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Agenda for Today & Next Few Lectures

= The von Neumann model
= LC-3: An example of von Neumann machine

= LC-3 and MIPS Instruction Set Architectures
= LC3 and MIPS assembly and programming

= Introduction to microprogramming and single-cycle
microarchitectures

= Multi-cycle microarchitecture

= Microprogramming




Readings

This week
o Von Neumann Model, LC-3, and MIPS
P&P, Chapter 4, 5
H&H, Chapter 6
P&P, Appendices A and C (ISA and microarchitecture of LC-3)
H&H, Appendix B (MIPS instructions)
o Digital Building Blocks
H&H, Chapter 5

Next week
o Introduction to microarchitecture and single-cycle microarchitecture
P&P, Appendices A and C
H&H, Chapter 7.1-7.3
o Multi-cycle microarchitecture
P&P, Appendices A and C
H&H, Chapter 7.4
o Microprogramming
P&P, Appendices A and C



What Will We Learn Today?

The von Neumann model
o LC-3: An example of von Neumann machine

Instruction Set Architectures: LC-3 and MIPS
o Operate instructions

o Data movement instructions

o Control instructions

Instruction formats

Addressing modes



The Von Neumann Model




Basic Elements of a Computer

= In past lectures we learned
a Combinational circuits
a Sequential circuits
= With them, we can build
a Decision elements
o Storage elements

= Basic elements of a computer

= To get a task done by a computer we need
o Computer
o Data

o Program: A set of instructions
= Instruction: the smallest piece of work in a computer




The Von Neumann Model

= Let’s start building the computer

= In order to build a computer we need a model

= John von Neumann proposed a fundamental model in 1946

= It consists of 5 parts

a

U 0O 0O O

Memory
Processing unit
Input

Output

Control unit

= Throughout this lecture, we consider two examples of the von
Neumann model

a
a

LC-3

MIPS Burks, Goldstein, von Neumann,
“Preliminary discussion of the logical design
of an electronic computing instrument,” 1946.
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The Von Neumann Model
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Memory

The memory stores
o Data
o Programs

The memory contains bits
o Bits are grouped into bytes (8 bits) and words (e.qg., 8, 16, 32 bits)

How the bits are accessed determines the addressability
o E.g., word-addressable
o E.qg., 8-bit addressable (or byte-addressable)

The total number of addresses is the address space
o In LC-3, the address space is 216

16-bit addresses
o In MIPS, the address space is 232

32-bit addresses
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Word-Addressable Memory

Each data word has a unique address
o In MIPS, a unique address for each 32-bit data word
o In LC-3, a unique address for each 16-bit data word

Word Address

00000003
00000002
00000001

00000000

Data MIPS memory

D161 7A1C

13C81755

F2F1FOF7

S9ABCDEF

Word 3
Word 2
Word 1
Word 0
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Byte-Addressable Memory

Each byte has a unique address

o Actually, MIPS is byte-addressable

o LC-3b is byte-addressable, too

Word Address

Data

0000000C

D 1

6 1

7 A

1C

00000008

13

C8

17

55

00000004

00000000

F 2

How are these four bytes |

F 1

FO

addressed?

F7

MIPS
memory

Word 3
Word 2
Word 1
Word 0
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Big Endian vs Little Endian

= Jonathan Swift’s Gulliver’s Travels
o Little Endians broke their eggs on the little end of the egg
o Big Endians broke their eggs on the big end of the egg

’__—_____:
T RAVEL S

sssssssssss

rrrrr

e ‘ ‘
BIG ENDIAN - The way LITTLE ENDIAN - The
people always broke way the king then
their eggs in the ordered the people to
Lilliput land break their eggs
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Big Endian vs Little Endian

Big Endian Little Endian
Byte Word Byte
Address Address Address
C|D|E]|F C F|E|D]|C
8 | 9| A| B 8 B | A | 9 | 8
4|15 |6 |7 4 716 |5 | 4
0| 1| 2] 3 0 312110

MSB LSB MSB LSB



Big Endian vs Little Endian

Big Endian Little Endian
Byte Word Byte

Does this really matter?
Answer: No, it Is a convention

Qualified answer: No, except when one big-
endian system and one little-endian system
have to share data

MSB L SB MSB LSB

15



Accessing Memory: MAR and MDR

= There are two ways of accessing memory
o Reading or loading
o Writing or storing

= Two registers are necessary to access memory
o Memory Address Register (MAR)
o Memory Data Register (MDR)

= To read
o Step 1: Load the MAR with the address
o Step 2: Data is placed in MDR

= [0 write

o Step 1: Load the MAR with the address and the MDR with the data
o Step 2: Activate Write Enable signal
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The Von Neumann Model
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Processing Unit

The processing unit can consist of many functional units

We start with a simple Arithmetic and Logic Unit (ALU)
o LC-3: ADD, AND, NOT (XOR in LC-3b)
o MIPS: add, sub, mult, and, nor, sll, sir, sit...

