0) — 10 :B— —
IM RF [5s1 oW RF
1
add $t1, $s1, $s2 add :B— I
Y 55107 Y Mo
sub $t2, $sl, $s3 el el o —
IM RF [5s3 DM - RF
and $t3, $s3, $s4 and -[Ss4 :B— -
M —— 851K Y Mot
or $t4, sl, Ssb5 $s5 :D— —
IM RF [5s0 EM RF
5
sw $s5, 80($s0) Sl -[80 :B— Sof |

Actual IPC = 2 (6 instructions issued in 3 cycles)

VLIW Lock-Step Execution

Lock-step (all or none) execution: If any operation in a
VLIW instruction stalls, all instructions stall

In a truly VLIW machine, the compiler handles all
dependency-related stalls, hardware does not perform
dependency checking

o What about variable latency operations?

57

VLIW Philosophy

Philosophy similar to RISC (simple instructions and hardware)
o Except multiple instructions in parallel

RISC (John Cocke, 1970s, IBM 801 minicomputer)

o Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

And, to reorder simple instructions for high performance
o Hardware does little translation/decoding - very simple

VLIW (Josh Fisher, ISCA 1983)
o Compiler does the hard work to find instruction level parallelism
o Hardware stays as simple and streamlined as possible

Executes each instruction in a bundle in lock step

Simple - higher frequency, easier to design
58

Commercial VLIW Machines

Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
Cydrome Cydra 5, Bob Rau
Transmeta Crusoe: x86 binary-translated into internal VLIW

TI C6000, Trimedia, STMicro (DSP & embedded processors)
o Most successful commercially

Intel IA-64

o Not fully VLIW, but based on VLIW principles

o EPIC (Explicitly Parallel Instruction Computing)

o Instruction bundles can have dependent instructions
a

A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

59

VLIW Tradeoffs

Advantages
+ No need for dynamic scheduling hardware = simple hardware

+ No need for dependency checking within a VLIW instruction -
simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units - simple hardware

Disadvantages

-- Compiler needs to find N independent operations per cycle
-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
60

VLIW Summary

VLIW simplifies hardware, but requires complex compiler
techniques

Solely-compiler approach of VLIW has several downsides
that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

o Enable code optimizations

++ VLIW successful when parallelism is easier to find by the

compiler (traditionally embedded markets, DSPs)
61

An Example Work: Superblock

The Superblock: An Effective Technique

for VLIW and Superscalar Compilation

Wen-mei W. Hwu Scott A. Mahlke William Y. Chen Pohua P. Chang
Nancy J. Warter Roger A. Bringmann Roland G. Ouellette Richard E. Hank

Tokuzo Kiyohara Grant E. Haab John G. Holm Daniel M. Lavery *

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.

The Journal of Supercomputing, 1993.

= Lecture Video on Static Instruction Scheduling
a https://www.youtube.com/watch?v=isBEVkIjgGA

62

https://www.youtube.com/watch?v=isBEVkIjgGA

Another Example Work: IMPACT

Pohua P. Chang

IMPACT: An Architectural Framework for

Multiple-Instruction-Issue Processors

Scott A. Mahlke William Y. Chen Nancy J. Warter

Center for Reliable and High-Performance Computing
University of Illinois
Urbana, IL 61801

The performance of multiple-instruction-issue processors
can be severely limited by the compiler’s ability to gen-
erate efficient code for concurrent hardware. In the IM-
PACT project, we have developed IMPACT-I, a highly
optimizing C compiler to exploit instruction level concur-
rency. The optimization capabilities of the IMPACT-I
(C compiler are summarized in this paper. Using the
IMPACT-I C compiler, we ran experiments to analyze
the performance of multiple-instruction-issue processors ex-
ecuting some important non-numerical programs. The
multiple-instruction-issue processors achieve solid speedup
over high-performance single-instruction-issue processors.

