
Design of Digital Circuits

Lecture 2: Mysteries in Comp Arch

Prof. Onur Mutlu

ETH Zurich

Spring 2018

23 February 2018

How Do Problems

Get Solved by Electrons?

2

Recall: The Transformation Hierarchy

3

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Computer Architecture

(narrow view)

Computer Architecture

(expanded view)

Recall: Levels of Transformation

4

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Devices

Runtime System
(VM, OS, MM)

Electrons

“The purpose of computing is [to gain] insight” (Richard Hamming)

We gain and generate insight by solving problems

How do we ensure problems are solved by electrons?

Algorithm

Step-by-step procedure that is

guaranteed to terminate where

each step is precisely stated

and can be carried out by a

computer

- Finiteness

- Definiteness

- Effective computability

Many algorithms for the same

problem

ISA

(Instruction Set Architecture)

Interface/contract between

SW and HW.

What the programmer

assumes hardware will

satisfy.

Microarchitecture

An implementation of the ISA

Digital logic circuits

Building blocks of micro-arch (e.g., gates)

 A user-centric view: computer designed for users

 The entire stack should be optimized for user

 User varies across platforms and across use cases

Levels of Transformation, Revisited

5

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

Logic

Devices

Electrons

The Power of Abstraction

 Levels of transformation create abstractions

 Abstraction: A higher level only needs to know about the
interface to the lower level, not how the lower level is
implemented

 E.g., high-level language programmer does not really need to
know what the ISA is and how a computer executes instructions

 Abstraction improves productivity

 No need to worry about decisions made in underlying levels

 E.g., programming in Java vs. C vs. assembly vs. binary vs. by
specifying control signals of each transistor every cycle

 Then, why would you want to know what goes on
underneath or above?

6

Crossing the Abstraction Layers

 As long as everything goes well, not knowing what happens
underneath (or above) is not a problem.

 What if
 The program you wrote is running slow?

 The program you wrote does not run correctly?

 The program you wrote consumes too much energy?

 Your system just shut down and you have no idea why?

 Someone just compromised your system and you have no idea how?

 What if
 The hardware you designed is too hard to program?

 The hardware you designed is too slow because it does not provide the
right primitives to the software?

 What if
 You want to design a much more efficient and higher performance system?

7

Crossing the Abstraction Layers

 Two goals of this course (especially the second half) are

 to understand how a processor works underneath the
software layer and how decisions made in hardware affect the
software/programmer

 to enable you to be comfortable in making design and
optimization decisions that cross the boundaries of different
layers and system components

8

Some Example “Mysteries”

9

Four Mysteries: Familiar with Any?

 Meltdown & Spectre (2017-2018)

 Rowhammer (2012-2014)

 Memory Performance Attacks (2006-2007)

 Memories Forget: Refresh (2011-2012)

10

Mystery #1:

Meltdown & Spectre

11

What Are These?

12
Source: J. Masters, Redhat, FOSDEM 2018 keynote talk.

Meltdown and Spectre Attacks

 Someone can steal secret data from the system even though

 your program and data are perfectly correct and

 your hardware behaves according to the specification and

 there are no software vulnerabilities/bugs

13

Meltdown and Spectre

 Hardware security vulnerabilities that essentially effect almost
all computer chips that were manufactured in the past two
decades

 They exploit “speculative execution”

 A technique employed in modern processors for high performance

 Speculative execution: Doing something before you know that
it is needed

 We do it all the time in life, to save time

 Guess what will happen and act based on that guess

 Processors do it, too, to run programs fast

 They guess and execute code before they know it should be executed

14

Speculative Execution (I)

 Modern processors “speculatively execute” code to improve
performance:

if (account-balance <= 0) {

// do something

} else if (account-balance < 1M) {

// do something else

} else {

// do something else

}

15

Guess what code will be executed and execute it speculatively

- Improves performance, if it takes a long time to access account-balance

If the guess was wrong, flush the wrong instructions and execute the correct code

Speculative Execution is Invisible to the User

16

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

ISA

(Instruction Set Architecture)

Interface/contract between

SW and HW.