The ALU processes quantities that are referred to as words
o Word length in LC-3 is 16 bits
a In MIPS it is 32 bits

Temporary storage: Registers

a E.qg., to calculate (A+B)*C, the intermediate result of A+B is
stored in a register
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Registers

Memory is big but slow

Registers
o Ensure fast access to operands
o Typically one register contains one word

Register set or file

o LC-3 has 8 general purpose registers (GPR)
RO to R7: 3-bit register number
Register size = Word length = 16 bits

o MIPS has 32 registers
Register size = Word length = 32 bits
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MIPS Register File

SO

sat
sv0-svl
sa0-sa3
St0-St7
$s0-$s7
St8-$t9
Sk0-$kl1
Sgp

Ssp

Sfp

Sra

0

1

2-3
4-7
8-15
16-23
24-25
26-27
28

29

30

31

the constant value 0
assembler temporary
function return value
function arguments
temporary variables
saved variables
temporary variables
OS temporaries
global pointer

stack pointer

frame pointer

function return address

20



The Von Neumann Model
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Input and Output

Many devices can be used for input and output

They are called peripherals

o Input
Keyboard
Mouse
Scanner
Disks
Etc.

o Output
Monitor
Printer
Disks
Etc.

o In LC-3, we consider keyboard and monitor

22



The Von Neumann Model
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Control Unit

The control unit is the conductor of the orchestra

It conducts the step-by-step process of executing a
program

It keeps track of the instruction being executed with an
instruction register (IR), which contains the instruction

Another register contains the address of the next

instruction to execute. It is called program counter (PC) or
instruction pointer (IP)
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Programmer Visible (Architectural) State

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Memory [Program Counter |

array of storage locations memory address
indexed by an address of the current instruction

Instructions (and programs) specify how to transform
the values of programmer visible state
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The Von Neumann Model
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L.C-3: A Von Neumann Machine




L.C-3: A Von Neumann Machine

Program

Counter \

Control signals

Data

Finite State Machine

(for Generating Control Signals)

Instruction

Register

Memory Data
Register

Memory Address
Register

PROCESSOR BUS GatePC Mo
¥\
3 REG
25 FILE
_ ]
LD.REG
+\SR2 SR1|/,
SR2 ()UT OuUT SR1
N
16 16
| CLK
Z. -
7
R FINITE
STATE
IR B—'—D- MACHINE[ ™
o>
/16
A,
p —
CONTROL UNIT PROCESSING
UNIT

GateMDR —\

MEM.EN, R.W

i

16

MAR |9~ LD.MAR

16-bit
addressabl

16
7

Figure 4.3

MEMORY

‘ GateALU .

8 General Purpose
Registers (GPR)

ALU: 2 inputs, 1 output

ALU operation

GateALU

Keyboard
KBDR (data), KBSR (status)

Monitor
DDR (data), DSR (status)

INPUT

The LC-3 as an example of the von Neumann model
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Stored Program & Sequential Execution

= Instructions and data are stored in memory
o Typically the instruction length is the word length

= The processor fetches instructions from memory sequentially
o Fetches one instruction
o Decodes and executes the instruction
o Continues with the next instruction

= The address of the current instruction is stored in the program
counter (PC)

0 %f wcgd3—)addressable memory, the processor increments the PC by 1
in LC-

o If byte-addressable memory, the processor increments the PC by the
word length (4 in MIPS)

= In MIPS the OS typically sets the PC to 0x00400000
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A Sample Program Stored in Memory

A sample MIPS program

o 4 instructions stored in consecutive words in memory
No need to understand the program now. We will get back to it

MIPS assembly

1w St2, 32(S0)

add $s0, $sl1, $s2
addi $t0, $s3, -12
sub $t0, $t3, $t5

Machine code

0x8CO0A0020
0x02328020
0x2268FFF4
0x016D4022

Address

0040000C
00400008
00400004
00400000

Instructions

016D4022

2268FFF4

02328020

8CO0A0020

¢ PC

30



The Instruction

An instruction the most basic unit of computer processing
o Instructions are words in the language of a computer
o Instruction Set Architecture (ISA) is the vocabulary