Wen-me: W. Hwu

Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991. 63

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Fine-Grained Multithreading

= SIMD Processing (Vector and array processors, GPUS)
= Decoupled Access Execute

= Systolic Arrays

64

Recall: How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences

o Detect and wait until value is available in register file

o Detect and forward/bypass data to dependent instruction

o Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence

o Predict the needed value(s), execute “speculatively”, and verify

o Do something else (fine-grained multithreading)
No need to detect

65

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-
flow instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

06

Fine-Grained Multithreading

Fine-Grained Multithreading

= Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for handling control and | nstruction Fetch

Stream 2 Instruction

data dependences within a thread Strgggﬁisﬂiﬁfgm
-- Single thread performance suffers D e

Execution Phase

-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough —
Stream 4 Instruction
threads to cover the whole pipeline Result Store

68

Fine-Grained Multithreading (II)

Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

09

Fine-Grained Multithreading: History

CDC 6600’ s peripheral processing unit is fine-grained
multithreaded

a Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
o Processor executes a different I/O thread every cycle

o An operation from the same thread is executed every 10 cycles

Denelcor HEP (Heterogeneous Element Processor)
Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
120 threads/processor

available queue vs. unavailable (waiting) queue for threads

each thread can have only 1 instruction in the processor pipeline; each thread
independent

to each thread, processor looks like a non-pipelined machine
o system throughput vs. single thread performance tradeoff

o 0O 0O O

U

70

Fine-Grained Multithreading in HEP

= Cycle time: 100ns

= 8 stages - 800 ns to
complete an
Instruction

0 assuming no memory
access

= No control and data
dependency checking

Burton Smith
(1941-2018)

FROM DATA MEMORY
VIA SWITCH

TO DATA MEMORY
VIA SWITCH

QUELUE

PERFORM
FUNCTION

.
-
PERFORM
FUNCTION

REGISTER
MEMORY

FETCH
OPERANDS

FETCH .
INSTRUCTION QUEUE

PROGRAM
MEMORY

/1

Multithreaded Pipeline Example

select

Slide credit: Joel Emer

> X >
N > >

Y

XN
n. N
W2 I

72

Sun Niagara Multptresded Pipeline

Crossbar
Interface

Instruction type

Kongetira et al., "Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.
73

Fine-grained Multithreading

Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, ...), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
74

Modern GPUs are
FGMT Machines

NVIDIA GeForce GTX 285 “core”

[] [] []
L] L] L] L] 64 KB of storage

l l l l l l for thread contexts
[] [] | | 47 .
(registers)

@ = data-parallel (SIMD) func. unit, - = instruction stream decode
control shared across 8 units

= multiply-add = execution context storage
B = multiply

Slide credit: Kayvon Fatahalian 76

NVIDIA GeForce GTX 285 “core”

64 KB of storage

for thread contexts
(registers)

-

= Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

= Up to 32 warps are interleaved in an FGMT manner
= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

77

NVIDIA GeForce GTX 285

[=]=] | [=]=]{[=]=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=[=]{[=]=] [=[=]| [=]=]|

 [=[=]{[=]=]| [=[=]| [=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=[=]{[=]=] [=[=]| [=]=]|

| [T=] [T [wT=] | [<T]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

[=]=]1{ [=I=]{ [=I=]{ [=]=]|

| [=]=]{[=I=]{[=I=]| [=]=]|

CLiit--T111]

L1100

CLiitr--T111]

 [=[=]{[=I=]{ [=I=]| [=]=]|

[T | [T | [T=] | [wT]|

[=[=] | (I=] | [S[=] | =[=],

[=[=]| (=[5} [[=]| =[=],

[m]=] | [=[=] | [=[=] | [=]=]|

[=]=]|[=]=]|[=]=]{[=]=]|

INNEEDEEER

| [=]=]{[=]=]{[=I=]| [=]=]|

1] | T=] | T=] | [ST=])

| [T=] [T [wT=] | [<T]|

| [=]=]{[=]=]{[=I=]| [=]=]|

[=1=] | [T=] | [ST=]} ES[=],

| [=T=]) [ST] [wT=] | [ST]]

