Design of Digital Circuits
 Lecture 5: Combinational Logic

Prof. Onur Mutlu
ETH Zurich
Spring 2018
8 March 2018

- Wrap up the Comp Arch Mysteries lectures
- Bloom Filters
- Takeaways
- Discuss course logistics (very brief)
- Slides will be available online
- Combinational Logic Circuits and Design

Required Lecture Video

- Why study computer architecture?
- Why is it important?
- Future Computing Architectures
- Required Assignment
- Watch my inaugural lecture at ETH and understand it
- https://www.youtube.com/watch?v=kgiZISOcGFM
- Optional Assignment
- Write a summary of the lecture
- What are your key takeaways?
- What did you learn?
- What did you like or dislike?

Required Readings

- This week
- Combinational Logic
- P\&P Chapter 3 until $3.3+\quad \mathrm{H} \& \mathrm{H}$ Chapter 2
- Hardware Description Languages and Verilog
- H\&H Chapter 4 until 4.3 and 4.5
- Next week
- Sequential Logic
- P\&P Chapter 3.4 until end $+\quad$ H\&H Chapter 3 in full
- Hardware Description Languages and Verilog
- H\&H Chapter 4 in full
- Make sure you are done with
- P\&P Chapters 1-3 + H\&H Chapters 1-4

Recall: Bloom Filters

Recall: Approximate Set Membership

- Suppose you want to quickly find out:
- whether an element belongs to a set
- And, you can tolerate mistakes of the sort:
- The element is actually not in the set, but you are incorrectly told that it is \rightarrow false positive
- But, you cannot tolerate mistakes of the sort:
- The element is actually in the set, but you are incorrectly told that it is not \rightarrow false negative
- Example task: You want to quickly identify all Mobile Phone Model X owners among all possible people in the world
- Perhaps you want to give them free replacement phones

Recall: Example Task

- World population
- ~8 billion (and growing)
- 1 bit per person to indicate Model X owner or not
- 2^33 bits needed to represent the entire set accurately
- 8 Gigabits \rightarrow large storage cost, slow access
- Mobile Phone Model X owner population
- Say 1 million (and growing)
- Can we represent the Model X owner set approximately, using a much smaller number of bits?
- Record the ID's of owners in a much smaller Bloom Filter

Recall: Example Task II

- DRAM row population
- ~8 billion (and growing)
- 1 bit per row to indicate refresh often or not
- 2^33 bits needed to represent the entire set accurately
- 8 Gigabits \rightarrow large storage cost, slow access
- Refresh-often population
- Say 1 million
- Can we represent Refresh-often set approximately, using a much smaller number of bits?
- Record the ID's of Refresh-Often rows in a much smaller Bloom Filter

Recall: Bloom Filter

- [Bloom, CACM 1970]
- Probabilistic data structure that compactly represents set membership (presence or absence of element in a set)
- Non-approximate set membership: Use 1 bit per element to indicate absence/presence of each element from an element space of N elements
- Approximate set membership: use a much smaller number of bits and indicate each element's presence/absence with a subset of those bits
- Some elements map to the bits other elements also map to
- Operations: 1) insert, 2) test, 3) remove all elements

Bloom Filter Operation Example

Example with $64-128 \mathrm{~ms}$ bin:

Bloom, "Space/Time Trade-offs in Hash Coding with Allowable Errors", CACM 1970.

Bloom Filter Operation Example

Example with 64-128ms bin:

Bloom Filter Operation Example

Example with 64-128ms bin:

Bloom Filter Operation Example

Example with 64-128ms bin:

Bloom Filter Operation Example

Example with 64-128ms bin:

Bloom Filters

Space/Time Trade-offs in

 Hash Coding with Allowable ErrorsIn such applications, it is envisaged that overall performance could be improved by using a smaller core resident hash area in conjunction with the new methods and, when necessary, by using some secondary and perhaps time-consuming test to "catch" the small fraction of errors associated with the new methods. An example is discussed which illustrates possible areas of application for the new methods.

Burton H. Bloom
Computer Usage Company, Newton Upper Falls, Mass.

In this paper trade-offs among certain computational factors in hash coding are analyzed. The paradigm problem considered is that of testing a series of messages one-by-one for membership in a given set of messages. Two new hashcoding methods are examined and compared with a particular conventional hash-coding method. The computational factors considered are the size of the hash area (space), the time required to identify a message as a nonmember of the given set (reject time), and an allowable error frequency.

Bloom Filters: Pros and Cons

- Advantages
+ Enables storage-efficient representation of set membership
+ Insertion and testing for set membership (presence) are fast
+ No false negatives: If Bloom Filter says an element is not present in the set, the element must not have been inserted + Enables tradeoffs between time \& storage efficiency \& false positive rate (via sizing and hashing)
- Disadvantages
-- False positives: An element may be deemed to be present in the set by the Bloom Filter even though it was not inserted

Not the right data structure when you cannot tolerate false positives

Benefits of Bloom Filters as Refresh Rate Bins

- False positives: a row may be declared present in the Bloom filter even if it was never inserted
- Not a problem: Refresh some rows more frequently than needed
- No false negatives: rows are never refreshed less frequently than needed (no correctness problems)
- Scalable: a Bloom filter never overflows (unlike a fixed-size table) \rightarrow You can keep inserting, and above properties are maintained (but false positive rate likely increases)
- Efficient: No need to store info on a per-row basis; simple hardware $\rightarrow 1.25$ KB for 2 filters for 32 GB DRAM system

Reading: Use of Bloom Filters for Refresh

- Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh" Proceedings of the 39th International Symposium on Computer Architecture (ISCA), Portland, OR, June 2012. Slides (pdf)