The language of the computer can be written as

o Machine language: Computer-readable representation (that is,
0’s and 1's)

o Assembly language: Human-readable representation

We learn LC-3 instructions and MIPS instructions

Let us start with some examples of instructions

31



Instruction Types

There are three main types of instructions

Operate instructions
o Execute instructions in the ALU

Data movement instructions
o Read from or write to memory

Control flow instructions
o Change the sequence of execution

32



An Example of Operate Instruction

= Addition
High-level code Assembly
a =>b + c; add a, b, c

Q

Q

add: mnemonic to indicate the operation to perform
b, C: source operands

a: destination operand

a<b+c
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Registers

= We map variables to registers

Assembly LC-3 registers
add a, b, c b = R1

c = R2

a = RO

MIPS registers

b = S$sl
c = Ss2
a = Ss0




From Assembly to Machine Code in 1.C-3

Addition
LC-3 assembly

ADD RO, R1, R2

Field Values
OP DR SR1 SR2
1 0 1 0| 00 2

Machine Code
OP DR SR1 SR2

0001 | 000 | OO1 |0|0O0I 010

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

0x1042




Instruction Format or Encoding
LC-3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

OP DR SR1 |0 00| SR2

4 bits 3 bits 3 bits 3 bits

o OP = opcode (what the instruction does)
E.g., ADD = 0001
o DR ¢« SR1 + SR2
E.g., AND = 0101
o DR ¢« SR1 AND SR2

o SR1, SR2 = source registers

o DR = destination register
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From Assembly to Machine Code in MIPS

Addition
MIPS assembly
add $s0, $sl1, $s2
Field Values
op rs rt rd shamt funct
0 17 18 16 0 32
rd < rs +rt
Machine Code
op rs rt rd shamt funct
000000 | 10001 | 10010 | 10000 | 00000 | 100000

31 26 25 21 20 16 15 11 10 6

0x02328020

5

0

37



Instruction Formats: R-Type 1n MIPS

R-type
o 3 register operands
MIPS

0 rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

o 0 = opcode

o rs, rt = source registers

o rd = destination register

o shamt = shift amount (only shift operations)

o funct = operation in R-type instructions



Reading Operands from Memory

With the operate instructions, such as addition, we tell the
computer to execute arithmetic (or logic) computations in
the ALU

We also need instructions to access the operands from
memory

Next, we see how to read (or load) from memory

Writing (or storing) is performed in a similar way, but we
will talk about that later

39



Reading Word-Addressable Memory

= Load word
High-level code Assembly
a = A[i]; load a, A, 1

Q

Q

Q

Q

Q

load: mnemonic to indicate the load word operation
A: base address

I: offset
= E.qg., immediate or literal (a constant)

a: destination operand

a < Memory[A + i]

40



L.oad Word in L.LC-3 and MIPS

= LC-3 assembly

High-level code LC-3 assembly

a = A[2]; LDR R3, RO, #2

R3 & Memory[RO + 2]

= MIPS assembly

High-level code MIPS assembly

a = A[2]; 1w $Ss3, 2(Ss0)

$s3 < Memory[$s0 + 2]

These instructions use a particular addressing mode

(i.e., the way the address is calculated), called base+offset

41



LLoad Word in Byte-Addressable MIPS
MIPS assembly

High-level code MIPS assembly
a = A[2]; 1w $s3, 8(S$s0)
$s3 < Memory[$s0 + 8]
Byte address is calculated as: word_address * bytes/word

o 4 bytes/word in MIPS

o If LC-3 were byte-addressable (i.e., LC-3b), 2 bytes/word

42



Instruction Format With Immediate

LC-3
LC-3 assembly
LDR R3, RO, #4
Field Values
OP DR BaseR offset6
6 3 0 4
15 12 11 9 8 6 5 0
MIPS

MIPS assembly
lw $s3, 8(Ss0)

Field Values
op rs rt imm
35 16 19 8

31 26 25 21 20 16 15 0

I-Type

43



How are these Instructions Executed?

= By using instructions we can speak the language of the
computer

= Thus, we now know how to tell the computer to

o Execute computations in the ALU by using, for instance, an
addition

o Access operands from memory by using the load word
Instruction

= But, how are these instructions executed on the computer?

o The process of executing an instruction is called is the
instruction cycle

44



The Instruction Cycle

= The instruction cycle is a sequence of steps or phases, that an
instruction goes through to be executed

o FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

0O O 0O 0O O

= Not all instructions have the six phases
o LDR does not require EXECUTE

o ADD does not require EVALUATE ADDRESS

o Intel x86 instruction ADD [eax], edx is an example of instruction
with six phases

45



After STORE RESULT, a New FETCH

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O o o O O
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FETCH

The FETCH phase obtains the instruction from memory and
loads it into the instruction register

