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Readings for Next Week

Combinational Logic chapters from both books
o Patt and Patel, Chapter 3
o Harris and Harris, Chapter 2

Check course website for all future readings
o Required

o Recommended

o Mentioned



How Do Problems
Get Solved by Electrons?




Recall: The Transtformation Hierarchy

(expanded view) (narrow view)

Computer Architecture SW/HW Interface I Computer Architecture

SAFARI



Recall: Crossing the Abstraction Layers
Two goals of this course (especially the second half) are

o to understand how a processor works underneath the
software layer and how decisions made in hardware affect the
software/programmer

o to enable you to be comfortable in making design and
optimization decisions that cross the boundaries of different
layers and system components



Some Example “Mysteries”,
Continued




Four Mysteries: Familiar with Any?

= Meltdown & Spectre (2017-2018)

= Rowhammer (2012-2014)

= Memory Performance Attacks (2006-2007)

= Memories Forget: Refresh (2011-2012)




Mystery No Longet!

MELTDOWN

Source: J. Masters, Redhat, FOSDEM 2018 keynote talk.



Mystery No Longet!
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It's like breaking into an apartment by B
repeatedly slamming a neighbor’s door until
the vibrations open the door you were after



Recall: Takeaway

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems
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Future of Memory Security & Reliability

= Onur Mutluy,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Ziirich
onur.mutlu@inf.ethz.ch
https://people.inf.ethz.ch/omutlu

SAFAR] https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues datel7.pdf 11



https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

Another Example “Mystery”




Mystery #3:
Memory Performance Attacks




Multi-Core Systems

Multi-Core
Chip
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A Trend: Many Cores on Chip

= Simpler and lower power than a single large core
= Parallel processing on single chip = faster, new applications

Memory Controller

Intel Core i7 IBM Cell BE IBM POWER7
8 cores 8+1 cores 8 cores

Nvidia Fermi Intel SCC Tilera TILE Gx

Sun Niagara Il 448 “cores” 48 cores, networked 100 cores, networked
8 cores
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Many Cores on Chip

What we want:
a N times the system performance with N times the cores

What do we get today?
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Unexpected Slowdowns in Multi-Core

High priority

4 /

3

2.5 —— Memory Performance Hoq
/ Low priority

MR

Slowdown

1.07

1
0.5 -
0 |
matlab gcc
(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.
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Three Questions

Can you figure out why the applications slow down if you
do not know the underlying system and how it works?

Can you figure out why there is a disparity in slowdowns if
you do not know how the system executes the programs?

Can you fix the problem without knowing what is
happening “underneath”?

18



Three Questions

Why is there any slowdown?

Why is there a disparity in slowdowns?

How can we solve the problem if we do not want that
disparity?
o What do we want (the system to provide)?

19



Why Is This Important?

We want to execute applications in parallel in multi-core
systems - consolidate more and more

o Cloud computing
o Mobile phones

We want to mix different types of applications together

o those requiring QoS guarantees (e.g., video, pedestrian detection)
o those that are important but less so

o those that are less important

We want the system to be controllable and high performance

20



Why the Disparity in Slowdowns?

Multi-Core
Chip
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Why the Disparity in Slowdowns?
/

unfairness
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Digoing Deeper: DRAM Bank Operation

Access Address:
(Row 0O, Column 0) Columns This view of a bank is an

(Row 0O, Column 1) abstraction.
(Row 0, Column 85)
(Row 1, Column 0) SEEEEREREE

9 Internally, a bank consists of

S | i T many cells (transistors &
Row address @ — g pl--demdmmobeedendnbae g capacitors) and other

= i @ structures that enable access

na to cells

Row Buffer GONFLICT !