RAIDR: Retention-Aware Intelligent DRAM Refresh

Jamie Liu Ben Jaiyen Richard Veras Onur Mutlu Carnegie Mellon University
\{jamiel,bjaiyen, rveras, onur\}@cmu.edu

Recap: Four Mysteries

- Meltdown \& Spectre (2017-2018)
- Rowhammer (2012-2014)
- Memory Performance Attacks (2006-2007)
- Memories Forget: Refresh (2011-2012)

Takeaways

Some Takeaways

- It is an exciting time to be understanding and designing computing platforms
- Many challenging and exciting problems in platform design
- That noone has tackled (or thought about) before
- That can have huge impact on the world's future
- Driven by huge hunger for data and its analysis ("Big Data"), new applications, ever-greater realism, ...
- We can easily collect more data than we can analyze/understand
- Driven by significant difficulties in keeping up with that hunger at the technology layer
- Three walls: Energy, reliability, complexity

Increasingly Demanding Applications

Dream

and, they will come

As applications push boundaries, computing platforms will become increasingly strained.

Dream, and, They Will Come

Dream, and, They Will Come

Increasingly Diverging/Complex Tradeoffs

Communication Dominates Arithmetic
Dally, HiPEAC 2015

1 nJ

Increasingly Diverging/Complex Tradeoffs

Communication Dominates Arithmetic
Dally, HIPEAC 2015

A memory access consumes $\sim 1000 \mathrm{X}$ the energy of a complex addition

Increasingly Complex Systems

Past systems

Increasingly Complex Systems

FPGAs

Modern systems

Heterogeneous Processors and Accelerators

(General Purpose) GPUs

Recap: Some Goals of This Course

Teach/enable/empower you to:

- Understand how a processor works: principles \& precedents
- Implement a simple microprocessor from scratch on an FPGA
- Understand how decisions made in hardware affect the software/programmer as well as hardware designer
- Think critically (in solving problems)
- Think broadly across the levels of transformation
- Understand how to analyze and make tradeoffs in design

Course Info and Logistics

Course Info: Instructor

Onur Mutlu

- Professor @ ETH Zurich CS, since September 2015 (officially May 2016)
- Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...
- PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
- https://people.inf.ethz.ch/omutlu/
- omutlu@gmail.com (Best way to reach me)
- Office hours: By appointment (email me)
- Research and Teaching in:
- Computer architecture, computer systems, bioinformatics
- Memory and storage systems
- Hardware security
- Fault tolerance
- Hardware/software cooperation

ㅁ ...

Course Info: PhD Assistants (I)

- Head Assistant
- Dr. Juan Gomez Luna
- Vice-Head Assistant
- Hasan Hassan
- (Other) Key Assistants and Guest Lecturers
- Dr. Arash Tavakkol
- Jeremie Kim
- Minesh Patel
- Giray Yaglikci

Course Info: PhD Assistants (II)

- (Other) Key Assistants
- Aritra Dhar
- Daniele Lain
- David Sommer
- Francois Serre
- Mridula Singh
- Patrick Leu

Course Info: Student Assistants

- Giuseppe Arcuti
- Alexander Breuss
- Salomon Brülisauer
- Josua Cantieni
- Sven Gregorio
- Lukas Gygi
- Leo Horne
- Chris Mnuk
- Johannes Schenk
- Alexander Wälchli
- Patrick Ziegler
- Marco Zeller

Course Info: Lab Assistants

- Tuesday 15-17
- Hasan Hassan
- Giray Yaglikci
- David Sommer
- Daniele Lain
- Giuseppe Arcuti
- Salomon Brülisauer
- Sven Gregorio
- Lukas Gygi
- Johannes Schenk
- Alexander Wälchli
- Patrick Ziegler
- Wednesday 15-17
- Minesh Patel
- Patrick Leu
- Salomon Brülisauer
- Sven Gregorio
- Lukas Gygi
- Leo Horne
- Patrick Ziegler

Course Info: Lab Assistants

- Friday 8-10
- Juan Gomez Luna
- Arash Tavakkol
- Francois Serre
- Giuseppe Arcuti
- Josua Cantieni
- Chris Mnuk
- Johannes Schenk
- Marco Zeller
- Friday 10-12
- Jeremie Kim
- Mridula Singh
- Aritra Dhar
- Giuseppe Arcuti
- Alexander Breuss
- Josua Cantieni
- Chris Mnuk
- Marco Zeller
- Post your question on Moodle
- Preferred for technical questions
- Write an e-mail to:
- digitaltechnik@lists.inf.ethz.ch
- The instructor and all assistants will receive this e-mail

Where to Get Up-to-date Course Info?

- Website:
- https://safari.ethz.ch/digitaltechnik/
- Lecture slides and videos
- Readings
- Lab information
- Course schedule, handouts, FAQs
- Software
- Plus other useful information for the course
- Check frequently for announcements and due dates
- This is your single point of access to all resources
- Your ETH Email
- Lecturers and Teaching Assistants

Lecture and Lab Times and Policies

- Lectures:
- Thursday and Fridays, 13:15-15:00
- HG F7 (F5 overflow)
- Attendance is for your benefit and is therefore important
- Some days, we will have guest lectures and exercise sessions
- Lab sessions:
- See online
- You should definitely attend the lab sessions
- Labs started this week (March 6 onwards)
- Lab information and handouts are here:
- https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=labs

A Note on Hardware vs. Software

- This course might seem like it is only "Computer Hardware"
- However, you will be much more capable if you master both hardware and software (and the interface between them)
- Can develop better software if you understand the hardware
- Can design better hardware if you understand the software
- Can design a better computing system if you understand both
- This course covers the HW/SW interface and microarchitecture - We will focus on tradeoffs and how they affect software
- Recall the four mysteries
- Recall the Transmeta story

What Do I Expect From You?