This phase is common to every instruction type

Complete description

a Step 1: Load the MAR with the contents of the PC, and
simultaneously increment the PC

o Step 2: Interrogate memory. This results the instruction to be
placed in the MDR

o Step 3: Load the IR with the contents of the MDR

47



FETCH in LC-3

Step 1: Load

MAR and

increment PC

Step 2: Access

memory

Step 3: Load IR

with the content
of MDR

PROCESSOR BUS GatePC e
y
LD.PC PC
A (+ *D 3 REG
DR7L>
2./ PCMU \ FILE
T 1 5 | [-o-REG—=
a SR2 SR1
/116 3 3
SR2 -4 OuUT OuT <+<-SR
/16 /16
CLK —# >
y

STATE

4

¥

IR LD.IR |MACHINE[™ Aie

e : \
R—> FINITE FREMLX

Y

¥

2 \s V a
d * ACUK \ ALU

A

UNIT

CONTROL UNIT PROCESSING

GateALU o

GateMDR
16 116 6
MEM.EN, R.W
LD.MDR MDR Y MAR LD.MAR
16 KBDR
MEMORY INPUT

Figure 4.3

The LC-3 as an example of the von Neumann model

l

OUTPUT
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DECODE
The DECODE phase identifies the instruction

Recall the decoder (Lecture 6, Slides 26-27)

o A 4-to-16 decoder identifies which of the 16 opcodes is going
to be processed

The input is the four bits IR[15:12]

The remaining 12 bits identify what else is needed to
process the instruction

49



DECODE 1n LLC-3

PROCESSOR BUS

DECODE
identifies the
instruction to be
processed

LD.REG—
SR2

3 REG
DR—“>1  FILE

SR1

SH2734> OuUT OuT <7348R1

/16

7

MEMORY

Figure 4.3

=

% Jr
FINITE SRZMUX;
STATE 7
MACHINE[™ 20 !
>
f 2 B A
/16 7
. ALUK ALU
>
— Als
CONTROL UNIT PROCESSING
UNIT
GateALU .

INPUT

The LC-3 as an example of the von Neumann model|

OUTPUT
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EVALUATE ADDRESS

= The EVALUATE ADDRESS phase computes the address of
the memory location that is needed to process the
Instruction

= This phase is necessary in LDR

o It computes the address of the data word that is to be read
from memory

o By adding an offset to the content of a register

= But not necessary in ADD
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EVALUATE ADDRESS in LLC-3

LDR calculates
the address by

adding a
register and an
immediate

Figure 4.3

PROCESSOR BUS

3
DR74>

REG
FILE

MEMORY

=

LD.REG —>
ADD 3, | SR2 f SR1 3
SR2—4> ouT \ OUT SR1
"
g 6
CLK —# >
15/ . .
7 Y
R —*1 FINITE ;SRZMUX;
STATE
IR LD.IR  [MACHINE[™ e v
>
2 B V A
/16 7
* ALUK \ ALU
>
— Als
CONTROL UNIT PROCESSING
UNIT
GateALU .

INPUT

The LC-3 as an example of the von Neumann model

OUTPUT
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FETCH OPERANDS

The FETCH OPERANDS phase obtains the source operands
needed to process the instruction

In LDR

o Step 1: Load MAR with the address calculated in EVALUATE
ADDRESS

o Step 2: Read memory, placing source operand in MDR

In ADD
o Obtain the source operands from the register file

o In most current microprocessors, this phase can be done at
the same time the instruction is being decoded
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FETCH OPERANDS in LL.C-3

LDR loads MAR
(step 1), and
places the
results in MDR
(step 2)

GateMDR
16

PROCESSOR BUS

3
DR74>

REG
FILE

LD.MDR

Figure 4.3

LD.REG —
s |SR2  SR1 3
SR2 -4 OUT OuT <<~ SR1
16 Ais
>
FINITE MUX;
STATE
IR LD.IR |MACHINE[™ &
7 > ! !
|, 2 A
/16 7
* ALUK ALU
>
— As
CONTROL UNIT PROCESSING
GateALU vf

MEM.EN, R.W

MEMORY

LD.MAR

INPUT

The LC-3 as an example of the von Neumann model|

OUTPUT




EXECUTE

= The EXECUTE phase executes the instruction

a In ADD, it performs addition in the ALU
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EXECUTE in LLC-3

ADD adds SR1
and SR2

Figure 4

PROCESSOR BUS

3 REG
DR—“>1  FILE

LD.REG —

7

MEMORY

GateAI&?

