
Design of Digital Circuits
Lecture 25b: Virtual Memory

Prof. Onur Mutlu
ETH Zurich
Spring 2018
31 May 2018



Readings
n Virtual Memory

n Required
q H&H Chapter 8.4
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Memory (Programmer’s View) 
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Ideal Memory
n Zero access time (latency)
n Infinite capacity
n Zero cost
n Infinite bandwidth (to support multiple accesses in parallel)
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Abstraction: Virtual vs. Physical Memory
n Programmer sees virtual memory

q Can assume the memory is “infinite”
n Reality: Physical memory size is much smaller than what 

the programmer assumes
n The system (system software + hardware, cooperatively) 

maps virtual memory addresses to physical memory
q The system automatically manages the physical memory 

space transparently to the programmer

+ Programmer does not need to know the physical size of memory 
nor manage it à A small physical memory can appear as a huge 
one to the programmer à Life is easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff
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Benefits of Automatic Management of Memory

n Programmer does not deal with physical addresses
n Each process has its own mapping from virtualàphysical

addresses

n Enables
q Code and data to be located anywhere in physical memory

(relocation)
q Isolation/separation of code and data of different processes in 

physical memory
(protection and isolation)

q Code and data sharing between multiple processes
(sharing)
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A System with Physical Memory Only

n Examples:
q most Cray machines
q early PCs
q nearly all embedded systems

CPU’s load or store addresses used 
directly to access memory

CPU

0:
1:

N-1:

Memory

Physical
Addresses



The Problem
n Physical memory is of limited size (cost)

q What if you need more?
q Should the programmer be concerned about the size of 

code/data blocks fitting physical memory?
q Should the programmer manage data movement from disk to 

physical memory?
q Should the programmer ensure two processes (different 

programs) do not use the same physical memory?

n Also, ISA can have an address space greater than the 
physical memory size
q E.g., a 64-bit address space with byte addressability
q What if you do not have enough physical memory?
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Difficulties of Direct Physical Addressing

n Programmer needs to manage physical memory space
q Inconvenient & hard
q Harder when you have multiple processes

n Difficult to support code and data relocation
q Addresses are directly specified in the program

n Difficult to support multiple processes
q Protection and isolation between multiple processes
q Sharing of physical memory space

n Difficult to support data/code sharing across processes
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Virtual Memory
n Idea: Give the programmer the illusion of a large address 

space while having a small physical memory
q So that the programmer does not worry about managing 

physical memory 

n Programmer can assume he/she has “infinite” amount of 
physical memory 

n Hardware and software cooperatively and automatically 
manage the physical memory space to provide the illusion
q Illusion is maintained for each independent process
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Basic Mechanism
n Indirection (in addressing)

n Address generated by each instruction in a program is a 
“virtual address”
q i.e., it is not the physical address used to address main 

memory
q called “linear address” in x86

n An “address translation” mechanism maps this address to a 
“physical address”
q called “real address” in x86
q Address translation mechanism can be implemented in 

hardware and software together
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A System with Virtual Memory (Page based)

n Address Translation: The hardware converts virtual addresses into 
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses



Virtual Pages, Physical Frames
n Virtual address space divided into pages
n Physical address space divided into frames

n A virtual page is mapped to
q A physical frame, if the page is in physical memory
q A location in disk, otherwise

n If an accessed virtual page is not in memory, but on disk
q Virtual memory system brings the page into a physical frame 

and adjusts the mapping à this is called demand paging

n Page table is the table that stores the mapping of virtual 
pages to physical frames
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Physical Memory as a Cache
n In other words…

n Physical memory is a cache for pages stored on disk
q In fact, it is a fully associative cache in modern systems (a 

virtual page can potentially be mapped to any physical frame)

n Similar caching issues exist as we have covered earlier:
q Placement: where and how to place/find a page in cache?
q Replacement: what page to remove to make room in cache?
q Granularity of management: large, small, uniform pages?
q Write policy: what do we do about writes? Write back?
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Cache/Virtual Memory Analogues

Cache Virtual Memory
Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number
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Virtual Memory Definitions
n Page size: amount of memory transferred from hard disk to 

