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How Do Problems 

Get Solved by Electrons?
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Recall: The Transformation Hierarchy
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Recall: Levels of Transformation
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ñThe purpose of computing is [to gain] insightò (Richard Hamming)

We gain and generate insight by solving problems

How do we ensure problems are solved by electrons?

Algorithm

Step-by-step procedure that is 

guaranteed to terminate where 

each step is precisely stated 

and can be carried out by a 

computer

- Finiteness

- Definiteness

- Effective computability

Many algorithms for the same

problem

ISA

(Instruction Set Architecture)

Interface/contract between 

SW and HW.

What the programmer 

assumes hardware will 

satisfy.

Microarchitecture

An implementation of the ISA

Digital logic circuits

Building blocks of micro-arch (e.g., gates)



Â A user-centric view: computer designed for users

Â The entire stack should be optimized for user

Â User varies across platforms and across use cases

Levels of Transformation, Revisited
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The Power of Abstraction

Â Levels of transformation create abstractions

Ç Abstraction: A higher level only needs to know about the 
interface to the lower level, not how the lower level is 
implemented

Ç E.g., high-level language programmer does not really need to 
know what the ISA is and how a computer executes instructions

Â Abstraction improves productivity

Ç No need to worry about decisions made in underlying levels

Ç E.g., programming in Java vs. C vs. assembly vs. binary vs. by 
specifying control signals of each transistor every cycle

Â Then, why would you want to know what goes on 
underneath or above?
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Crossing the Abstraction Layers

Â As long as everything goes well, not knowing what happens     
underneath (or above) is not a problem.

Â What if
Ç The program you wrote is running slow?

Ç The program you wrote does not run correctly?

Ç The program you wrote consumes too much energy?

Ç Your system just shut down and you have no idea why?

Ç Someone just compromised your system and you have no idea how?

Â What if
Ç The hardware you designed is too hard to program?

Ç The hardware you designed is too slow because it does not provide the 
right primitives to the software?

Â What if
Ç You want to design a much more efficient and higher performance system?
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Crossing the Abstraction Layers

Â Two goals of this course (especially the second half) are 

Ç to understand how a processor works underneath the 
software layer and how decisions made in hardware affect the 
software/programmer

Ç to enable you to be comfortable in making design and 
optimization decisions that cross the boundaries of different 
layers and system components
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Some Example òMysteriesó
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Four Mysteries: Familiar with Any?

Â Meltdown & Spectre (2017-2018)

Â Rowhammer (2012-2014)

Â Memory Performance Attacks (2006-2007)

Â Memories Forget: Refresh (2011-2012)
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Mystery #1: 

Meltdown & Spectre
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What Are These?
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Source: J. Masters, Redhat, FOSDEM 2018 keynote talk.



Meltdown and Spectre Attacks

Â Someone can steal secret data from the system even though 

Ç your program and data are perfectly correct and 

Ç your hardware behaves according to the specification and

Ç there are no software vulnerabilities/bugs
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Meltdown and Spectre

Â Hardware security vulnerabilities that essentially effect almost 
all computer chips that were manufactured in the past two 
decades

Â They exploit ñspeculative executionò 

Ç A technique employed in modern processors for high performance

Â Speculative execution: Doing something before you know that 
it is needed

Ç We do it all the time in life, to save time

Â Guess what will happen and act based on that guess 

Ç Processors do it, too, to run programs fast 

Â They guess and execute code before they know it should be executed
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Speculative Execution (I)

Â Modern processors ñspeculatively executeò code to improve 
performance: 

if (account-balance <= 0) { 

// do something

} else if (account -balance < 1M) {

// do something else

} else {

// do something else

}
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Guess what code will be executed and execute it speculatively

- Improves performance, if it takes a long time to access account-balance

If the guess was wrong, flush the wrong instructions and execute the correct code 



Speculative Execution is Invisible to the User
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Meltdown and Spectre

Â Someone can steal secret data from the system even though 

Ç your program and data are perfectly correct and 

Ç your hardware behaves according to the specification and

Ç there are no software vulnerabilities/bugs

Â Why?

