
Design of Digital Circuits
Lecture 23a: Systolic Arrays and Beyond

Prof. Onur Mutlu
ETH Zurich
Spring 2018
24 May 2018

New Course: Bachelor’s Seminar in Comp Arch

n Fall 2018
n 2 credit units

n Rigorous seminar on fundamental and cutting-edge
topics in computer architecture

n Critical presentation, review, and discussion of seminal
works in computer architecture
q We will cover many ideas & issues, analyze their tradeoffs,

perform critical thinking and brainstorming

n Participation, presentation, report and review writing
n You can register for the course online

2

Announcement
n If you are interested in learning more and doing research in

Computer Architecture, three suggestions:

q Email me with your interest (CC: Juan)

q Take the seminar course and the “Computer Architecture” course

q Do readings and assignments on your own

n There are many exciting projects and research positions

available, spanning:

q Memory systems

q Hardware security

q GPUs, FPGAs, heterogeneous systems, …

q New execution paradigms (e.g., in-memory computing)

q Security-architecture-reliability-energy-performance interactions

q Architectures for medical/health/genomics
3

We Are Almost Done With This…
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms

4

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

5

Readings for Today
n Required

n H. T. Kung, “Why Systolic Architectures?,” IEEE Computer

1982.

n Recommended

q Jouppi et al., “In-Datacenter Performance Analysis of a Tensor

Processing Unit”, ISCA 2017.

6

Systolic Arrays

7

Systolic Arrays: Motivation
n Goal: design an accelerator that has

q Simple, regular design (keep # unique parts small and regular)
q High concurrency à high performance
q Balanced computation and I/O (memory) bandwidth

n Idea: Replace a single processing element (PE) with a regular
array of PEs and carefully orchestrate flow of data between
the PEs
q such that they collectively transform a piece of input data before

outputting it to memory

n Benefit: Maximizes computation done on a single piece of
data element brought from memory

8

Systolic Arrays

n H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.
9

Memory: heart
Data: blood
PEs: cells

Memory pulses
data through
PEs

Why Systolic Architectures?
n Idea: Data flows from the computer memory in a rhythmic

fashion, passing through many processing elements before it
returns to memory

n Similar to blood flow: heart à many cells à heart
q Different cells “process” the blood
q Many veins operate simultaneously
q Can be many-dimensional

n Why? Special purpose accelerators/architectures need
q Simple, regular design (keep # unique parts small and regular)
q High concurrency à high performance
q Balanced computation and I/O (memory) bandwidth

10

Systolic Architectures
n Basic principle: Replace a single PE with a regular array of

PEs and carefully orchestrate flow of data between the PEs
q Balance computation and memory bandwidth

n Differences from pipelining:
q These are individual PEs
q Array structure can be non-linear and multi-dimensional
q PE connections can be multidirectional (and different speed)
q PEs can have local memory and execute kernels (rather than a

piece of the instruction)
11

Systolic Computation Example
n Convolution

q Used in filtering, pattern matching, correlation, polynomial
evaluation, etc …

q Many image processing tasks
q Machine learning: up to hundreds of convolutional layers in

Convolutional Neural Networks (CNN)

12

LeNet-5, a Convolutional Neural Network
for Hand-Written Digit Recognition

13

This is a 1024*8 bit input, which will
have a truth table of 2 8196 entries

Slide credit: Hwu & Kirk

Convolutional Neural Networks: Demo

14

http://yann.lecun.com/exdb/lenet/index.html

Implementing a Convolutional Layer
with Matrix Multiplication

15
Slide credit: Hwu & Kirk

12

Power of Convolutions and Applied Courses

n In 2010, Prof. Andreas Moshovos adopted Professor Hwu’s
ECE498AL Programming Massively Parallel Processors Class

n Several of Prof. Geoffrey Hinton’s graduate students took
the course

n These students developed the GPU implementation of the
Deep CNN that was trained with 1.2M images to win the
ImageNet competition

Slide credit: Hwu & Kirk

16

Example: AlexNet (2012)

17

n AlexNet won ImageNet with more than 10.8% points ahead
of the runner up
q Krizhevsky et al., “ImageNet Classification with Deep

Convolutional Neural Networks”, NIPS 2012.

n Google improves the precision by adding more layers
q From 8 in AlexNet to 22 in GoogLeNet
q Szegedy et al., “Going Deeper with Convolutions”, CVPR 2015.

Example: GoogLeNet (2014)

18

n He et al., “Deep Residual Learning for Image Recognition”, CVPR 2016.