DRAM at once

n Address translation: determining the physical address from 
the virtual address

n Page table: lookup table used to translate virtual addresses to 
physical addresses (and find where the associated data is)
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Virtual and Physical Addresses

n Most accesses hit in physical memory
n But programs see the large capacity of virtual memory
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Address Translation
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Virtual Memory Example

n System:
q Virtual memory size: 2 GB = 231 bytes
q Physical memory size: 128 MB = 227 bytes
q Page size: 4 KB = 212 bytes
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Virtual Memory Example

n System:
q Virtual memory size: 2 GB = 231 bytes
q Physical memory size: 128 MB = 227 bytes
q Page size: 4 KB = 212 bytes

n Organization:
q Virtual address: 31 bits
q Physical address: 27 bits
q Page offset: 12 bits
q # Virtual pages = 231/212 = 219 (VPN = 19 bits)
q # Physical pages = 227/212 = 215 (PPN = 15 bits)
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Virtual Memory Example
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How Do We Translate Addresses?
n Page table

q Has entry for each virtual page

n Each page table entry has:

q Valid bit: whether the virtual page is located in physical 
memory (if not, it must be fetched from the hard disk)

q Physical page number: where the page is located

q (Replacement policy, dirty bits)
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Page Table Example
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Page Table Example 1

n What is the physical 
address of virtual address 
0x5F20? 

0
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Page Table Example 1

n What is the physical 
address of virtual address 
0x5F20? 
q VPN = 5
q Entry 5 in page table 

indicates VPN 5 is in 
physical page 1

q Physical address is 
0x1F20
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Page Table Example 2

n What is the physical 
address of virtual address 
0x73E0? 
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Page Table Example 2

n What is the physical 
address of virtual address 
0x73E0? 
q VPN = 7
q Entry 7 in page table is 

invalid, so the page is 
not in physical memory

q The virtual page must be 
swapped into physical 
memory from disk
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Issue: Page Table Size

n Suppose 64-bit VA and 40-bit PA, how large is the page 
table?     

n 252 entries x ~4 bytes » 254 bytes
and that is for just one process!
and the process may not be using the entire VM space!
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Page Table Challenges

n Page table is large
q at least part of it needs to be located in physical memory

n Each load/store requires at least two memory accesses:
1. one for translation (page table read)
2. one to access data with the physical address (after translation)

n Two memory accesses to service a load/store greatly 
degrades load/store execution time
q Unless we are clever…
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Translation Lookaside Buffer (TLB)

n Idea: Cache the page table entries (PTEs) in a hardware 
structure in the processor

n Translation lookaside buffer (TLB)

q Small cache of most recently used translations (PTEs)

q Reduces number of memory accesses required for most
loads/stores to only one
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Translation Lookaside Buffer (TLB)
n Page table accesses have a lot of temporal locality

q Data accesses have temporal and spatial locality
q Large page size (say 4KB, 8KB, or even 1-2GB), so 

consecutive loads/stores likely to access same page

n TLB
q Small: accessed in < 1 cycle
q Typically 16 - 512 entries
q High associativity
q > 99 % hit rates typical (depends on workload)
q Reduces # of memory accesses for most loads and stores to 

only 1
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Example Two-Entry TLB
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We did not cover the following slides in lecture. 
These are for your benefit. 



Memory Protection
n Multiple programs (processes) run at once

q Each process has its own page table
q Each process can use entire virtual address space without 

worrying about where other programs are

n A process can only access physical pages mapped in its 
page table – cannot overwrite memory of another process
q Provides protection and isolation between processes
q Enables access control mechanisms per page
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Virtual Memory Summary

n Virtual memory gives the illusion of “infinite” capacity

n A subset of virtual pages are located in physical memory

n A page table maps virtual pages to physical pages – this is 
called address translation

n A TLB speeds up address translation

n Using different page tables for different programs provides 
memory protection
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Supporting Virtual Memory
n Virtual memory requires both HW+SW support 

q Page Table is in memory
q Can be cached in special hardware structures called Translation 

Lookaside Buffers (TLBs)

n The hardware component is called the MMU (memory 
management unit)
q Includes Page Table Base Register(s), TLBs, page walkers

n It is the job of the software to leverage the MMU to
q Populate page tables, decide what to replace in physical memory 
q Change the Page Table Register on context switch (to use the 

running thread’s page table)
q Handle page faults and ensure correct mapping

37



Some System Software Jobs for VM
n Keeping track of which physical frames are free 

n Allocating free physical frames to virtual pages 

n Page replacement policy 
q When no physical frame is free, what should be swapped out? 

