
LAB 3 –Verilog for Combinational Circuits

Goals
 Learn how to implement combinational circuits using Verilog.

 Design and implement a simple circuit that controls the 7-segment display to show a 4-bit
value in hexadecimal format.

To Do
 Design a circuit that gets a 4-bit binary value as an input and generates 7 control signals

that drive the 7-segment display.

 Use the adder circuit from Lab2 and show its output on the 7-segment display.

 Follow  the  instructions.  Paragraphs  that  have  a  gray  background  like  the  current
paragraph denote descriptions that require you to do something.

 To complete the lab you have to show your work to an assistant before the deadline, there
is  nothing  to  hand  in.  The  required  tasks  are  clearly  marked  with  gray  background
throughout this document. All other tasks are optional but highly recommended. You can
ask the assistants for feedback on the optional tasks.

Introduction
In Lab 2 exercise, we used the LEDs to display the result of our adder. Instead of showing the
result as a binary number, we could represent the number in a more human readable format using
the 7-segment display on the Basys 3 board. A 7-segment display consists of seven separate LEDs
in a single package (see Figure 1). Each of the seven segments is labeled using the letters a to g.
We can use the 7-segment display to represent different characters or digits by making particular
segments glow at the same time. In this lab, we will implement a circuit that could show the
hexadecimal characters as shown in Figure 2. For example, if we want to display 0 on the 7-
segment display, our circuit should make sure that all of the LEDs except ‘g’ glow. 

Each one of the seven segments has a corresponding pin connected to the FPGA, just like the
LEDs in Lab 2. In our circuit, we will need to convert a 4-bit binary input to drive the correct 7-
bit signals. One thing to note is that, unlike the LEDs which glow when a logic-1 is applied, the
segment in our FPGA board glow when a logic-0 is applied. As we have seen in the lecture, such
signals are called active-low.

You will notice that there are a total of four 7-segment displays on the FPGA board. To save on
the number of pins connecting to the FPGA chip, all four 7-segment displays share the same

1

Figure 2: 
7-segment 
display

Figure 1: Hexadecimal characters 
represented in a 7-segment display



inputs.  To select  which  of  the  four  display  will  act  on  the  inputs,  there  are  four  additional
“activation” inputs.  If  we activate  all  displays  at  the  same time,  all  of  them show the same
number, i.e., the same segments glow on all displays. If we want to show different characters on
each 7-segment display, then we need to activate the displays separately over multiple cycles. For
example, our circuit should first activate the first display and drive the number to be displayed as
an input. In the next cycle, our circuit can drive a different input by selecting another 7-segment
display.  Since the human eye can only notice changes slower than approximately 20ms, if you do
this fast enough (more than 50 times per second) you will see a stable display. This is the same
trick used in movies and television sets. In this exercise, we do not implement this trick as we do
not  implement  sequential  circuits  in  this  lab.  Instead,  you  could  choose  to  show  the  same
character on all of the 7-segment displays or turn three of them off (see the optional Part 4).

In this lab, we will reuse our adder circuit from Lab 2. Our goal is to show the results of the adder
on the 7-segment display. However, the output of the adder is 5 bits, we cannot show the results
as a single hexadecimal character  in all  cases.  Therefore,  we will  continue using an LED to
represent  addition results higher 31. Basically, in your design,  the most significant  bit  of  the
addition should be connected to an LED and the rest  of  the bits  should drive the 7-segment
display. 

Part 1- Converting a Binary Number to 7-Segment Display Encoding
As a first step, fill in the truth table below that converts a binary number to a 7-segment encoding.
Note that a segment should glow when the corresponding output is logic-0. 

Display S3 S2 S1 S0 A B C D E F G

0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

A 1 0 1 0

B 1 0 1 1

C 1 1 0 0

D 1 1 0 1

E 1 1 1 0

F 1 1 1 1

The truth table you have filled defines a circuit with 7 outputs. If you wanted, you could write the
Boolean equations for all outputs separately, try to find out a (somewhat) optimized version of the
equations, see if you can share portions of the gates among the different outputs (reducing the
number of gates) and then draw the schematic for the resulting Boolean equations. 

 

2



Part 2 - Implementing a Circuit to drive the 7-Segment Display
This is not very difficult and can be done with some effort. However, since we have learned that
we can also use Verilog to describe hardware, we can do the same with less effort.

Before we continue, recall the “bus” concept that we know from the lectures and Lab 2. For the 7-
segment display, we have seven outputs that we have named A to G. Instead of making seven
separate connections, we can combine all of them together in a single bus. Assume that you call
this  bus  D[6:0].  An  important  decision  is  how the  bus  signals  should  be  connected  to  the
individual outputs that drive the 7-segment display. Is A connected to D(0) or to D(6) (or to
another signal)? You are free to choose what kind of assignment you want to make to the buses.

Start with opening your Lab 2 project on Vivado.  You may want to create a copy of the Lab 2
project if you would like to keep the current version of it. Inside Flow Navigator, under “Project
Manager”, click on “Add Sources”. Select “Add or Create Design Sources”, and click next. Click
“Create File”. A new dialog box will  pop up. After you choose a name for the module (e.g.,
‘Decoder’) clicking on the ‘Finish’ button will open a new window where you can easily add the
connections. You can type in the name, select the direction (i.e., input or output), and you can
specify the range of buses. You need to define 4-bit input and 7-bit output signals for your module
that will convert a binary number to a 7-segment display encoding.

Now you are ready to describe the functionality of your new module using Verilog. You can try
different styles to see which one suits you well. It is important to realize that the length of the
code is not proportional to the complexity of the hardware. Try to write well-structured code
using simple statements and document them well. 

Once you have created the file, you can start writing Verilog code to implement the functionality
of your new module. Basically, you need to implement a logic that will make the corresponding
segment glow for each input number.