of|sR2Y SR1 |\ ,
SR2 ouT A out SR1
]
46 /16
CLK —# >
19 .
o . /
R—> FINITE SRZMUX;
STATE
IR LD.IR |MACHINE[™ Je
A > A /
2 B M a
e 7 ALY
C ALUK
>
= 1
CONTROL UNIT PROCESSING
UNIT

INPUT

3 The LC-3 as an example of the von Neumann model|

OUTPUT
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STORE RESULT

= The STORE RESULT phase writes to the designated
destination

= Once STORE RESULT is completed, a new instruction cycle
starts (with the FETCH phase)
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STORE RESULT in 1.C-3

PROCESSOR BUS

GatePC

LDR loads MDR

iInto DR

¥

LD.REG —>
SR2

e

SR1| 4

3
SR2 -4 OuUT OuT l<—<-SR

15 /16
CLK —# >
15/ . .
7 . y
R—>| FINITE \SREMUX;
STATE

IR LD.IR |MACHINE[™ /’46 v
y >

2 €a V' a

/16 7
* ALUK \ ALY
o>
T Als
CONTROL UNIT PROCESSING
UNIT
GateALU v?
GateMDR
16 16 16
MEM.EN, R.W
LD.MDR MDR 6 MAR LD.MAR
+
MEMORY INPUT

Figure 4.3  The LC-3 as an example of the von Neumann model

OUTPUT
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The Instruction Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O o o O O
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Changing the Sequence ot Execution

A computer program executes in sequence (i.e., in program
order)

o First instruction, second instruction, third instruction and so on

Unless we change the sequence of execution

Control instructions allow a program to execute out of
sequence

a They can change the PC by loading it during the EXECUTE
phase

o That wipes out the incremented PC (loaded during the FETCH
phase)
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Jump 1in L.C-3

= Unconditional branch or jump

s LC-3 JMP R2

1100 000 | BaseR

000000

4 bits 3 bits

o BaseR = Base register

o PC < R2 (Register identified by BaseR)

o Variations

= RET: special case of JMP where BaseR = R7

= JSR, JSRR: jump to subroutine

This is register

addressing mode
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Jump 1n MIPS

= Unconditional branch or jump

= MIPS |3 target

2 target J—Type

6 bits 26 bits

o 2 = opcode
o target = target address

o PC & PCT[31:28] | sign-extend(target) * 4 j uses pseudo-
direct addressing
mode

o Variations
= jal: jump and link (function calls)

o _ jr uses register
= jrijumpregister | 4r $s0 addressing mode

T This is the incremented PC



L.C-3 Data Path

PC

Multiplexer\

LD.IR

GateMDR

PROCESSOR BUS

y
3 REG
DR—74>
2€/ pcMUX \ ) AL
N LD.REG—>
s |SR2  SR1| 4
SR2—4> QUT OUT [<7~SR1

CLK —# >
19 .
e : y
R—> FINITE SRZMUX;
STATE
IR DR DAcHINE[™ Lo
2 B A
/16 7
. ALUK ALU
>
= Als
CONTROL UNIT PROCESSING
UNIT
GateALU vf
GateMDR A) A\
76 16 16
MEM.EN, R.W
LD.MDR —> MDR I MAR @
]
-
MEMORY INPUT

Figure 4.3

The LC-3 as an example of the von Neumann model|

OUTPUT

GatePC

LD.MAR
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Control of the Instruction Cycle

FETCH {MDR <— M[MAR]

State 1
MAR <— PC
PC <-PC + 1
v State 2
y State 3
IR <— MDR

State 4

DECODE {

[opcode]

—

]

MP
LDR J

/

First state after
DECODE for
ADD instruction

LDR instruction

First state after
DECODE for
JMP instruction

First state after
DECODE for

Last state
to carry out
ADD instruction

R
1[

LDR instruction

Last state

to carry out PC <— Register

| S N 4

[ State 63

To state 1

Figure 4.4

To state 1 To state 1

An abbreviated state diagram of the LC-3

State 1

o The FSM asserts GatePC and
LD.MAR

o It selects input (+1) in PCMUX and

asserts LD.PC

State 2

o MDR is loaded with the instruction

State 3

o The FSM asserts GateMDR and
LD.IR

State 4

o The FSM goes to next state
depending on opcode

State 63
o JMP loads register into PC

Full state diagram in Patt&Pattel,

Appendix C
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The Instruction Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O o o O O

65



L.C-3 and MIPS

Instruction Set Architectures




The Instruction Set Architecture

= The ISA is the interface between what the software commands
and what the hardware carries out

