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New Course: Bachelor’s Seminar in Comp Arch

n Fall 2018
n 2 credit units

n Rigorous seminar on fundamental and cutting-edge 
topics in computer architecture

n Critical presentation, review, and discussion of seminal 
works in computer architecture
q We will cover many ideas & issues, analyze their tradeoffs, 

perform critical thinking and brainstorming

n Participation, presentation, report and review writing
n You can register for the course online
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Announcement
n If you are interested in learning more and doing research in 

Computer Architecture, three suggestions:
q Email me with your interest (CC: Juan)
q Take the seminar course and the “Computer Architecture” course
q Do readings and assignments on your own

n There are many exciting projects and research positions 
available, spanning:
q Memory systems
q Hardware security
q GPUs, FPGAs, heterogeneous systems, …
q New execution paradigms (e.g., in-memory computing)
q Security-architecture-reliability-energy-performance interactions
q Architectures for medical/health/genomics
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We Are Almost Done With This…
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms
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Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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Readings for Today
n Required

n H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 
1982.

n Recommended
q Jouppi et al., “In-Datacenter Performance Analysis of a Tensor 

Processing Unit”, ISCA 2017.
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Systolic Arrays
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Systolic Arrays: Motivation
n Goal: design an accelerator that has

q Simple, regular design (keep # unique parts small and regular)
q High concurrency à high performance
q Balanced computation and I/O (memory) bandwidth

n Idea: Replace a single processing element (PE) with a regular 
array of PEs and carefully orchestrate flow of data between 
the PEs 
q such that they collectively transform a piece of input data before 

outputting it to memory

n Benefit: Maximizes computation done on a single piece of 
data element brought from memory
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Systolic Arrays

n H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.
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Memory: heart
Data: blood
PEs: cells

Memory pulses 
data through 
PEs



Why Systolic Architectures?
n Idea: Data flows from the computer memory in a rhythmic 

fashion, passing through many processing elements before it 
returns to memory

n Similar to blood flow: heart à many cells à heart
q Different cells “process” the blood
q Many veins operate simultaneously
q Can be many-dimensional

n Why? Special purpose accelerators/architectures need
q Simple, regular design (keep # unique parts small and regular)
q High concurrency à high performance
q Balanced computation and I/O (memory) bandwidth
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Systolic Architectures
n Basic principle: Replace a single PE with a regular array of 

PEs and carefully orchestrate flow of data between the PEs 
q Balance computation and memory bandwidth

n Differences from pipelining:
q These are individual PEs
q Array structure can be non-linear and multi-dimensional 
q PE connections can be multidirectional (and different speed)
q PEs can have local memory and execute kernels (rather than a 

piece of the instruction)
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Systolic Computation Example
n Convolution

q Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc …

q Many image processing tasks
q Machine learning: up to hundreds of convolutional layers in 

Convolutional Neural Networks (CNN)
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LeNet-5, a Convolutional Neural Network 
for Hand-Written Digit Recognition
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This is a 1024*8 bit input, which will 
have a truth table of 2 8196 entries

Slide credit: Hwu & Kirk



Convolutional Neural Networks: Demo
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http://yann.lecun.com/exdb/lenet/index.html



Implementing a Convolutional Layer 
with Matrix Multiplication
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Slide credit: Hwu & Kirk
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Power of Convolutions and Applied Courses

n In 2010, Prof. Andreas Moshovos adopted Professor Hwu’s
ECE498AL Programming Massively Parallel Programming 
Class

n Several of Prof. Geoffrey Hinton’s graduate students took 
the course

n These students developed the GPU implementation of the 
Deep CNN that was trained with 1.2M images to win the 
ImageNet competition

Slide credit: Hwu & Kirk
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Example: AlexNet (2012)
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n AlexNet won ImageNet with more than 10.8% points ahead 
of the runner up



Example: GoogLeNet (2013)
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Human: 5.1%

First CNN



n Convolution
q Used in filtering, pattern matching, correlation, polynomial 

evaluation, etc …
q Many image processing tasks
q Machine learning: up to hundreds of convolutional layers in 

Convolutional Neural Networks (CNN)
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Systolic Computation Example: Convolution (I)



Systolic Computation Example: Convolution (II)

n y1 = w1x1 + 
w2x2 + w3x3

n y2 = w1x2 + 
w2x3 + w3x4

n y3 = w1x3 + 
w2x4 + w3x5
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Systolic Computation Example: Convolution (III)

n Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/mul executions
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Systolic Computation Example: Convolution (IV)

n One needs to carefully orchestrate when data elements are 
input to the array

n And when output is buffered

n This gets more involved when 
q Array dimensionality increases
q PEs are less predictable in terms of latency
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Two-Dimensional Systolic Arrays
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Combinations
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n Systolic arrays can be 
chained together to 
form powerful systems

n This systolic array if 
capable of producing 
on-the-fly least-squares 
fit to all the data that 
has arrived up to any 
given moment