- Required background: Binary numbers/arithmetic, reading material week 1, enthusiasm to learn \& think, common sense
- Learn the material thoroughly
- attend lectures, do the readings, do the exercises, do the labs
- Work hard: this will be a hard but fun \& informative course
- Ask questions, take notes, participate
- Perform the assigned readings
- Come to class on time
- Start early - do not procrastinate
- If you want feedback, come to office hours

- Remember "Chance favors the prepared mind." (Pasteur)

What Do I Expect From You?

- How you prepare and manage your time is very important
- There will be 9 lab assignments
- They will take time
- Start early, work hard
- This will be a heavy course
- However, you will learn a lot of fascinating topics and understand how a microprocessor actually works from the ground up
- And, it will hopefully change how you look at and think about designs around you

How Will You Be Evaluated?

- Labs: 30\%
- Lecture 3 covered what you will do

Goal:

By the end of the labs (with a little help) design your own processor and make it work!

- Examination: 70\%
- 150-minute exam within the exam period
- Scheduled by the school, we have no influence on the exam time.
- Questions related to both labs and lectures
- Six pages of handwritten notes are allowed
- Previous exams available on course webpage and via VIS
- https://www.vis.ethz.ch/de/services/examcollection/Digitaltechnik/

Computer Architecture as an
 Enabler of the Future

Required Lecture Video

- Why study computer architecture?
- Why is it important?
- Future Computing Architectures
- Required Assignment
- Watch my inaugural lecture at ETH and understand it
- https://www.youtube.com/watch?v=kgiZISOcGFM
- Optional Assignment
- Write a summary of the lecture
- What are your key takeaways?
- What did you learn?
- What did you like or dislike?
... but, first ...
- Let's understand the fundamentals...
- You can change the world only if you understand it well enough...
- Especially the basics (fundamentals)
- Past and present dominant paradigms
- And, their advantages and shortcomings - tradeoffs
- And, what remains fundamental across generations
- And, what techniques you can use and develop to solve problems

Fundamental Concepts

What is A Computer?

- Three key components
- Computation
- Communication
- Storage (memory)

Computing System

What is A Computer?

- We will cover all three components

What We Will Cover (I)

- Combinational Logic Design
- Hardware Description Languages (Verilog)
- Sequential Logic Design
- Timing and Verification
- ISA (MIPS)
- MIPS Assembly Programming

What We Will Cover (II)

- Microarchitecture Basics: Single-cycle
- Multi-cycle and Microprogrammed Microarchitectures
- Pipelining
- Issues in Pipelining: Control \& Data Dependence Handling, State Maintenance and Recovery, ...
- Out-of-Order Execution
- Other Processing Paradigms (SIMD, VLIW, Systolic, ...)
- Memory and Caches

Processing Paradigms We Will Cover

- Pipelining
- Out-of-order execution
- Dataflow (at the ISA level)
- Superscalar Execution
- VLIW
- SIMD Processing (Vector and array processors, GPUs)
- Decoupled Access Execute
- Systolic Arrays

Combinational Logic Circuits and Design

What We Will Learn Today?

- Building blocks of modern computers
- Transistors
- Logic gates
- Boolean algebra
- Combinational circuits
- How to use Boolean algebra to represent combinational circuits
- Minimizing logic circuits (if time permits)

(Micro)-Processors

FPGAs

Custom ASICs

They All Look the Same

	Microprocessors	FPCAS	Astcs
		5ris	-
In short:	Common building block of computers	Reconfigurable hardware flexible	You customize everything

They All Look the Same

	Microprocessors	FPGAs	ASICs	

They All Look the Same

	Microprocessors	FPras	Ascs
	5.	限	F-10
hort:	Common building block of computers	Reconfigurable hardware, flexible	You customize everything
Program	minutes	day	montrs
Performance	。	+	++

They All Look the Same

Microprocessors	FPGAs	ASICs

In short:	Common building block of computers	Reconfigurable hardware, flexible	You customize everything
Program Development Time	minutes	days	months
Performance	o	+	++
Good for	Ubiquitous Simple to use	Prototyping Small volume	Mass production, Max performance

They All Look the Same

	Microprocessors	FPGAs	ASICs
			${ }^{1114}$
In short:	Common building block of computers	Reconfigurable hardware, flexible	You customize everything
Program Development Time	minutes	days	months
Performance	0	+	++
Good for	Ubiquitous Simple to use	Prototyping Small volume	Mass production, Max performance
Programming	Executable file	Bit file	Design masks
Languages	C/C++/Java/...	Verilog/VHDL	Verilog/VHDL
Main Companies	Intel, ARM	Xilinx, Altera, Lattice	TSMC, UMC, ST, Globalfoundries

They All Look the Same

Building Blocks of Modern

 Computers
Transistors

Transistors

- Computers are built from very large numbers of very simple structures
- Intel's Pentium IV microprocessor, first offered for sale in 2000, was made up of more than 42 million MOS transistors
- Intel's Core i7 Broadwell-E, offered for sale in 2016, is made up of more than 3.2 billion MOS transistors
- This lecture
- How the MOS transistor works (as a logic element)
- How these transistors are connected to form logic gates

Problem
Algorithm
Program/Language
Runtime System (VM, OS, MM) ISA (Architecture) Microarchitecture Logic Devices Electrons

- How logic gates are interconnected to form larger units that are needed to construct a computer

MOS Transistor

- By combining
- Conductors (Metal)
- Insulators (Oxide)
- Semiconductors
- We get a Transistor (MOS)
- Why is this useful?
- We can combine many of these to realize simple logic gates
- The electrical properties of metal-oxide semiconductors are well beyond the scope of what we want to understand in this course
- They are below our lowest level of abstraction

Different Types of MOS Transistors

- There are two types of MOS transistors: n-type and p-type

- They both operate "logically," very similar to the way wall switches work

How Does a Transistor Work?