Example: ResNet (2015)

19

Human: 5.1%

First CNN

n Convolution
q Used in filtering, pattern matching, correlation, polynomial

evaluation, etc …
q Many image processing tasks
q Machine learning: up to hundreds of convolutional layers in

Convolutional Neural Networks (CNN)

20

Systolic Computation Example: Convolution (I)

Systolic Computation Example: Convolution (II)

n y1 = w1x1 +
w2x2 + w3x3

n y2 = w1x2 +
w2x3 + w3x4

n y3 = w1x3 +
w2x4 + w3x5

21

Systolic Computation Example: Convolution (III)

n Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

22

Systolic Computation Example: Convolution (IV)

n One needs to carefully orchestrate when data elements are
input to the array

n And when output is buffered

n This gets more involved when
q Array dimensionality increases
q PEs are less predictable in terms of latency

23

Two-Dimensional Systolic Arrays

24

Combinations

25

n Systolic arrays can be
chained together to
form powerful systems

n This systolic array is
capable of producing
on-the-fly least-squares
fit to all the data that
has arrived up to any
given moment

Systolic Arrays: Pros and Cons
n Advantages:

q Principled: Efficiently makes use of limited memory bandwidth,
balances computation to I/O bandwidth availability

q Specialized (computation needs to fit PE organization/functions)
à improved efficiency, simple design, high concurrency/
performance
à good to do more with less memory bandwidth requirement

n Downside:
q Specialized

à not generally applicable because computation needs to fit
the PE functions/organization

26

n Each PE in a systolic array
q Can store multiple “weights”
q Weights can be selected on the fly
q Eases implementation of, e.g., adaptive filtering

n Taken further
q Each PE can have its own data and instruction memory
q Data memory à to store partial/temporary results, constants
q Leads to stream processing, pipeline parallelism

n More generally, staged execution

27

More Programmability in Systolic Arrays

Pipeline-Parallel (Pipelined) Programs

28

Stages of Pipelined Programs
n Loop iterations are divided into code segments called stages
n Threads execute stages on different cores

29

loop {
Compute1

Compute2

Compute3
}

A

B

C

A B C

Pipelined File Compression Example

30

Systolic Array: Advantages & Disadvantages
n Advantages

q Makes multiple uses of each data item à reduced need for
fetching/refetching à better use of memory bandwidth

q High concurrency
q Regular design (both data and control flow)

n Disadvantages
q Not good at exploiting irregular parallelism
q Relatively special purpose à need software, programmer

support to be a general purpose model

31

Example Systolic Array: The WARP Computer

n HT Kung, CMU, 1984-1988

n Linear array of 10 cells, each cell a 10 Mflop programmable

processor

n Attached to a general purpose host machine

n HLL and optimizing compiler to program the systolic array

n Used extensively to accelerate vision and robotics tasks

n Annaratone et al., “Warp Architecture and

Implementation,” ISCA 1986.

n Annaratone et al., “The Warp Computer: Architecture,

Implementation, and Performance,” IEEE TC 1987.

32

The WARP Computer

33

The WARP Cell

34

An Example Modern Systolic Array: TPU (I)

35

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

An Example Modern Systolic Array: TPU (II)

36

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

An Example Modern Systolic Array: TPU (III)

37

TPU: Second Generation

38

https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips
vs 1 chip in TPU1

High Bandwidth Memory
vs DDR3

Floating point operations
vs FP16

45 TFLOPS per chip
vs 23 TOPS

Designed for training
and inference
vs only inference

Decoupled Access/Execute (DAE)

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

40

Decoupled Access/Execute (DAE)
n Motivation: Tomasulo�s algorithm too complex to

implement
q 1980s before Pentium Pro

n Idea: Decouple operand
access and execution via
two separate instruction
streams that communicate
via ISA-visible queues.

n Smith, �Decoupled Access/Execute
Computer Architectures,� ISCA 1982,
ACM TOCS 1984.

41

Decoupled Access/Execute (II)
n Compiler generates two instruction streams (A and E)

q Synchronizes the two upon control flow instructions (using branch queues)

42

Decoupled Access/Execute (III)
n Advantages:

+ Execute stream can run ahead of the access stream and vice
versa
+ If A is waiting for memory, E can perform useful work
+ If A hits in cache, it supplies data to lagging E
+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

n Disadvantages:
-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling
-- Branch instructions require synchronization between A and E
-- Multiple instruction streams (can be done with a single one,
though)

43

Astronautics ZS-1
n Single stream

steered into A and
X pipelines

n Each pipeline in-
order

n Smith et al., �The
ZS-1 central
processor,�
ASPLOS 1987.

n Smith, �Dynamic
Instruction
Scheduling and
the Astronautics
ZS-1,� IEEE
Computer 1989.

44

Loop Unrolling to Eliminate Branches

n Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead
q Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)
q Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
45

for (int i = 0; i < N; i++){

A[i] = A[i] + B[i];

}

for (int i = 0; i < N;){

}

for (int i = 0; i < N;){

A[i] = A[i] + B[i];
A[i+1] = A[i+1] + B[i+1];
A[i+2] = A[i+2] + B[i+2];
A[i+3] = A[i+3] + B[i+3];

}

for (int i = 0; i < N; i+=4){

A[i] = A[i] + B[i];
A[i+1] = A[i+1] + B[i+1];
A[i+2] = A[i+2] + B[i+2];
A[i+3] = A[i+3] + B[i+3];

}

for (int i = 0; i < N; i+=4){

A[i] = A[i] + B[i];
A[i+1] = A[i+1] + B[i+1];
A[i+2] = A[i+2] + B[i+2];
A[i+3] = A[i+3] + B[i+3];

}

A Modern DAE Example: Pentium 4

46Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.

Intel Pentium 4 Simplified

47

Mutlu+, “Runahead Execution,”
HPCA 2003.

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays

48

We Are Now DoneWith This…
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms

49

Design of Digital Circuits
Lecture 23a: Systolic Arrays and Beyond

Prof. Onur Mutlu
ETH Zurich
Spring 2018
24 May 2018