Column address ms—»\ Column mux/

Data
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DRAM Controllers

A row-conflict memory access takes significantly longer
than a row-hit access

Current controllers take advantage of this fact

Commonly used scheduling policy (FR-FCFS) [Rixner 20007*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM ...,” US Patent 5,630,096, May 1997.
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The Problem

Multiple applications share the DRAM controller

DRAM controllers designed to maximize DRAM data
throughput

DRAM scheduling policies are unfair to some applications

o Row-hit first: unfairly prioritizes apps with high row buffer locality
Threads that keep on accessing the same row

o Oldest-first: unfairly prioritizes memory-intensive applications

DRAM controller vulnerable to denial of service attacks
o Can write programs to exploit unfairness

25



A Memory Performance Hog

// initialize large arrays A, B // initialize large arrays A, B
foluj:O; J<N; j++) { foij=0: J<N; J++) {
index = j*linesize; | streaming index = rand(); | random
Alindex] = B[index]; (in sequence) Alindex] = B[index];
} }
STREAM RANDOM
- Sequential memory access - Random memory access
- Very high row buffer locality (96% hit rate) - Very low row buffer locality (3% hit rate)
- Memory intensive - Similarly memory intensive

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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What Does the Memory Hog Dor
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Row size: 8KB, request size: 64B
128 (skB/64B) requests of STREAM serviced
before a single request of RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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Now That We Know What Happens Underneath

= How would you solve the problem?

= What is the right place to solve the problem?

o Programmer? Prablem

o System software? Algorithm

o Compiler? Program/Language
o Hardware (Memory controller)? Runtime System
o Hardware (DRAM)? P

. Circuits? ISA (Architecture)

= Two other goals of this course:
o Enable you to think critically
o Enable you to think broadly

28



For the Really Interested...

= Thomas Moscibroda and Onur Mutlu,
"Memory Performance Attacks: Denial of Memory Service
in Multi-Core Systems”

Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY),
pages 257-274, Boston, MA, August 2007. Slides (ppt)

Memory Performance Attacks:
Denial of Memory Service in Multi-Core Systems

Thomas Moscibroda Onur Mutlu

Microsoft Research
{moscitho,onur }@microsoft.com

29


http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt

Really Interested? ... Further Readings

Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip

Multiprocessors”

Proceedings of the 40th International Symposium on Microarchitecture
(MICRO), pages 146-158, Chicago, IL, December 2007. Slides (ppt)

Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”

Proceedings of the 35th International Symposium on Computer Architecture
(ISCA) [Slides (ppt)]

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut
Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via

Application-Aware Memory Channel Partitioning”
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Takeaway

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

31



Another Example “Mystery”




Mystery #4: DRAM Refresh




DRAM in the System
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A DRAM Cell

wordline (row enable)

L4

bitline
bitline
bitline

HH
H

4

<Hl

A DRAM cell consists of a capacitor and an access transistor
It stores data in terms of charge status of the capacitor

A DRAM chip consists of (10s of 1000s of) rows of such cells

SAFARI

bitline




DRAM Refresh

DRAM capacitor charge leaks over time

The memory controller needs to refresh each row periodically
to restore charge

o Activate each row every N ms
a Typical N = 64 ms

Downsides of refresh
-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling

SAFARI 36



First, Some Analysis

Imagine a system with 1 ExaByte DRAM (2760 bytes)
Assume a row size of 8 KiloBytes (213 bytes)

How many rows are there?
How many refreshes happen in 64ms?
What is the total power consumption of DRAM refresh?

What is the total energy consumption of DRAM refresh
during a day?

A good exercise... Optional homework...
Brownie points from me if you do it...

SAFARI
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Refresh Overhead: Performance
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SAFARI Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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Refresh Overhead: Energy

% DRAM energy spent refreshing
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Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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How Do We Solve the Problem?

= Observation: All DRAM rows are refreshed every 64ms.

= Critical thinking: Do we need to refresh all rows every 64ms?

= What if we knew what happened underneath and exposed
that information to upper layers?

40



Underneath: Retention Time Profile of DRAM

04-128ms

128-250ms

Liu et al., “"RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 41



Aside: Why Do We Have Such a Profile?