CLirtr---T111]

L1100

CLiit--T111]

[=[=]| [STE]| [ST=] | ST=])

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

[=1=]] [ST=]) ST=]) [S[=])

[=[=]| (STE] | ST=]| [ST=]]

INNEEnEEER

CLLff---TT11]

INNIEnEEEnR

 [=]=]{[=]=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

L1111

INNEEnEEER

 [=]=]{[=]=]{[=[=]| [=]=]|

[T [T [T=] | [wT]|

[=[=] | (I=] | [S[=] | (<[=])

 [=[=]{[=I=]{ [=I=]| [=]=]|

| [=]=]{[=]=]{[=[=]| [=]=]|

 [=]=]{[=]=]{[=[=]| [=]=]|

INREEDEEER

L1111

INNEEnEEER

| [T=] [T [wT=] | [<T]|

[=]=]{[=I=]| [=I=]| [=]=]|

[==]{[=I=]{[=I=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

CLiit--T111]

L1100

CLirt---T111]

| [=]=]{[=]=]{[=I=]| [=]=]|

1] | T=] | T=] | [ST=])

| [T=] [T [wT=] | [<T]|

[=]=]{[=I=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

INNNEN R

CLift--T111]

INNNEnERER

| [T=] [T [wT=] | [<T]|

[=]=]1{ [=I=]{ [=I=]{ [=]=]|

| [=]=]{[=I=]{[=I=]| [=]=]|

| [=]=]{[=]=]{[=I=]| [=]=]|

 [=]=]{[=I=] [=[=]{[=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

INNNEDEEER

CLift--T111]

INNNEnERER

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

78

End of
Fine-Grained Multithreading

In Memory of Burton Smith

A PIPELINED, SHARED RESOUCE MIMD COMPUTEK

Burton J. Smith

Denelcor, Inc.
Denver, Colorado 80205

Burton Smith
(1941-2018)

Architecture and applications of the HEP multiprocessor computer system

Burton J. Smith
Denelcor, Inc., 14221 E. 4th Avenue, Aurora, Colorado 80011

In Memory of Burton Smith (II)

Robert Alverson

David Callahan
Allan Porterfield

The Tera Computer System”

Tera Computer Company

Seattle, Washington USA

4 Processors

Each processor in a Tera computer can execute multiple
instruction streams simultaneously. In the current im-
plementation, as few as one or as many as 128 program
counters may be active at once. On every tick of the
clock, the processor logic selects a stream that is ready
to execute and allows it to issue its next instruction.
Since instruction interpretation is completely pipelined
by the processor and by the network and memories as
well, a new 1nstruction from a different stream may be
issued in each tick without interfering with its predeces-
sors. When an instruction finishes, the stream to which
it belongs thereby becomes ready to execute the next
instruction. As long as there are enough instruction
streams in the processor so that the average instruction
latency is filled with instructions from other streams,
the processor is being fully utilized. Thus, it is only
necessary to have enough streams to hide the expected
latency (perhaps 70 ticks on average); once latency is
hidden the processor is running at peak performance
and additional streams do not speed the result.

Daniel Cummings
Burton Smith

Brian Koblenz

81

Design of Digital Circuits
Lecture 19: Branch Prediction 11,
VLIW, Fine-Grained Multithreading

Prof. Onur Mutlu
ETH Zurich
Spring 2018
4 May 2018

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Burton Smith

Technical Fellow at Microsoft

Past: Co-founder, chief scientist, chairman of Tera/Cray, Denelcor,
Professor at Colorado

Eckert-Mauchly Award in 1991, Seymour Cray Award, US National
Academy of Engineering, AAAS/ACM/IEEE Fellow and many other

honors

Many wide-range contributions spanning architecture, system
software, compilers, ..., including:

— Denelcor HEP, Tera MTA

— fine-grained synchronization, communication, multithreading

— parallel architectures, resource management, interconnection networks

One | would like to share:
— Smith, “A pipelined, shared resource MIMD computer”, ICPP 1978.