= The ISA specifies
o The memory organization

Address space (LC-3: 216, MIPS: 232)
Addressability (LC-3: 16 bits, MIPS: 32 bits)
Word- or Byte-addressable

o The register set

RO to R7 in LC-3
32 registers in MIPS

o The instruction set

Opcodes
Data types
Addressing modes

Problem

Algorithm

Program

ISA
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The Instruction Set

= It defines opcodes, data types, and addressing modes
= ADD and LDR have been our first examples

ADD
OP DR SR1 SR2
1 0 1 0| 00 2
Register mode
LDR
OP DR BaseR offset6
6 3 0 4

Base+offset mode
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Opcodes

Large or small sets of opcodes could be defined
o E.g, HP Precision Architecture: an instruction for A*B+C
o E.g, x86: multimedia extensions

o E.g, VAX: opcode to save all information of one program prior
to switching to another program

Tradeoffs are involved
o Hardware complexity vs. software complexity

In LC-3 and in MIPS there are three types of opcodes
o Operate

o Data movement

a Control
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Opcodes in 1.C-3

1514 1312 11109 8 7 6 5 4 3 2 1 0
T

T T T T T T
DR SR1 0| 00 SR2
1 1 1 1 1 1 1
T T T T T T T T
DR SR1 1 imm5
1 1 1 1 1 1 1 1
T T T T T T T
DR SR1 0| 00 SR2
1 1 1 1 1 1 1
T T T T T T T T
DR SR1 1 imm5
1 1 1 1 1 1 1 1
T T T T T T T T
njiz|p PCoffset9
1 1 1 1 1 1 1 1
T T T T T T T T T
000 BaseR 000000
1 1 1 1 1 1 1 1 1
T T T T T T T T T T
1 PCoffset11
1 1 1 1 1 1 1 1 1 1
T T T T T T T T
0| 00 BaseR 000000
1 1 1 1 1 1 1 1
T T T T T T T T T T
DR PCoffset9
1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T
DR 1 PCoffset9
1 1 1 1 1 1 1 1 1 1
T T T T T T T T T
DR BaseR offseté
1 1 1 1 1 1 1 1 1
T T T T T T T T T T
DR PCoffset9
1 1 1 1 1 1 1 1 1 1
T T T T T T T T T
DR SR 111111
1 1 1 1 1 1 1 1 1
T T T T T T T T T
000 111 000000
1 1 1 1 1 1 1 1 1
T T T T T T T T T T T
000000000000
1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T
SR PCoffset9
1 1 1 1 1 1 1 1 1 1
T T T T T T T T T
SR PCoffset9
1 1 1 1 1 1 1 1 1 1
T T T T T T T T
SR BaseR offset6
1 1 1 1 1 1 1 1 1
T T T T T T T T T T
0000 trapvect8
1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T
1 1 1 1 1 1 1 1 1 1 1

Figure 5.3  Formats of the entire LC-3 instruction set. NOTE: T indicates instructions
that modify condition codes



Opcodes 1in L.LC-3b

| | | | | I I | I I I
ADD' 0001 DR SR1 |A| op.spec
1 1 1 1 1 1 1 1 | 1 1
+ 1 I I 1 1 1 I I I I 1
AND 0101 DR SR1 |A| opspec
1 I I 1 I I I I I I 1

BR 0000 nlz|p PColfsel9
| | | | | | | | | 1 |
I | I I I

000000

LDB" 0010 DR | BaseR boffseté
. —r — — ——
LDW 0110 DR BaseR offseté
. —————————
LEA 1110 DR PCoffset9
1 1 1 1 1 L 1 1 1 1 1 1 1
1 | T 1 1 1 1 | 1 1 T 1 1 1
RTI 1000 000000000000
1 | 1 1 1 1 1 | 1 1 1 1 1 1
+ I I | 1 1 I I I 1 |
SHF 1101 DR SR |A|D| amount
1 1 1 1 1 1 1 1 1 1 1 1
STB 0011 SR BaseR boffseté
1 1 | | | 1 1 | | L1 1
I | | | | I | I | I | |
STW 0111 SR BaseR offseté
| | | | | | | | | | 1 1

T T T

trapvect8

I
not used 1010

not used 1011




Funct in MIPS R-Type Instructions (I)

