
Design of Digital Circuits

Lecture 2: Mysteries in Comp Arch

Prof. Onur Mutlu

ETH Zurich

Spring 2018

23 February 2018

How Do Problems

Get Solved by Electrons?

2

Recall: The Transformation Hierarchy

3

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Computer Architecture

(narrow view)

Computer Architecture

(expanded view)

Recall: Levels of Transformation

4

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Devices

Runtime System
(VM, OS, MM)

Electrons

ñThe purpose of computing is [to gain] insightò (Richard Hamming)

We gain and generate insight by solving problems

How do we ensure problems are solved by electrons?

Algorithm

Step-by-step procedure that is

guaranteed to terminate where

each step is precisely stated

and can be carried out by a

computer

- Finiteness

- Definiteness

- Effective computability

Many algorithms for the same

problem

ISA

(Instruction Set Architecture)

Interface/contract between

SW and HW.

What the programmer

assumes hardware will

satisfy.

Microarchitecture

An implementation of the ISA

Digital logic circuits

Building blocks of micro-arch (e.g., gates)

Â A user-centric view: computer designed for users

Â The entire stack should be optimized for user

Â User varies across platforms and across use cases

Levels of Transformation, Revisited

5

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

Logic

Devices

Electrons

The Power of Abstraction

Â Levels of transformation create abstractions

Ç Abstraction: A higher level only needs to know about the
interface to the lower level, not how the lower level is
implemented

Ç E.g., high-level language programmer does not really need to
know what the ISA is and how a computer executes instructions

Â Abstraction improves productivity

Ç No need to worry about decisions made in underlying levels

Ç E.g., programming in Java vs. C vs. assembly vs. binary vs. by
specifying control signals of each transistor every cycle

Â Then, why would you want to know what goes on
underneath or above?

6

Crossing the Abstraction Layers

Â As long as everything goes well, not knowing what happens
underneath (or above) is not a problem.

Â What if
Ç The program you wrote is running slow?

Ç The program you wrote does not run correctly?

Ç The program you wrote consumes too much energy?

Ç Your system just shut down and you have no idea why?

Ç Someone just compromised your system and you have no idea how?

Â What if
Ç The hardware you designed is too hard to program?

Ç The hardware you designed is too slow because it does not provide the
right primitives to the software?

Â What if
Ç You want to design a much more efficient and higher performance system?

7

Crossing the Abstraction Layers

Â Two goals of this course (especially the second half) are

Ç to understand how a processor works underneath the
software layer and how decisions made in hardware affect the
software/programmer

Ç to enable you to be comfortable in making design and
optimization decisions that cross the boundaries of different
layers and system components

8

Some Example òMysteriesó

9

Four Mysteries: Familiar with Any?

Â Meltdown & Spectre (2017-2018)

Â Rowhammer (2012-2014)

Â Memory Performance Attacks (2006-2007)

Â Memories Forget: Refresh (2011-2012)

10

Mystery #1:

Meltdown & Spectre

11

What Are These?

12
Source: J. Masters, Redhat, FOSDEM 2018 keynote talk.

Meltdown and Spectre Attacks

Â Someone can steal secret data from the system even though

Ç your program and data are perfectly correct and

Ç your hardware behaves according to the specification and

Ç there are no software vulnerabilities/bugs

13

Meltdown and Spectre

Â Hardware security vulnerabilities that essentially effect almost
all computer chips that were manufactured in the past two
decades

Â They exploit ñspeculative executionò

Ç A technique employed in modern processors for high performance

Â Speculative execution: Doing something before you know that
it is needed

Ç We do it all the time in life, to save time

Â Guess what will happen and act based on that guess

Ç Processors do it, too, to run programs fast

Â They guess and execute code before they know it should be executed

14

Speculative Execution (I)

Â Modern processors ñspeculatively executeò code to improve
performance:

if (account-balance <= 0) {

// do something

} else if (account -balance < 1M) {

// do something else

} else {

// do something else

}

15

Guess what code will be executed and execute it speculatively

- Improves performance, if it takes a long time to access account-balance

If the guess was wrong, flush the wrong instructions and execute the correct code

Speculative Execution is Invisible to the User

16

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

ISA

(Instruction Set Architecture)

Interface/contract between

SW and HW.

