Design of Digital Circuits Lab 1 Supplement

Prof. Onur Mutlu ETH Zurich

Spring 2018

6 March 2018

What We Will Learn?

Boolean Equations

Logic operations with binary numbers

Logic Gates

 Basic blocks that are interconnected to form larger units that are needed to construct a computer

Boolean Equations and Logic Gates

Simple Equations: NOT / AND / OR

$$\overline{A}$$
 (reads "not A") is 1 iff A is 0

$$A \longrightarrow \overline{A}$$

$$A + B$$
 (reads "A or B") is 1 iff either A or B is 1

$$\frac{A}{B}$$
 \rightarrow $A+B$

A	B	A + B
0	0	0
0	1	1
1	0	1
1	1	1

Boolean Algebra: Big Picture

- An algebra on 1's and 0's
 - with AND, OR, NOT operations
- What you start with
 - Axioms: basic stuff about objects and operations you just assume to be true at the start

- What you derive first
 - Laws and theorems: allow you to manipulate Boolean expressions
 - ...also allow us to do some simplification on Boolean expressions
- What you derive later
 - More "sophisticated" properties useful for manipulating digital designs represented in the form of Boolean equations

Common Logic Gates

Buffer

AND

OR

Inverter

NAND

NOR

XNOR

Α	В	Z
0	0	1
0	1	0
1	0	0
1	1	1

Boolean Algebra: Axioms

Formal version	English version	
1. B contains at least two elements, 0 and 1, such that $0 \neq 1$	Math formality	
 2. Closure a,b ∈ B, (i) a + b ∈ B (ii) a • b ∈ B 	Result of AND, OR stays in set you start with	
 3. Commutative Laws: a,b ∈ B, (i) (ii) 	For primitive AND, OR of 2 inputs, order doesn't matter	
4. <i>Identities</i> : 0, 1 ∈ <i>B</i> (i) (ii)	There are identity elements for AND, OR, give you back what you started with	
5. Distributive Laws: (i) (ii)	• distributes over +, just like algebra but + distributes over •, also (!!)	
6. Complement: (i) (ii)	There is a complement element, ANDing, ORing give you an identity	

Boolean Algebra: Duality

- Interesting observation
 - All the axioms come in "dual" form
 - Anything true for an expression also true for its dual
 - So any derivation you could make that is true, can be flipped into dual form, and it stays true
- Duality -- More formally
 - A dual of a Boolean expression is derived by replacing
 - Every AND operation with... an OR operation
 - Every OR operation with... an AND
 - Every constant 1 with... a constant 0
 - Every constant 0 with... a constant 1
 - But don't change any of the literals or play with the complements!

Example
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

 $\Rightarrow a + (b \cdot c) = (a + b) \cdot (a + c)$

Boolean Algebra: Useful Laws

Operations with 0 and 1:

1.
$$X + 0 = X$$

2.
$$X + 1 = 1$$

1D.
$$X \cdot 1 = X$$

2D.
$$X \cdot 0 = 0$$

AND, OR with identities gives you back the original variable or the identity

Idempotent Law:

3.
$$X + X = X$$

3D.
$$X \cdot X = X$$

AND, OR with self = self

Involution Law:

$$4. \overline{(\overline{X})} = X$$

double complement = no complement

Laws of Complementarity:

5.
$$X + \overline{X} = 1$$

5D.
$$X \cdot \overline{X} = 0$$

AND, OR with complement gives you an identity

Commutative Law:

6.
$$X + Y = Y + X$$

6D.
$$X \cdot Y = Y \cdot X$$

Just an axiom...

Useful Laws (cont)

Associative Laws:

7.
$$(X + Y) + Z = X + (Y + Z)$$

= $X + Y + Z$

7D.
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

= $X \cdot Y \cdot Z$

Parenthesis order doesn't matter

Distributive Laws:

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$

8.
$$X \cdot (Y+Z) = (X \cdot Y) + (X \cdot Z)$$
 8D. $X + (Y \cdot Z) = (X+Y) \cdot (X+Z)$ Axiom

Simplification Theorems:

9.

9D.

10D.

11.

11D.

Useful for simplifying expressions

Actually worth remembering — they show up a lot in real designs...

DeMorgan's Law

DeMorgan's Law:

12.
$$\overline{(X + Y + Z + \cdots)} = \overline{X}.\overline{Y}.\overline{Z}...$$

12D. $\overline{(X \cdot Y.Z...)} = \overline{X} + \overline{Y} + \overline{Z} + ...$

- Think of this as a transformation
 - Let's say we have:

$$F = A + B + C$$

Applying DeMorgan's Law (12), gives us:

$$F = \overline{\overline{(A + B + C)}} = \overline{(\overline{A}.\overline{B}.\overline{C})}$$

DeMorgan's Law (cont.)

Interesting — these are conversions between different types of logic

That's useful given you don't always have every type of gate

$$A = \overline{(X + Y)} = \overline{X}\overline{Y}$$

NOR is equivalent to AND with inputs complemented

$$X \rightarrow \bigcirc -$$
 A

$$B = \overline{(XY)} = \overline{X} + \overline{Y}$$

NAND is equivalent to OR with inputs complemented

Design of Digital Circuits Lab 1 Supplement

Prof. Onur Mutlu ETH Zurich

Spring 2018

6 March 2018