Systolic Arrays: Pros and Cons
n Advantages: 

q Principled: Efficiently makes use of limited memory bandwidth, 
balances computation to I/O bandwidth availability

q Specialized (computation needs to fit PE organization/functions) 
à improved efficiency, simple design, high concurrency/
performance
à good to do more with less memory bandwidth requirement

n Downside: 
q Specialized

à not generally applicable because computation needs to fit 
the PE functions/organization
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n Each PE in a systolic array
q Can store multiple “weights”
q Weights can be selected on the fly
q Eases implementation of, e.g., adaptive filtering

n Taken further
q Each PE can have its own data and instruction memory
q Data memory à to store partial/temporary results, constants
q Leads to stream processing, pipeline parallelism

n More generally, staged execution
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More Programmability in Systolic Arrays



Pipeline-Parallel (Pipelined) Programs
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Stages of Pipelined Programs
n Loop iterations are divided into code segments called stages
n Threads execute stages on different cores
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loop {
Compute1

Compute2

Compute3
}

A

B

C

A B C



Pipelined File Compression Example
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Systolic Array: Advantages & Disadvantages
n Advantages

q Makes multiple uses of each data item à reduced need for 
fetching/refetching à better use of memory bandwidth

q High concurrency
q Regular design (both data and control flow)

n Disadvantages
q Not good at exploiting irregular parallelism
q Relatively special purpose à need software, programmer 

support to be a general purpose model

30



Example Systolic Array: The WARP Computer

n HT Kung, CMU, 1984-1988

n Linear array of 10 cells, each cell a 10 Mflop programmable 
processor

n Attached to a general purpose host machine
n HLL and optimizing compiler to program the systolic array
n Used extensively to accelerate vision and robotics tasks

n Annaratone et al., “Warp Architecture and 
Implementation,” ISCA 1986. 

n Annaratone et al., “The Warp Computer: Architecture, 
Implementation, and Performance,” IEEE TC 1987. 
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The WARP Computer 
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The WARP Cell
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An Example Modern Systolic Array
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Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.



An Example Modern Systolic Array
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Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.



An Example Modern Systolic Array

36



TPU: Second Generation
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https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips
vs 1 chip in TPU1

High Bandwidth Memory 
vs DDR3

Floating point operations
vs FP16

45 TFLOPS per chip
vs 23 TOPS

Designed for training 
and inference
vs only inference



Decoupled Access/Execute (DAE)



Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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Decoupled Access/Execute (DAE)
n Motivation: Tomasulo’s algorithm too complex to 

implement 
q 1980s before Pentium Pro

n Idea: Decouple operand 
access and execution via 
two separate instruction 
streams that communicate 
via ISA-visible queues. 

n Smith, “Decoupled Access/Execute 
Computer Architectures,” ISCA 1982, 
ACM TOCS 1984.
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Decoupled Access/Execute (II)
n Compiler generates two instruction streams (A and E)

q Synchronizes the two upon control flow instructions (using branch queues)
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Decoupled Access/Execute (III)
n Advantages:

+ Execute stream can run ahead of the access stream and vice 
versa
+ If A is waiting for memory, E can perform useful work
+ If A hits in cache, it supplies data to lagging E
+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

n Disadvantages:
-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling
-- Branch instructions require synchronization between A and E
-- Multiple instruction streams (can be done with a single one, 
though)
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Astronautics ZS-1
n Single stream 

steered into A and 
X pipelines

n Each pipeline in-
order

n Smith et al., “The 
ZS-1 central 
processor,”
ASPLOS 1987.

n Smith, “Dynamic 
Instruction 
Scheduling and 
the Astronautics 
ZS-1,” IEEE 
Computer 1989.
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Loop Unrolling to Eliminate Branches

n Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead
q Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)
q Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this)

-- Increases code size
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for (int i = 0; i < N; i++){

A[i] = A[i] + B[i];

}

for (int i = 0; i < N;     ){

}

for (int i = 0; i < N; ){

A[i]   = A[i]   + B[i];
A[i+1] = A[i+1] + B[i+1];
A[i+2] = A[i+2] + B[i+2];
A[i+3] = A[i+3] + B[i+3];

}

for (int i = 0; i < N; i+=4){

A[i]   = A[i]   + B[i];
A[i+1] = A[i+1] + B[i+1];
A[i+2] = A[i+2] + B[i+2];
A[i+3] = A[i+3] + B[i+3];

}

for (int i = 0; i < N; i+=4){

A[i]   = A[i]   + B[i];
A[i+1] = A[i+1] + B[i+1];
A[i+2] = A[i+2] + B[i+2];
A[i+3] = A[i+3] + B[i+3];

}



A Modern DAE Example: Pentium 4

45Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.



Intel Pentium 4 Simplified
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Mutlu+, “Runahead Execution,”
HPCA 2003.



Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n SIMD Processing (Vector and array processors, GPUs)
n Decoupled Access Execute
n Systolic Arrays
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We Are Now Done With This…
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms
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An Example GPU Exercise
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An Example GPU Exercise (II)
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An Example GPU Exercise (III)
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An Example GPU Exercise (IV)
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