- In order for the lamp to glow, electrons must flow
- In order for electrons to flow, there must be a closed circuit from the power supply to the lamp and back to the power supply
- The lamp can be turned on and off by simply manipulating the wall switch to make or break the closed circuit

How Does a Transistor Work?

- Instead of the wall switch, we could use an n-type or a ptype MOS transistor to make or break the closed circuit

Schematic of an n-type MOS transistor

If the gate of an n-type transistor is supplied with a high voltage, the connection from source to drain acts like a piece of wire

Depending on the technology, 0.7 V to 3 V

If the gate of the n-type transistor is supplied with 0 V , the connection between the source and drain is broken

How Does a Transistor Work?

- The n-type transistor in a circuit with a battery and a bulb

- The p-type transistor works in exactly the opposite fashion from the n-type transistor

Logic Gates

One Level Higher in the Abstraction

- Now, we know how a MOS transistor works
- How do we build logic out of MOS transistors?
- We construct basic logic structures out of individual MOS transistors
- These logical units are named logic gates
- They implement simple Boolean functions

Problem
Algorithm
Program/Language
Runtime System (VM, OS, MM)
ISA (Architecture)
Microarchitecture
Logic
Devices
Electrons

Making Logic Blocks Using CMOS Technology

- Modern computers use both n-type and p-type transistor, i.e. Complementary MOS (CMOS) technology

nMOS + pMOS = CMOS

- The simplest logic structure that exists in a modern computer

Functionality of Our CMOS Circuit

What happens when the input is connected to 0 V ?

Functionality of Our CMOS Circuit

What happens when the input is connected to 3 V ?

CMOS NOT Gate

- This is actually the CMOS NOT Gate
- Why do we call it NOT?
- If $A=0 \mathrm{~V}$ then $\mathrm{Y}=3 \mathrm{~V}$
- If $A=3 \mathrm{~V}$ then $\mathrm{Y}=0 \mathrm{~V}$
- Digital circuit: one possible interpretation
- Interpret 0 V as logical (binary) 0 value
- Interpret 3 V as logical (binary) 1 value

CMOS NOT Gate

- This is actually the CMOS NOT Gate
- Why do we call it NOT?
- If $A=0 V$ then $Y=3 V$
- If $A=3 V$ then $Y=0 V$
- Digital circuit: one possible interpretation
- Interpret 0 V as logical (binary) 0 value
- Interpret 3 V as logical (binary) 1 value

$$
Y=\bar{A}
$$

We call it a NOT gate or an inverter

Truth table: what would be the logical output of the circuit for each possible input

A	Y
0	1
1	0

CMOS NAND Gate

- Let's build more complex gates!

CMOS NAND Gate

- Let's build more complex gates!

- P1 and P2 are in parallel; only one must be ON to pull the output up to 3 V
- N1 and N2 are connected in series; both must be ON to pull the output to 0 V

CMOS NAND Gate

- Let's build more complex gates!

CMOS AND Gate

- How can we make an AND gate?

$$
\begin{array}{ll|ll}
\boldsymbol{A} & \boldsymbol{B} & \boldsymbol{Y} & \boldsymbol{Y}=\boldsymbol{A} \cdot B=A B \\
\hline 0 & 0 & 0 & \boldsymbol{A} \\
0 & 1 & 0 & \boldsymbol{B} \\
1 & 0 & 0 & \\
1 & 1 & 1 & \boldsymbol{Y}
\end{array}
$$

We make an AND gate using one NAND and one NOT

CMOS NOT, NAND, AND Gates

General CMOS Gate Structure

- The general form used to construct any inverting logic gate, such as: NOT, NAND, or NOR
- The networks may consist of transistors in series or in parallel
- When transistors are in parallel, the network is ON if one of the transistors is ON
- When transistors are in series, the network is ON only if all transistors are ON

Common Logic Gates

Larger Gates

- We can extend the gates to more than 2 inputs
- Example: 3-input AND gate, 10-input NOR gate
- See your readings

Aside: Moore's Law:
Enabler of Many Gates on a Chip

An Enabler: Moore's Law

Moore, "Cramming more components onto integrated circuits," Electronics Magazine, 1965.

Component counts double every other year

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

Number of transistors on an integrated circuit doubles ~ every two years

Hoore's Law The number of transistors on integrated circuit chips (1971-2016)

This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are strongly linked to Moore's law.

Recommended Reading

- Moore, "Cramming more components onto integrated circuits," Electronics Magazine, 1965.
- Only 3 pages
- A quote:
"With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65000 components on a single silicon chip."
- Another quote:
"Will it be possible to remove the heat generated by tens of thousands of components in a single silicon chip?"

How Do We Keep Moore's Law

- Manufacturing smaller transistors/structures
- Some structures are already a few atoms in size
- Developing materials with better properties
- Copper instead of Aluminum (better conductor)
- Hafnium Oxide, air for Insulators
- Making sure all materials are compatible is the challenge
- Optimizing the manufacturing steps
- How to use 193 nm ultraviolet light to pattern 20nm structures
- New technologies
- FinFET, Gate All Around transistor, Single Electron Transistor...

Combinational Logic Circuits

We Can Now Build Logic Circuits

Now, we understand the workings of the basic logic gates

What is our next step?