What the programmer

assumes hardware will

satisfy.
Microarchitecture

An implementation of the ISA
Programmer assumes their code

will be executed in sequential order

Microarchitecture executes

instructions in a different order,

speculatively – but reports the results

as expected by the programmer

Meltdown and Spectre

 Someone can steal secret data from the system even though

 your program and data are perfectly correct and

 your hardware behaves according to the specification and

 there are no software vulnerabilities/bugs

 Why?

 Speculative execution leaves traces of secret data in the
processor’s cache (internal storage)

 It brings data that is not supposed to be brought/accessed if there
was no speculative execution

 A malicious program can inspect the contents of the cache to
“infer” secret data that it is not supposed to access

 A malicious program can actually force another program to
speculatively execute code that leaves traces of secret data

17

Processor Cache as a Side Channel

 Speculative execution leaves traces of data in processor cache

 Architecturally correct behavior w.r.t. specification

 However, this leads to a side channel: a channel through which
someone sophisticated can extract information

 Processor cache leaks information by storing speculatively-
accessed data

 A clever attacker can probe the cache and infer the secret data
values

 by measuring how long it takes to access the data

 A clever attacker can force a program to speculatively execute
code and leave traces of secret data in the cache

18

More on Meltdown/Spectre Side Channels

19
Source: https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html

https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html

Three Questions

 Can you figure out why someone stole your secret data if
you do not know how the processor executes a program?

 Can you fix the problem without knowing what is
happening “underneath”, i.e., inside the microarchitecture?

 Can you fix the problem well/fundamentally without
knowing both software and hardware design?

 Can you construct this attack or similar attacks without
knowing what is happening underneath?

20

Three Other Questions

 What are the causes of Meltdown and Spectre?

 How can we prevent them (while keeping the performance
benefits of speculative execution)?

 Software changes?

 Operating system changes?

 Instruction set architecture changes?

 Microarchitecture/hardware changes?

 Changes at multiple layers, done cooperatively?

 …

 How do we design high-performance processors that do not
leak information via side channels?

21

Meltdown/Spectre Span Across the Hierarchy

22

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Computer Architecture

(narrow view)

Computer Architecture

(expanded view)

Meltdown/Spectre problem

and solution space

Takeaway

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

23

… and Also Understand/Critique Cartoons!

24
Source: https://xkcd.com/1938/

https://xkcd.com/1938/

An Important Note: Design Goal and Mindset

 Design goal of a system determines the design mindset and
evaluation metrics

 Meltdown and Spectre are there because the design goal of
cutting-edge processors (employed everywhere in our lives)

 has mainly been focused on high performance and low energy
(relatively recently)

 has not included security (or information leakage) as an
important constraint

 Incorporating security as a first-class constraint and
“metric” into (hardware) design and education is critical in
today’s world

25

Design Mindset

26Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg

Security is about preventing unforeseen consequences

Two Other Goals of This Course

 Enable you to think critically

 Enable you to think broadly

27

To Learn and Discover Further

 High-level Video by RedHat

 https://www.youtube.com/watch?v=syAdX44pokE

 A bit lower-level, comprehensive explanation by Y. Vigfusson

 https://www.youtube.com/watch?v=mgAN4w7LH2o

 Keep attending lectures and taking in all the material

 Come talk with me in the future

 I have many bachelor’s & master’s projects on hardware security

 “Fundamentally secure computing architectures” is a key
direction of scientific investigation and design

28

https://www.youtube.com/watch?v=syAdX44pokE
https://www.youtube.com/watch?v=mgAN4w7LH2o

Another Example “Mystery”

29

Mystery #2: RowHammer

30

RowHammer: Another Mystery?

 DRAM Row Hammer (or, DRAM Disturbance Errors)

 How a simple hardware failure mechanism can create a
widespread system security vulnerability

31

Row of Cells

Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row

Hammered Row

Repeatedly opening and closing a row enough times within a
refresh interval induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

OpenedClosed

32

Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to

1.0×107

errors

Up to

2.7×106

errors

Up to

3.3×105

errors

33

Most DRAM Modules Are Vulnerable

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

34

Recent DRAM Is More Vulnerable

35

First
Appearance

Recent DRAM Is More Vulnerable

36

All modules from 2012–2013 are vulnerable

First
Appearance

Recent DRAM Is More Vulnerable

Why Is This Happening?