Note that in case you have a procedural assignment to a wire (inside an ‘always’ block) you
should make sure that it is declared as ‘reg’. This is also the case for outputs that are defined in
the module declaration. In general, all signals on the left-hand side of <= or = in an ‘always’
statement must be declared as ‘reg’.

In case there is any syntax error in your code, you can see a red underline along with a red marker
on the scrollbar. Move your mouse to the scroll  bar and you can see the cause of the error.
Additionally, you can go to Window →  Messages which also shows all the errors (including
the warnings) in your code. You may have to save the file before the messages are updated.

Part 3 – Showing the Addition Result on the 7-Segment Display
Our goal is to show the result of our adder circuit from Lab 2 using the 7-segment display. To
achieve that, we need to attach an instance of the new module that we just implemented (we will
just call it “Decoder” from now on) to the output of the adder, i.e., the output of the adder should
be an input to the instance of the Decoder. To do that, we need to create a new “top” module that
will create an instance of each module and make appropriate connections between them.

Create a new source file and instantiate the adder and the Decoder. In this module we will still
have the two inputs A[3:0] and B[3:0] that go directly to the adder. The output of the adder is a
bus that is 5-bits wide. 4 of these S[3:0] will go to the decoder, and the most significant bit S[4]
should connect to a separate LED. An example schematic is given in Figure 3. 

3



Figure 3: An example top-level schematic

Connect the output of the adder to the input of the Decoder as you see appropriate. Make sure that
you do not have any errors.

In case you would like to see the schematic representation of your code, go to Flow -> Elaborated
Design. You can ignore the warning dialog.

We also need to modify the constraints file (the .xdc file) that tells us how to map the outputs of
our top module to the FPGA pins. Note that in your top module you should have seven bits going
to the 7-segment display and one bit connecting to the LED.

We assume that you call the output D[6:0] and A is D[0], B is D[1], C is D[2] etc. For the inputs,
assume that we have a 4-bit bus called s[3:0].

Find and open the .xdc file that you created last week for Lab 2. Make necessary changes to select
the pins connecting to the 7-segment display. We provide example constraints below assuming
that you would like to connect D[0] to segment A, D[1], to segment B and so on. Also, make sure
to update the constraints for the inputs if you use different input names in your new top module.

Example connections for the 7-segment display are the following:

set_property PACKAGE_PIN W7 [get_ports {D[0]}]

set_property PACKAGE_PIN W6 [get_ports {D[1]}]

set_property PACKAGE_PIN U8 [get_ports {D[2]}]

set_property PACKAGE_PIN V8 [get_ports {D[3]}]

set_property PACKAGE_PIN U5 [get_ports {D[4]}]

set_property PACKAGE_PIN V5 [get_ports {D[5]}]

set_property PACKAGE_PIN U7 [get_ports {D[6]}]

set_property IOSTANDARD LVCMOS33 [get_ports {D}]

Now we just have to generate the programming file of the entire project and download it to the
FPGA. Then we can finally check the result using the 7-segment display.

Using Lab 2 as a reference, generate the programming file and program the FPGA. Show the
working circuit to an assistant.

Part 4 – Turning off the Redundant Displays (Optional)
If you do not like seeing all 7-segment displays showing the same number four times you may
want to turn off the three extra 7-segment displays. They can be disabled by connecting their
activation input to logic-1 (note that the activation input is active-low). In order to achieve this,
you can add a new 4-bit output AN[3:0] into your top module and assign logic-1 to AN[1], AN[2]
and AN[3], and logic-0 to AN[0].

4



At this point, you need to update the constraints file in order to map these new output signals to
the activation pins on the board.

Do this by adding the following lines to your constraints file:

set_property PACKAGE_PIN U2 [get_ports {AN[0]}]

set_property PACKAGE_PIN U4 [get_ports {AN[1]}]

set_property PACKAGE_PIN V4 [get_ports {AN[2]}]

set_property PACKAGE_PIN W4 [get_ports {AN[3]}]

set_property IOSTANDARD LVCMOS33 [get_ports {AN}]

You can name the new output as you prefer. Just be careful to be consistent with your choice
when updating the constraints file. After this little tweak, generate the programming file again
and reprogram the board. You should now see only the right-most 7-segment display on.

Last Words
In this exercise, we deliberately left some options (how to add the display decoder) up to you.
There are frequently many ways a specific task can be completed, and it is not immediately clear
which of the alternatives is the best choice. More often than not, there is not really a ‘best’ option;
all choices would work more or less equally well. 

While working on your implementation, you may come across various problems. Here are some
tips to debug your circuit implementation.

 Isolate the problem. You can just map your new Decoder module to the FPGA board by
connecting 4 inputs to the switches and the 7 outputs to the 7-segment display. This way,
you can check if the Decoder works correctly. If this is the case, the problem could be in
the adder circuit or in the interconnection between the two. 

 If  something  is  displayed  on  the  7-segment  display,  but  it  does  not  match  the
expectations, consider that all output LEDs are independent. Try to find out which LEDs
function correctly (a, b, c, etc.) and which ones do not. You should then find the place in
the Verilog code that determines the output of the LEDs that are not working correctly. 

 Check your bit ordering. The given constraints for port D are only valid if you followed
the example ordering of bits (i.e., D[0] corresponds to segment A, D[1] to segment B,
etc.)

Until now, we have designed combinational circuits. The outputs of these circuits were directly
determined by their inputs. We use these circuits extensively, but they are not able to remember
what has happened in the past: they have no memory, only the present time. Starting with the next
exercise, we examine state holding circuits that can differentiate among different states and can
move through different states depending on the input and the present state. These circuits are
called finite state machines.

5