Opcode is 0
in MIPS R-
Type
instructions.
Funct defines
the operation

Table B.2 R-type instructions, sorted by funct field

Description Operation
000000 (0) s11 rd, rt, shamt shift left logical [rd]=[rt] << shamt
000010 (2) srl rd, rt, shamt  shift right logical [rd]=[rt] >> shamt
000011 (3) sra rd, rt, shamt shift right arithmetic [rd]=0[rt]>>> shamt
000100 (4) s1lv rd, rt, rs shift left logical variable [rd]l=[rt] << [rslys.o
000110 (6) srlvrd, rt, rs shift right logical variable [rdl=1[rt]>> [rsls.o
000111 (7) srav rd, rt, rs shift right arithmetic variable [rd]l=10[rt] >>> [rsls.o
001000 (8) jrrs jump register PC=1[rs]
001001 (9) jalrrs jump and link register $ra=PC+4, PC=L[rs]
001100 (12) syscall system call systemcall exception
001101 (13) break break break exception
010000 (16) mfhi rd move from hi [rdl="[hi]
010001 (17) mthi rs move to hi [hil=T[rs]
010010 (18) mflo rd move from lo [rdl1=1T[10]
010011 (19) mtlo rs move to lo [Tol=1I[rs]
011000 (24) mult rs, rt multiply {Chil, [Tol} =[rs]x[rt]

011001 (25)

multurs, rt

multiply unsigned

{Chil, [Tol} =[rs]x[rt]

011010 (26)

divrs, rt

divide

[Tol=1T[rs]/[rt],
[hil=T[rs]%l[rt]

011011 (27)

divu rs, rt

divide unsigned

[Tol=1[rs]/[rt],
[hil=[rsl%lrt]

(continued)

Harris and Harris, Appendix B: MIPS Instructions
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Funct in MIPS R-Type Instructions (1I)

Table B.2 R-type instructions, sorted by funct field—Cont’d

Description Operation

100000 (32) add rd, rs, rt add [rdl=1[rs]+[rt]

100001 (33) addu rd, rs, rt add unsigned [rdl=T[rs]+I[rt]

100010 (34) sub rd, rs, rt subtract [rd]=[rs]-[rt]

100011 (35) subu rd, rs, rt subtract unsigned [rdl=1[rs]-[rt]

100100 (36) and rd, rs, rt and [rdl=1[rs]&[rt]

100101 (37) orrd, rs, rt or [rdl=1[rs] | [rt]

100110 (38) xor rd, rs, rt xor (rdl="[rs] "~ [rt]

100111 (39) nor rd, rs, rt nor [rdl=~([rs] | [rtl)

101010 (42) slt rd, rs, rt set less than [rs]1<[rt]?[rdl=1:[rd]l=0
101011 (43) slturd, rs, rt set less than unsigned [rs]1<[rtl?[rdl=1:1[rdl=0

= Find the complete list of instructions in the appendix

Harris and Harris, Appendix B: MIPS Instructions



Data Types

= An ISA supports one or several data types
= LC-3 only supports 2's complement integers

= MIPS supports
a 2's complement integers
o Unsigned integers
o Floating point

= Again, tradeoffs are involved
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Data Type Tradeofts

What is the benefit of having more or high-level data types
in the ISA?

What is the disadvantage?
Think compiler/programmer vs. microarchitect

Concept of semantic gap

o Data types coupled tightly to the semantic level, or complexity
of instructions

Example: Early RISC architectures vs. Intel 432
o Early RISC (e.g., MIPS): Only integer data type
o Intel 432: Object data type, capability based machine
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Addressing Modes

An addressing mode is a mechanism for specifying where
an operand is located

There five addressing modes in LC-3
o Immediate or literal (constant)
The operand is in some bits of the instruction
o Register
The operand is in one of RO to R7 registers
o Three of them are memory addressing modes
PC-relative
Indirect
Base+offset

In addition, MIPS has pseudo-direct addressing (for j and
jal), but does not have indirect addressing
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Operate Instructions
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Operate Instructions

In LC-3, there are three operate instructions

o NOT is a unary operation (one source operand)
It executes bitwise NOT

o ADD and AND are binary operations (two source operands)

ADD is 2's complement addition
AND is bitwise SR1 & SR2

In MIPS, there are many more

o Most of R-type instructions (they are binary operations)
E.g., add, and, nor, xor...

o I-type versions of the R-type operate instructions
o F-type operations, i.e., floating-point operations
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NOT in LC-3

= NOT assembly and machine code

LC-3 assembly

NOT R3, R5

Field Values
OP DR SR
9 3 ) 111111
Machine Code
OP DR SR
1001 011 001 111111
% 2 1 9 &8 6 5 5

There is no NOT in MIPS. How is it implemented?