 DRAM cells are too close to each other!

 They are not electrically isolated from each other

 Access to one cell affects the value in nearby cells

 due to electrical interference between

 the cells

 wires used for accessing the cells

 Also called cell-to-cell coupling/interference

 Example: When we activate (apply high voltage) to a row,
an adjacent row gets slightly activated as well
 Vulnerable cells in that slightly-activated row lose a little bit of charge

 If row hammer happens enough times, charge in such cells gets drained

37

Higher-Level Implications

 This simple circuit-level failure mechanism has enormous
implications on upper layers of the transformation hierarchy

38

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Devices

Runtime System
(VM, OS, MM)

Electrons

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

Logic

Devices

Electrons

CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X1. Avoid cache hits
– Flush X from cache

2. Avoid row hits to X
– Read Y in another row

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Y

X

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

https://github.com/CMU-SAFARI/rowhammer

A real reliability & security issue

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

44Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems

One Can Take Over an Otherwise-Secure System

45

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

RowHammer Security Attack Example
 “Rowhammer” is a problem with some recent DRAM devices in which

repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).

 Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors (Kim et al., ISCA 2014)

 We tested a selection of laptops and found that a subset of them
exhibited the problem.

 We built two working privilege escalation exploits that use this effect.

 Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

 One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

 When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTEs).

 It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

46
Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Security Implications

47

More Security Implications

48
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

https://lab.dsst.io/32c3-slides/7197.html

More Security Implications

49
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16

“Can gain control of a smart phone deterministically”

More Security Implications?

50

Where RowHammer Was Discovered…

51Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

How Do We Fix The Problem?

52

Some Potential Solutions

53

Cost• Make better DRAM chips

Cost, Power• Sophisticated Error Correction

Power, Performance• Refresh frequently

Cost, Power, Complexity• Access counters

Apple’s Security Patch for RowHammer

 https://support.apple.com/en-gb/HT204934

HP, Lenovo, and many other vendors released similar patches

https://support.apple.com/en-gb/HT204934

A Cheaper Solution

• PARA: Probabilistic Adjacent Row Activation

• Key Idea
– After closing a row, we activate (i.e., refresh) one of

its neighbors with a low probability: p = 0.005

• Reliability Guarantee
– When p=0.005, errors in one year: 9.4×10-14

– By adjusting the value of p, we can provide an
arbitrarily strong protection against errors

55

Some Thoughts on RowHammer

 A simple hardware failure mechanism can create a
widespread system security vulnerability

 How to find, exploit and fix the vulnerability requires a
strong understanding across the transformation layers

 And, a strong understanding of tools available to you

 Fixing needs to happen for two types of chips

 Existing chips (already in the field)

 Future chips

 Mechanisms for fixing are different between the two types
56

Aside: Byzantine Failures

 This class of failures is known as Byzantine failures

 Characterized by

 Undetected erroneous computation

 Opposite of “fail fast (with an error or no result)”

 “erroneous” can be “malicious” (intent is the only
distinction)

 Very difficult to detect and confine Byzantine failures

 Do all you can to avoid them

 Lamport et al., “The Byzantine Generals Problem,” ACM TOPLAS 1982.

57Slide credit: Mahadev Satyanarayanan, CMU, 15-440, Spring 2015

Really Interested?

 Our first detailed study: Rowhammer analysis and solutions (June 2014)

 Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer Architecture
(ISCA), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Source Code and Data]

 Our Source Code to Induce Errors in Modern DRAM Chips (June 2014)

 https://github.com/CMU-SAFARI/rowhammer

 Google Project Zero’s Attack to Take Over a System (March 2015)

 Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

 https://github.com/google/rowhammer-test

 Double-sided Rowhammer

58

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://github.com/google/rowhammer-test

More on RowHammer Analysis

59

 Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer

Future of Memory Reliability

60https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

 Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

Takeaway

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

61

Design of Digital Circuits

Lecture 2: Mysteries in Comp Arch

Prof. Onur Mutlu

ETH Zurich

Spring 2018

23 February 2018