Build some of the logic structures that are important

 components of the microarchitecture of a computer!- A logic circuit is composed of:
- Inputs
- Outputs

- Functional specification (describes relationship between inputs and outputs)
- Timing specification (describes the delay between inputs changing and outputs responding)

Types of Logic Circuits

- Combinational Logic
- Memoryless
- Outputs are strictly dependent on the combination of input values that are being applied to circuit right now
- In some books called Combinatorial Logic
- Later we will learn: Sequential Logic
- Has memory
- Structure stores history \rightarrow Can "store" data values
- Outputs are determined by previous (historical) and current values of inputs

Boolean Equations

Functional Specification

- Functional specification of outputs in terms of inputs
- What do you mean by "function"?
- Unique mapping from input values to output values
- The same input values produce the same output value every time
- No memory (does not depend on the history of input values)
- Example (full 1-bit adder - more later):

$$
\begin{aligned}
& S=\mathrm{F}\left(A, B, C_{\text {in }}\right) \\
& C_{\text {out }}=\mathrm{G}\left(A, B, C_{\text {in }}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S=A \oplus B \oplus C_{\text {in }} \\
& C_{\text {out }}=A B+A C_{\text {in }}+B C_{\text {in }}
\end{aligned}
$$

Simple Equations: NOT / AND / OR

\bar{A} (reads "not A") is 1 iff A is 0

A	\bar{A}
0	1
1	0

$\mathrm{A} \cdot \mathrm{B}\left(\right.$ reads " A and B ") is 1 iff A and B are both $1 \begin{array}{cc|c}A & B & A \cdot B \\ \hline 0 & 0 & 0\end{array}$

0	1	0
1	0	0
1	1	1

A	B	$A+B$
0	0	0
0	1	1
1	0	1
1	1	1

Boolean Algebra: Big Picture

- An algebra on 1's and 0's
- with AND, OR, NOT operations
- What you start with
- Axioms: basic things about objects and operations you just assume to be true at the start

- What you derive first
- Laws and theorems: allow you to manipulate Boolean expressions
- ...also allow us to do some simplification on Boolean expressions
- What you derive later
- More "sophisticated" properties useful for manipulating digital designs represented in the form of Boolean equations

George Boole, "The Mathematical Analysis of Logic," 1847.

Boolean Algebra: Axioms

Formal version

1. B contains at least two elements, 0 and 1 , such that $0 \neq 1$
2. Closure $a, b \in B$,
(i) $a+b \in B$
(ii) $a \cdot b \in B$
3. Commutative Laws: $a, b \in B$,
(i)
(ii)
4. Identities: $0,1 \in B$
(i)
(ii)
5. Distributive Laws:
(i)
(ii)
6. Complement:
(i)
(ii)

English version
Math formality...

Result of AND, OR stays in set you start with

For primitive AND, OR of 2 inputs, order doesn't matter

There are identity elements for AND, OR, that give you back what you started with

- distributes over + , just like algebra
...but + distributes over ${ }^{\bullet}$, also (!!)

There is a complement element;
AND/ORing with it gives the identity elm.

Boolean Algebra: Duality

- Observation
- All the axioms come in "dual" form
- Anything true for an expression also true for its dual
- So any derivation you could make that is true, can be flipped into dual form, and it stays true
- Duality - More formally
- A dual of a Boolean expression is derived by replacing
- Every AND operation with... an OR operation
- Every OR operation with... an AND
- Every constant 1 with... a constant 0
- Every constant 0 with... a constant 1
- But don't change any of the literals or play with the complements!

Example

$$
\begin{aligned}
& a \cdot(b+c)=(a \cdot b)+(a \cdot c) \\
\rightarrow & a+(b \cdot c)=(a+b) \cdot(a+c)
\end{aligned}
$$

Boolean Algebra: Useful Laws

Operations with 0 and 1:

1. $\mathbf{X}+0=\mathbf{X}$
1D. $X \cdot 1=X$
2. $X+1=1$
2D. $X \cdot 0=0$

AND, OR with identities
gives you back the original
variable or the identity
Idempotent Law:
3. $\mathbf{X}+\mathbf{X}=\mathbf{X}$
3D. $X \cdot X=X$

Involution Law:
4. $\overline{(\bar{X})}=\mathrm{X}$
double complement $=$ no complement

Laws of Complementarity:

$$
\text { 5. } X+\bar{X}=1 \quad \text { 5D. } X \cdot \bar{X}=0
$$

AND, OR with complement gives you an identity

Commutative Law:
6. $\mathbf{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$
6D. $\mathrm{X} \cdot \mathrm{Y}=\mathrm{Y} \cdot \mathrm{X}$
Just an axiom...

Useful Laws (cont)

Associative Laws:

$$
\text { 7. } \begin{aligned}
(\mathbf{X}+\mathbf{Y})+\mathrm{Z} & =\mathbf{X}+(\mathbf{Y}+\mathrm{Z}) \\
& =\mathbf{X}+\mathbf{Y}+\mathbf{Z}
\end{aligned}
$$

7D. $(\mathbf{X} \cdot \mathrm{Y}) \cdot \mathrm{Z}=\mathrm{X} \cdot(\mathrm{Y} \cdot \mathrm{Z})$ $=\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Z}$

Distributive Laws:
8. $\mathrm{X} \cdot(\mathrm{Y}+\mathrm{Z})=(\mathrm{X} \cdot \mathrm{Y})+(\mathrm{X} \cdot \mathrm{Z}) \quad 8 \mathrm{D} . \mathrm{X}+(\mathrm{Y} \cdot \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathbb{Z}) \quad$ Axiom

Simplification Theorems:
9.

9D.
10D.
11D.

Actually worth remembering - they show up a lot in real designs...