What the programmer

assumes hardware will

satisfy.
Microarchitecture

An implementation of the ISA
Programmer assumes their code

will be executed in sequential order

Microarchitecture executes

instructions in a different order,

speculatively ïbut reports the results

as expected by the programmer

Meltdown and Spectre

Â Someone can steal secret data from the system even though

Ç your program and data are perfectly correct and

Ç your hardware behaves according to the specification and

Ç there are no software vulnerabilities/bugs

Â Why?

Ç Speculative execution leaves traces of secret data in the
processorôs cache(internal storage)

Â It brings data that is not supposed to be brought/accessed if there
was no speculative execution

Ç A malicious program can inspect the contents of the cache to
ñinferò secret datathat it is not supposed to access

Ç A malicious program can actually force another program to
speculatively execute code that leaves traces of secret data

17

Processor Cache as a Side Channel

Â Speculative execution leaves traces of data in processor cache

Ç Architecturally correct behavior w.r.t . specification

Ç However, this leads to a side channel: a channel through which
someone sophisticated can extract information

Â Processor cache leaks information by storing speculatively-
accessed data

Ç A clever attacker can probe the cache and infer the secret data
values

Â by measuring how long it takes to access the data

Ç A clever attacker can force a program to speculatively execute
code and leave traces of secret data in the cache

18

More on Meltdown/Spectre Side Channels

19
Source: https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html

https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html

Three Questions

Â Can you figure out why someone stole your secret data if
you do not know how the processor executes a program?

Â Can you fix the problem without knowing what is
happening ñunderneathò, i.e., inside the microarchitecture?

Â Can you fix the problem well/fundamentally without
knowing both software and hardware design?

Â Can you construct this attack or similar attacks without
knowing what is happening underneath?

20

Three Other Questions

Â What are the causes of Meltdown and Spectre?

Â How can we prevent them (while keeping the performance
benefits of speculative execution)?

Ç Software changes?

Ç Operating system changes?

Ç Instruction set architecture changes?

Ç Microarchitecture/hardware changes?

Ç Changes at multiple layers, done cooperatively?

Ç é

Â How do we design high-performance processors that do not
leak information via side channels?

21

Meltdown/Spectre Span Across the Hierarchy

22

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Computer Architecture

(narrow view)

Computer Architecture

(expanded view)

Meltdown/Spectre problem

and solution space

Takeaway

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

23

é and Also Understand/Critique Cartoons!

24
Source: https://xkcd.com/1938/

https://xkcd.com/1938/

An Important Note: Design Goal and Mindset

Â Design goal of a system determines the design mindset and
evaluation metrics

Â Meltdown and Spectre are there because the design goal of
cutting-edge processors (employed everywhere in our lives)

Ç has mainly been focused on high performance and low energy
(relatively recently)

Ç has not included security (or information leakage) as an
important constraint

Â Incorporating security as a first -class constraint and
ñmetricò into (hardware) design and education is critical in
todayôs world

25

Design Mindset

26Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg

Security is about preventing unforeseen consequences

Two Other Goals of This Course

Ç Enable you to think critically

Ç Enable you to think broadly

27

To Learn and Discover Further

Â High-level Video by RedHat

Ç https://www.youtube.com/watch?v=syAdX44pokE

Â A bit lower-level, comprehensive explanation by Y. Vigfusson

Ç https://www.youtube.com/watch?v=mgAN4w7LH2o

Â Keep attending lectures and taking in all the material

Â Come talk with me in the future

Ç I have many bachelorôs & masterôs projects on hardware security

Ç ñFundamentally secure computing architecturesò is a key
direction of scientific investigation and design

28

https://www.youtube.com/watch?v=syAdX44pokE
https://www.youtube.com/watch?v=mgAN4w7LH2o

Another Example òMysteryó

29

Mystery #2: RowHammer

30

RowHammer: Another Mystery?

Â DRAM Row Hammer (or, DRAM Disturbance Errors)

Â How a simple hardware failure mechanism can create a
widespread system security vulnerability

31

Row of Cells

Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row

Hammered Row

Repeatedly opening and closing a row enough times within a
refresh interval induces disturbance errorsin adjacent rows in
most real DRAM chips you can buy today

OpenedClosed

32

Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

86%
(37/43)

83%
(45/54)

88%
(28/32)

Acompany Bcompany C company

Up to

1.0×107

errors

Up to

2.7×106

errors

Up to

3.3×105

errors

33

Most DRAM Modules Are Vulnerable

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

34

Recent DRAM Is More Vulnerable