Answer: Manufacturing is not perfect
Not all DRAM cells are exactly the same

Some are more leaky than others

This is called Manufacturing Process Variation
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Opportunity: Taking Advantage of This Profile

Assume we know the retention time of each row exactly

What can we do with this information?

Who do we expose this information to?

How much information do we expose?

o Affects hardware/software overhead, powe
verification complexity, cost

How do we determine this profile informat
o Also, who determines it?

Problem

Algorithm

Program/Language

Runtime System

(VI OS, MM

ISA (Architecture)

Microarchitecture

Logic

Electrons

43



Retention Time of DRAM Rows

= Observation: Overwhelming majority of DRAM rows can be
refreshed much less often without losing data
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Refresh interval (s)

Key Idea of RAIDR: Refresh weak rows more frequently,
all other rows less frequently

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 4



RAIDR: Eliminating
Unnecessary DRAM Refreshes

Liu, Jaiyen, Veras, Mutlu,
RAIDR: Retention-Aware Intelligent DRAM Refresh
ISCA 2012.

45


http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf

RAIDR: Mechanism

1. Profiling: Identify the retention time of all DRAM rows

04-128ms

1.25KB storage in controller for 32GB DRAM memory

128-250ms

- check the bins to determine refresh rate of a row

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 46



RAIDR: Results and Takeaways

System: 32GB DRAM, 8-core; Various workloads
RAIDR hardware cost: 1.25 kB (2 Bloom filters)

Refresh reduction: 74.6%

Dynamic DRAM energy reduction: 16%

Idle DRAM power reduction: 20%

Performance improvement: 9%

Benefits increase as DRAM scales in density
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Reading for the Really Interested

= Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2012. Slides (pdf)

RAIDR: Retention-Aware Intelligent DRAM Refresh

Jamie Liu Ben Jaiyen Richard Veras Onur Mutlu

Carnegie Mellon University
{jamiel,bjaiyen, rveras, onur}@dcmu.edu
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http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf

Really Interested? ... Further Readings

Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective”
Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, August 2013.
Slides (pptx) (pdf) Video

Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson,
Yoongu Kim, and Onur Mutlu,

"Improving DRAM Performance by Parallelizing

Refreshes with Accesses”
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014. Slides (pptx) (pdf)

49


http://users.ece.cmu.edu/~omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf

Takeaway I

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems
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Takeaway 11

Cooperation between
multiple components and layers
can enable
more effective
solutions and systems
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Bloom Filters




Approximate Set Membership

Suppose you want to quickly find out:
o whether an element belongs to a set

And, you can tolerate mistakes of the sort:

o The element is actually not in the set, but you are incorrectly
told that it is > false positive

But, you cannot tolerate mistakes of the sort:

o The element is actually in the set, but you are incorrectly told
that it is not - false negative

Example task: You want to quickly identify all Mobile Phone
Model X owners among all possible people in the world

o Perhaps you want to give them free replacement phones
53



Example Task

World population
o ~§8 billion (and growing)
o 1 bit per person to indicate Model X owner or not

o 2733 bits needed to represent the entire set accurately
8 Gigabits - large storage cost, slow access

Mobile Phone Model X owner population
o Say 1 million (and growing)

Can we represent the Model X owner set approximately,
using a much smaller number of bits?

o Record the ID’s of owners in a much smaller Bloom Filter

54



Example Task II

DRAM row population
o ~§8 billion (and growing)
o 1 bit per row to indicate Refresh-often or not

o 2733 bits needed to represent the entire set accurately
8 Gigabits - large storage cost, slow access

Refresh-often population
o Say 1 million

Can we represent Refresh-often set approximately, using a
much smaller number of bits?

o Record the ID’s of Refresh-Often rows in @ much smaller
Bloom Filter

55



Bloom Filter

[Bloom, CACM 1970]

Probabilistic data structure that compactly represents set
membership (presence or absence of element in a set)