Boolean Algebra: Proving Things

Proving theorems via axioms of Boolean Algebra:
EX: Prove the theorem: $\mathbf{X} \cdot \mathbf{Y}+\mathbf{X} \cdot \bar{Y}=\mathbf{X}$
Distributive (5)
Complement (6)
Identity (4)
EX2: Prove the theorem: $\quad \mathbf{X}+\mathbf{X} \cdot \mathbf{Y}=\mathbf{X}$
Identity (4)
Distributive (5)
Identity (2)
Identity (4)

DeMorgan's Law: Enabling Transformations

DeMorgan's Law:

$$
\begin{aligned}
& \text { 12. }(X+Y+Z+\cdots) \\
& \text { 12D. } \overline{(X, Y . Z \ldots)}=\bar{X} \cdot \bar{Y} . \bar{Z} . \ldots \\
& \bar{X}+\bar{Y}+\bar{Z}+\ldots
\end{aligned}
$$

Think of this as a transformation

- Let's say we have:

$$
\mathrm{F}=\mathrm{A}+\mathrm{B}+\mathrm{C}
$$

- Applying DeMorgan's Law (12), gives us

$$
F=\overline{\overline{(A+B+C)}}=\overline{(\bar{A} \cdot \bar{B} \cdot \bar{C})}
$$

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false

DeMorgan's Law (Continued)

These are conversions between different types of logic functions They can prove useful if you do not have every type of gate

$$
A=\overline{(X+Y)}=\bar{X} \bar{Y}
$$

NOR is equivalent to AND with inputs complemented

$$
B=\overline{(X Y)}=\bar{X}+\bar{Y}
$$

NAND is equivalent to OR with inputs complemented

X	Y	$\overline{X+Y}$	\bar{X}	\bar{Y}	$\bar{X} \bar{Y}$
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	0

X	Y	$\overline{X Y}$	\bar{X}	\bar{Y}	$\bar{X}+\bar{Y}$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

We did not cover the following.
They are for your preparation.

Using Boolean Equations to

Represent a Logic Circuit

Sum of Products Form: Key Idea

- Assume we have the truth table of a Boolean Function
- How do we canonically express the function in terms of the inputs in a standard manner?
- Idea: Sum of Products form
- Express the truth table as a two-level Boolean expression
- If ANY of the combinations of input variables that results in a 1 is TRUE, then the output is 1
- $F=O R$ of all input variable combinations that result in a 1

Some Definitions

- Complement: variable with a bar over it $\bar{A}, \bar{B}, \bar{C}$
- Literal: variable or its complement $A, \bar{A}, B, \bar{B}, C, \bar{C}$
- Implicant: product (AND) of literals $(\boldsymbol{A} \cdot \boldsymbol{B} \cdot \overline{\boldsymbol{C}}),(\overline{\boldsymbol{A}} \cdot \boldsymbol{C}),(\boldsymbol{B} \cdot \overline{\boldsymbol{C}})$
- Minterm: product (AND) that includes all input variables $(\boldsymbol{A} \cdot \boldsymbol{B} \cdot \overline{\boldsymbol{C}}),(\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}} \cdot \boldsymbol{C}),(\overline{\boldsymbol{A}} \cdot \boldsymbol{B} \cdot \overline{\boldsymbol{C}})$
- Maxterm: sum (OR) that includes all input variables $(A+\bar{B}+\bar{C}),(\bar{A}+B+\bar{C}),(A+B+\bar{C})$

Two-Level Canonical Forms

- Truth table is the unique signature of a Boolean function ...
- But, it is an expensive representation
- A Boolean function can have many alternative Boolean expressions
- i.e., many alternative Boolean expressions (and gate realizations) may have the same truth table (and function)
- Canonical form: standard form for a Boolean expression
- Provides a unique algebraic signature
- If they all say the same thing, why do we care?
- Different Boolean expressions lead to different gate realizationa

Two-Level Canonical Forms

Sum of Products Form (SOP)

Also known as disjunctive normal form or minterm expansion

- Each row in a truth table has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)

All Boolean equations can be written in SOP form

SOP Form - Why Does It Work?

- Only the shaded product term $-\mathbf{A} \overline{\mathbf{B}} \mathbf{C}=\mathbf{1} \cdot \overline{\mathbf{0}} \cdot \mathbf{1}-$ will be 1
- No other product terms will "turn on" - they will all be 0
- So if inputs A B C correspond to a product term in expression,
- We get $0+0+\ldots+1+\ldots+0+0=1$ for output
- If inputs A B C do not correspond to any product term in expression
- We get $0+0+\ldots+0=0$ for output

Aside: Notation for SOP

- Standard "shorthand" notation here
- If we agree on the order of the variables in the rows of truth table...
- then we can enumerate each row with the decimal number that corresponds to the binary number created by the input pattern

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

100 = decimal 4 so this is minterm \#4, or m4
111 = decimal 7 so this is minterm \#7, or m7
$\mathrm{f}=$
We can write this as a sum of products
Or, we can use a summation notation

Canonical SOP Forms

\mathbf{A}	\mathbf{B}	\mathbf{C}	minterms	
0	0	0	$\bar{A} \bar{B} \bar{B} \bar{C}$	$=\mathrm{m} 0$
0	0	1	$\bar{A} \bar{B} C$	$=\mathrm{m} 1$
0	1	0	$\bar{A} \bar{C} \bar{C}$	$=\mathrm{m} 2$
0	1	1	$\bar{A} \bar{B} \bar{B}$	$=\mathrm{m} 3$
1	0	0	$A \bar{B} \bar{C}$	$=\mathrm{m} 4$
1	0	1	$A \bar{B} C$	$=\mathrm{m} 5$
1	1	0	$A B \bar{C}$	$=\mathrm{m} 6$
1	1	1	$A B C$	$=\mathrm{m} 7$
Shorthand Notation for				