Ç Speculative execution leaves traces of secret data in the 
processorôs cache(internal storage)

Â It brings data that is not supposed to be brought/accessed if there 
was no speculative execution

Ç A malicious program can inspect the contents of the cache to 
ñinferò secret datathat it is not supposed to access

Ç A malicious program can actually force another program to 
speculatively execute code that leaves traces of secret data
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Processor Cache as a Side Channel

Â Speculative execution leaves traces of data in processor cache

Ç Architecturally correct behavior w.r.t . specification

Ç However, this leads to a side channel: a channel through which 
someone sophisticated can extract information

Â Processor cache leaks information by storing speculatively-
accessed data

Ç A clever attacker can probe the cache and infer the secret data 
values 

Â by measuring how long it takes to access the data

Ç A clever attacker can force a program to speculatively execute 
code and leave traces of secret data in the cache
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More on Meltdown/Spectre Side Channels
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Source: https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html

https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html


Three Questions

Â Can you figure out why someone stole your secret data if 
you do not know how the processor executes a program?

Â Can you fix the problem without knowing what is 
happening ñunderneathò, i.e., inside the microarchitecture?

Â Can you fix the problem well/fundamentally without 
knowing both software and hardware design?

Â Can you construct this attack or similar attacks without 
knowing what is happening underneath? 
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Three Other Questions

Â What are the causes of Meltdown and Spectre?

Â How can we prevent them (while keeping the performance 
benefits of speculative execution)?

Ç Software changes?

Ç Operating system changes?

Ç Instruction set architecture changes?

Ç Microarchitecture/hardware changes?

Ç Changes at multiple layers, done cooperatively?

Ç é

Â How do we design high-performance processors that do not 
leak information via side channels?
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Meltdown/Spectre Span Across the Hierarchy
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Takeaway

Breaking the abstraction layers 
(between components and 
transformation hierarchy levels) 

and knowing what is underneath

enables you to understand and 
solve problems
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é and Also Understand/Critique Cartoons!
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Source: https://xkcd.com/1938/

https://xkcd.com/1938/


An Important Note: Design Goal and Mindset

Â Design goal of a system determines the design mindset and 
evaluation metrics

Â Meltdown and Spectre are there because the design goal of 
cutting-edge processors (employed everywhere in our lives)

Ç has mainly been focused on high performance and low energy 
(relatively recently)

Ç has not included security (or information leakage) as an 
important constraint

Â Incorporating security as a first -class constraint and 
ñmetricò into (hardware) design and education is critical in 
todayôs world
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Design Mindset

26Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg

Security is about preventing unforeseen consequences



Two Other Goals of This Course

Ç Enable you to think critically

Ç Enable you to think broadly
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To Learn and Discover Further

Â High-level Video by RedHat

Ç https://www.youtube.com/watch?v=syAdX44pokE

Â A bit lower-level, comprehensive explanation by Y. Vigfusson

Ç https://www.youtube.com/watch?v=mgAN4w7LH2o

Â Keep attending lectures and taking in all the material

Â Come talk with me in the future

Ç I have many bachelorôs & masterôs projects on hardware security

Ç ñFundamentally secure computing architecturesò is a key 
direction of scientific investigation and design
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https://www.youtube.com/watch?v=syAdX44pokE
https://www.youtube.com/watch?v=mgAN4w7LH2o


Another Example òMysteryó
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Mystery #2:  RowHammer
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RowHammer: Another Mystery?

Â DRAM Row Hammer (or, DRAM Disturbance Errors)

Â How a simple hardware failure mechanism can create a 
widespread system security vulnerability
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Row of Cells
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Victim Row

Victim Row

Hammered Row

Repeatedly opening and closing a row enough times within a 
refresh interval induces disturbance errorsin adjacent rows in 
most real DRAM chips you can buy today

OpenedClosed
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Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


86%
(37/43)

83%
(45/54)

88%
(28/32)

Acompany Bcompany C company

Up to

1.0×107

errors 

Up to

2.7×106

errors 

Up to

3.3×105

errors 
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Most DRAM Modules Are Vulnerable

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
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Recent DRAM Is More Vulnerable