Non-approximate set membership: Use 1 bit per element to
indicate absence/presence of each element from an element
space of N elements

Approximate set membership: use a much smaller number of
bits and indicate each element’s presence/absence with a
subset of those bits

o Some elements map to the bits other elements also map to

Operations: 1) insert, 2) test, 3) remove all elements

Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970. 56



Bloom Filter Operation Example

Example with 64-128ms bin:

0]1]0]111]0

|

110010

Hash function 1

11010]0

Hash function 2

Hash function 3

Insert Row 1

Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970. 57




Bloom Filter Operation Example

Example with 64-128ms bin:

1 & 1 & 1 =1
ofof1]l]Oo0|1]OoO|lO]J]O]J]O]1]l]0O]|]O]O]O]O
Hash function 1 Hash function 2 Hash function 3

Row 1 present?
Yes
58



Bloom Filter Operation Example

Example with 64-128ms bin:

cjoj1f0)170(0)J]0jJ0(1)J]0O0f0O0]10]0]0O

Hash function 1 Hash function 2 Hash function 3

Row 2 present?
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Bloom Filter Operation Example

Example with 64-128ms bin:

Hash function 1 Hash function 2 Hash function 3

Insert Row 4
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Bloom Filter Operation Example

Example with 64-128ms bin:

0)]0]1]0

1

1

1 & 1 & 1
0]j]0]j]O0f1]1]0]0)]1T)10][1

0

_——

Hash function 1

Hash function 2

Hash function 3

Row 5 present?
Yes (false positive)
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Bloom Filters

Space/Time Trade-offs in

In such applications, it is envisaged that overall performance

HHS]:I C{}din g With could be improved by using a smaller core resident hash area
in conjunction with the new methods and, when necessary, by
Allowable Errors using some secondary and perhaps time-consuming fest to

“catch” the small fraction of errors associated with the new
methods. An example is discussed which illustrates possible

areas of application for the new methods.
Burton H. Broom

Computer Usage Company, Newton Upper Falls, Mass.

In this paper trade-offs among certain computational factors
in hash coding are analyzed. The paradigm problem con-
sidered is that of testing a series of messages one-by-one
for membership in a given set of messages. Two new hash-
coding methods are examined and compared with a par-
ticular conventional hash-coding method. The computational
factors considered are the size of the hash area (space), the
time required to identify a message as a nonmember of the
given set (reject time), and an allowable error frequency.

Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970. 62



Bloom Filters: Pros and Cons

Advantages
+ Enables storage-efficient representation of set membership
+ Insertion and testing for set membership (presence) are fast

+ No false negatives: If Bloom Filter says an element is not
present in the set, the element must not have been inserted

+ Enables tradeoffs between time & storage efficiency & false
positive rate (via sizing and hashing)

Disadvantages

-- False positives: An element may be deemed to be present in
the set by the Bloom Filter but it may never have been inserted

Not the right data structure when you cannot tolerate false
positives

Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970. 63



Benefits of Bloom Filters as Refresh Rate Bins

False positives: a row may be declared present in the
Bloom filter even if it was never inserted

o Not a problem: Refresh some rows more frequently than
needed

No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

Efficient: No need to store info on a per-row basis; simple
hardware - 1.25 KB for 2 filters for 32 GB DRAM system

64



Recap: Four Mysteries

= Meltdown & Spectre (2017-2018)

= Rowhammer (2012-2014)

= Memory Performance Attacks (2006-2007)

= Memories Forget: Refresh (2011-2012)
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Takeaways




Some Takeaways

It is an exciting time to be understanding and designing
computing platforms

Many challenging and exciting problems in platform design
o That noone has tackled (or thought about) before
o That can have huge impact on the world’s future

Driven by huge hunger for data and its analysis ("Big Data”),
new applications, ever-greater realism, ...

o We can easily collect more data than we can analyze/understand

Driven by significant difficulties in keeping up with that
hunger at the technology layer

o Three walls: Energy, reliability, complexity
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