F in canonical form:

$$
\begin{aligned}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) & =\sum \mathrm{m}(3,4,5,6,7) \\
& =\mathrm{m} 3+\mathrm{m} 4+\mathrm{m} 5+\mathrm{m} 6+\mathrm{m} 7 \\
F & =
\end{aligned}
$$

canonical form \neq minimal form
Minterms of 3 Variables

2-Level AND/OR Realization

From Logic to Gates

- SOP (sum-of-products) leads to two-level logic

- Example: $Y=(\bar{A} \cdot \bar{B} \cdot \bar{C})+(A \cdot \bar{B} \cdot \bar{C})+(A \cdot \bar{B} \cdot C)$

Alternative Canonical Form: POS

We can have another from of representation

DeMorgan of SOP of \bar{F}

A product of sums $(\mathbf{P O S})_{F=(A}$
Each sum term represents one of the "zeros" of the function

Anything ANDed with 0 is 0 ; Output F will be 0

Consider $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=0$

Only one of the products will be 0 , anything ANDed with 0 is 0 Therefore, the output is $\mathrm{F}=0$

POS: How to Write It

Or just remember, POS of F is the same as the DeMorgan of SOP of $\bar{F}!!$

Canonical POS Forms

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

A	B		Maxterms
0	0		$A+B+C=\mathrm{MO}$
0	0	1	$A+B+\bar{C}=\mathrm{M} 1$
0	1	0	$A+\bar{B}+C=\mathrm{M} 2$
0	1	1	$A+\bar{B}+\bar{C}=\mathrm{M} 3$
1	0	1	$\bar{A}+B+C=\mathrm{M} 4$
1	0	1	$\bar{A}+B+\bar{C}=\mathrm{M} 5$
1	1	0	$\bar{A}+\bar{B}+\mathrm{C}=\mathrm{M} 6$
1	1	1	$\bar{A}+\bar{B}+\bar{C}=\mathrm{M} 7$

$$
\mathrm{F}=(A+B+C)(A+B+\bar{C})(A+\bar{B}+C)
$$

Maxterm shorthand notation for a function of three variables
$\prod M(0,1,2)$

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Note that you form the maxterms around the "zeros" of the function

This is not the complement of the function!

Useful Conversions

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand replace minterm indices with the indices not already used E.g., $F(A, B, C)=\sum m(3,4,5,6,7)=\Pi M(0,1,2)$
2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand replace maxterm indices with the indices not already used E.g., $F(A, B, C)=\Pi M(0,1,2)=\sum m(3,4,5,6,7)$
3. Expansion of \mathbf{F} to expansion of $\overline{\boldsymbol{F}}$:
E. g., $\mathrm{F}(A, B, C)=\sum m(3,4,5,6,7) \quad \longrightarrow \quad \bar{F}(A, B, C)=\sum m(0,1,2)$

$$
=\prod M(0,1,2) \quad \longrightarrow \quad=\prod M(3,4,5,6,7)
$$

4. Minterm expansion of F to Maxterm expansion of \bar{F} : rewrite in Maxterm form, using the same indices as F

$$
\text { E. } \begin{aligned}
\text { g. } F(A, B, C) & =\sum m(3,4,5,6,7) & \longrightarrow \quad \bar{F}(A, B, C) & =\prod M(3,4,5,6,7) \\
& =\prod M(0,1,2) & &
\end{aligned}
$$

Combinational Circuits Used in Modern Computers

Combinational Building Blocks

- Combinational logic is often grouped into larger building blocks to build more complex systems
- Hides the unnecessary gate-level details to emphasize the function of the building block
- We now look at:
- Decoders
- Multiplexers
- Full adder
- PLA

Decoder

- Exactly one of the inputs is 1 and all the rest are 0s
- n inputs and 2^{n} outputs
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect

Decoder

- The decoder is useful in determining how to interpret a bit pattern
- It could be the address of a row in DRAM, that the processor intends to read from
- It could be an instruction in the program and the processor has to decide what action to do! (based on
 instruction opcode)

Multiplexer (MUX), or Selector

- Selects one of the N inputs to connect it to the output
- Needs $\log _{2} \mathrm{~N}$-bit control input
- 2:1 MUX:

Multiplexer (MUX)

- The output C is always connected to either the input A or the input B
- Output value depends on the value of the select line S

Full Adder (I)

- Binary addition
- Similar to decimal addition

$a_{n-1} a_{n-2}$	\ldots	$a_{1} a_{0}$
$b_{n-1} b_{n-2}$	\ldots	$b_{1} b_{0}$
$C_{n} C_{n-1}$	\ldots	C_{1}
S_{n-1}	\ldots	$S_{1} S_{0}$

- Truth table of binary addition on one column of bits within two n-bit operands

$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{b}_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}}$	carry $_{\boldsymbol{i + 1}}$	$\boldsymbol{S}_{\boldsymbol{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder (II)

- Binary addition
- N 1-bit additions

$$
\begin{array}{ccc}
a_{n-1} a_{n-2} & \ldots & a_{1} a_{0} \\
b_{n-1} b_{n-2} & \ldots & b_{1} b_{0} \\
C_{n} C_{n-1} & \ldots & C_{1} \\
\hline S_{n-1} & \ldots & S_{1} S_{0}
\end{array}
$$

- Use SOP of one bit addition

$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{b}_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}+\boldsymbol{1}}$	$\boldsymbol{S}_{\boldsymbol{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder (III)

- Creating a 4-bit adder out of 1-bit full adders
- To add two 4-bit binary numbers A and B

The Programmable Logic Array (PLA)

- The below logic structure is a very common building block for implementing any collection of logic functions one wishes to
- An array of AND gates followed by an array of OR gates
- How do we determine the number of AND gates?
- Remember SOP: the number of possible minterms