n Sharing pages between processes 

n Copy-on-write optimization

n Page-flip optimization
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Page Fault (“A Miss in Physical Memory”)

n If a page is not in physical memory but disk
q Page table entry indicates virtual page not in memory
q Access to such a page triggers a page fault exception
q OS trap handler invoked to move data from disk into memory

n Other processes can continue executing
n OS has full control over placement

CPU

Memory

Page Table

Disk

Virtual
Addresses Physical

Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses Physical

Addresses

Before fault After fault
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Disk
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Servicing a Page Fault

n (1) Processor signals controller
q Read block of length P starting 

at disk address X and store 
starting at memory address Y

n (2) Read occurs
q Direct Memory Access (DMA)
q Under control of I/O controller

n (3) Controller signals completion
q Interrupt processor
q OS resumes suspended process Disk

Memory-I/O bus

Processor

Cache

Memory
I/O
controller

Reg

(2) DMA 
Transfer

(1) Initiate Block Read

(3) Read 
Done



Page Table is Per Process
n Each process has its own virtual address space

q Full address space for each program
q Simplifies memory allocation, sharing, linking and loading.
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Address Translation
n How to obtain the physical address from a virtual address?

n Page size specified by the ISA
q VAX: 512 bytes
q Today: 4KB, 8KB, 2GB, … (small and large pages mixed 

together)
q Trade-offs? (remember cache lectures)

n Page Table contains an entry for each virtual page
q Called Page Table Entry (PTE)
q What is in a PTE?
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Address Translation (II)
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Address Translation (III)
n Parameters

q P = 2p = page size (bytes).  
q N = 2n = Virtual-address limit
q M = 2m = Physical-address limit

virtual page number page offset virtual address

physical frame number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Page offset bits don’t change as a result of translation
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Address Translation (IV)

virtual page number (VPN) page offset

virtual address

physical frame number (PFN) page offset
physical address

0p–1pm–1

n–1
0

p–1p
page table 

base register 
(per process)

if valid=0
then page
not in memory
(page fault)

valid physical frame number (PFN)

VPN acts as
table index

n Separate (set of) page table(s) per process
n VPN forms index into page table (points to a page table entry)
n Page Table Entry (PTE) provides information about page

access
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Address Translation: Page Hit
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Address Translation: Page Fault



What Is in a Page Table Entry (PTE)? 
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n Page table is the “tag store” for the physical memory data store
q A mapping table between virtual memory and physical memory

n PTE is the “tag store entry” for a virtual page in memory
q Need a valid bit à to indicate validity/presence in physical memory
q Need tag bits (PFN) à to support translation
q Need bits to support replacement 
q Need a dirty bit to support “write back caching”
q Need protection bits to enable access control and protection



Cache versus Page Replacement
n Physical memory (DRAM) is a cache for disk

q Usually managed by system software via the virtual memory 
subsystem

n Page replacement is similar to cache replacement
n Page table is the “tag store” for physical memory data store

n What is the difference?
q Required speed of access to cache vs. physical memory
q Number of blocks in a cache vs. physical memory
q “Tolerable” amount of time to find a replacement candidate 

(disk versus memory access latency)
q Role of hardware versus software
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Page Replacement Algorithms
n If physical memory is full (i.e., list of free physical pages is 

empty), which physical frame to replace on a page fault?

n Is True LRU feasible?
q 4GB memory, 4KB pages, how many possibilities of ordering?

n Modern systems use approximations of LRU
q E.g., the CLOCK algorithm

n And, more sophisticated algorithms to take into account 
“frequency” of use
q E.g., the ARC algorithm
q Megiddo and Modha, “ARC: A Self-Tuning, Low Overhead 

Replacement Cache,” FAST 2003.
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CLOCK Page Replacement Algorithm
n Keep a circular list of physical frames in memory
n Keep a pointer (hand) to the last-examined frame in the list
n When a page is accessed, set the R bit in the PTE
n When a frame needs to be replaced, replace the first frame 

that has the reference (R) bit not set, traversing the 
circular list starting from the pointer (hand) clockwise
q During traversal, clear the R bits of examined frames
q Set the hand pointer to the next frame in the list
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