- For an n-input logic function, we need a PLA with $2^{n} n$-input AND gates
- How do we determine the number of OR gates? The number of output columns in the truth table

The Programmable Logic Array (PLA)

- How do we implement a logic function?
- Connect the output of an AND gate to the input of an OR gate if the corresponding minterm is included in the SOP
- This is a simple programmable logic

Programming a PLA: we program the connections from AND gate outputs to OR gate inputs to implement a desired logic function

- Have you seen any other type of programmable logic?
- Yes! An FPGA...
- An FPGA uses more advanced structures, as we saw in Lecture 3

Implementing a Full Adder Using a PLA

This input should not be

Truth table of a full adder

$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{b}_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}}$	carry $_{\boldsymbol{i + 1}}$	$\boldsymbol{S}_{\boldsymbol{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Logical Completeness

- Any logic function we wish to implement could be accomplished with PLA
- PLA consists of only AND gates, OR gates, and inverters
- We just have to program connections based on SOP of the intended logic function
- The set of gates \{AND, OR, NOT\} is logically complete because we can build a circuit to carry out the specification of any truth table we wish, without using any other kind of gate

LOGIC SIMPLIFICATION: KARNAUGH MAPS

Quick Recap on Logic Simplification

- The original Boolean expression (i.e., logic circuit) may not be optimal

$$
F=\sim A(A+B)+(B+A A)(A+\sim B)
$$

- Can we reduce a given Boolean expression to an equivalent expression with fewer terms?

$$
F=A+B
$$

- The goal of logic simplification:
- Reduce the number of gates/inputs
- Reduce implementation cost

A basis for what the automated design tools are doing today

Logic Simplification

- Systematic techniques for simplifications
- amenable to automation

Key Tool: The Uniting Theorem - F $=A \bar{B}+A B$

Complex Cases

- One example

$$
\text { Cout }=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C
$$

- Problem
- Easy to see how to apply Uniting Theorem...
- Hard to know if you applied it in all the right places...
- ...especially in a function of many more variables
- Question
- Is there an easier way to potential simplifications?
- i.e., potential applications of Uniting Theorem...?
- Answer
- Need an intrinsically geometric representation for Boolean f()
- Something we can draw, see...

Karnaugh Map

- Karnaugh Map (K-map) method
- K-map is an alternative method of representing the truth table that helps visualize adjacencies in up to 6 dimensions
- Physical adjacency \leftrightarrow Logical adjacency

2-variable K-map

3-variable K-map

4-variable K-map

$C D$	00	01	11	10
00	00	0000	0001	0011
01	0010			
11	0100	0101	0111	0110
10	1100	1101	1111	1110
	1000	1001	1011	1010

Numbering Scheme: 00, 01, 11, 10 is called a "Gray Code" - only a single bit changes from code word to next code word

Karnaugh Map Methods

Adjacent

[^0]
K-map Cover - 4 Input Variables

K-map Rules

- What can be legally combined (circled) in the K-map?
- Rectangular groups of size 2^{k} for any integer k
- Each cell has the same value (1, for now)
- All values must be adjacent
- Wrap-around edge is okay
- How does a group become a term in an expression?
- Determine which literals are constant, and which vary across group
- Eliminate varying literals, then AND the constant literals
- constant $1 \rightarrow$ use \mathbf{X}, constant $0 \rightarrow$ use \bar{X}
- What is a good solution?
- Biggest groupings \rightarrow eliminate more vars (literals) in each term
- Fewest groupings \rightarrow fewer terms (gates) all together
- OR together all AND terms you create from individual groups

K-map Example: Two-bit Comparator

Design Approach:
Write a 4-Variable K-map for each of the 3 output functions

A	B	C	D	F1	F2	F3
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	1	0	0

K-map Example: Two-bit Comparator (2)

K-map Example: Two-bit Comparator (3)

$$
\begin{aligned}
& \text { F2 }= \\
& \text { F3 }=?(\text { Exercise for you })
\end{aligned}
$$

A	B	C	D	F	$F 2$	$F 3$
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	1	0	0

K-maps with "Don't Care"

- Don't Care really means I don't care what my circuit outputs if this appears as input
- You have an engineering choice to use DON'T CARE patterns intelligently as 1 or 0 to better simplify the circuit

Example: BCD Increment Function

- BCD (Binary Coded Decimal) digits
- Encode decimal digits 0-9 with bit patterns $0000_{2}-1001_{2}$
- When incremented, the decimal sequence is $0,1, \ldots, 8,9,0,1$
$\left.\begin{array}{llll|llll}\text { A } & \text { B } & \text { C } & \text { D } & \text { W } & X & Y & Z \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & X & X & X & X \\ 1 & 0 & 1 & 1 & X & X & X & X \\ 1 & 1 & 0 & 0 & X & X & X & X \\ 1 & 1 & 0 & 1 & X & X & X & X \\ 1 & 1 & 1 & 0 & X & X & X & X \\ 1 & 1 & 1 & 1 & X & X & X & X\end{array}\right]$

These input patterns should never be encountered in practice (hey -- it's a BCD number!) So, associated output values are
"Don't Cares"

K-map for BCD Increment Function

Y				
${ }_{A B}{ }^{C D}$	00011110			
		1		1
01		1		1
11	X	x	X	X
10			X	X

K-map Summary

- Karnaugh maps as a formal systematic approach for logic simplification
- 2-, 3-, 4-variable K-maps
- K-maps with "Don't Care" outputs

Next Lecture: Hardware
Description Languages \& Verilog

Design of Digital Circuits
 Lecture 5: Combinational Logic

Prof. Onur Mutlu
ETH Zurich
Spring 2018
8 March 2018

[^0]: Kmap adjacencies go "around the edges"
 Wrap around from first to last column Wrap around from top row to bottom row