Register file

RO

R1

R2

A

0101000011110000

1010111100001111

DR

SR
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Operate Instructions

= We are already familiar with LC-3’s ADD and AND with
register mode (R-type in MIPS)

= Now let us see the versions with one literal (i.e., immediate)
operand

= Subtraction is another necessary operation
o How is it implemented in LC-3 and MIPS?
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We did not cover the following slides in lecture.
These are for your preparation for the next lecture




Operate Instr. with one Literal in 1.C-3
ADD and AND

OP DR SR1 |1 immS
4 bits 3 bits 3 bits 5 bits

o OP = operation

E.g., ADD = 0001 (same OP as the register-mode ADD)
0 DR <« SR1 + sign-extend(immb5)

E.g., AND = 0101 (same OP as the register-mode AND)
o DR ¢ SR1 AND sign-extend(immb5)

o SR1 = source register
o DR = destination register

o immb5 = Literal or immediate (sign-extend to 16 bits)
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ADD with one Literal in LLC-3

ADD assembly and machine code

LC-3 assembly

ADD R1, R4, #-2
Field Values
OP DR SR imm5
1 1 4 1 -2
Machine Code
OP DR SR imm>5
0001 001 100 |1 171110
15 12 1 9 8 6 5 4 0

Register file

RO
R1

Instruction register Re
ADD R1 R4

-2 R3

0001

001

100

1{11110 R4

i Sign- e
[5eXT] otend P©

16 R7

.

1111111111111110
I

A,
0000000000000100

0000000000000110

'

Bit[5]

m
FSM

T o/

16

5 A
ADD ALU
Fro

DR

SR




Instructions with one Literal in MIPS

I-type
o 2 register operands and immediate
Some operate and data movement instructions

opcode rs rt imm
6 bits 5 bits 5 bits 16 bits

o opcode = operation
0 S = source register

a rt=
destination register in some instructions (e.g., addi, 1w)
source register in others (e.qg., sw)

o imm = Literal or immediate



Add with one Literal in MIPS

Add immediate

MIPS assembly

addi S$s0, S$sl, 5
Field Values
op rs rt imm
0 17 16 5

Machine Code

op

s

rt

t — rs + sign-extend(imm)

imm

001000

10001

10010

0000 0000 0000 0101

0x22300005
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Subtract in L.C-3

= MIPS assembly

High-level code

MIPS assembly

a=>b+ c - d;

= LC-3 assembly

High-level code

sub $s3,

add S$t0, $s0, Ssl
St0, S$s2

LC-3 assembly

a=Db+c - d;

= Tradeoff in LC-3
a More instructions
o But, simpler control logic

ADD R2, RO,
NOT R4, R3
ADD R5, R4,
ADD R6, R2,

R1
2’s
complement
#1 ] of R4

R5




Subtract Immediate

= MIPS assembly

High-level code MIPS assemg

a=>b - 3; subi S$sl,

Is subi necessary in MIPS?

MIPS assembly

addi $sl1l, S$s0, -3

= LC-3
High-level code LC-3 assembly

a=b - 3; ADD R1, RO, #-3




Data Movement Instructions

and Addressing Modes
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Data Movement Instructions

In LC-3 there are seven data movement instructions
a LD, LDR, LDI, LEA, ST, STR, STI

Format of load and store instructions
o Opcode (bits [15:12])

DR or SR (bits [11:9])

Address generation bits (bits [8:0])

Four ways to interpret bits, called addressing modes
= PC-Relative Mode

= Indirect Mode

s Base+offset Mode

= Immediate Mode

(]

U

L

In MIPS there are only Base+offset and immediate modes
for load and store instructions
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PC-Relative Addressing Mode

= LD (Load) and ST (Store)

15 14 13 12 11 10 9

8 7 6 5 4 3 2 1 0

OP DR/SR

PCoffset9

4 bits 3 bits

o OP = opcode
= E.g., LD =0010
= E.g.,, ST =0011

o DR = destination register in LD
o SR = source register in ST

9 bits

a LD: DR ¢« Memory[PC' + sign-extend(PCoffset9)]

a ST: Memory[PC' + sign-extend(PCoffset9)] < SR

T This is the incremented PC
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LD in LLC-3

= LD assembly and machine code

: - Register file
Instruction register
LC-3 assembly > r o
IR {0010[010| 110101111 R
LD R2, Ox1AF D Rz xIAF R2 | 0000000000000101 |DR
Incremented PC 'R[gfol Re
. pC [0100 0000 0001 1001]  [SEXT]ZON R4
Field Values MR
OP DR PCoffset9 1111111110101111 Ej
16
2 2 OX1AF e | .
\ aop / loaded
. 1. Address 1 1° 16 ©
Machine Code calculation | @
OP DR PCoffset9 MAR MEMORY MDR
0010|010 110101111
@2. Memory
15 12 11 9 8 0 read
: Limitation: The PC-relative addressing mode
The memory address is only +256 to -255 cannot address far away from the
locations away of the LD or ST instruction instruction
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Indirect Addressing Mode

= LDI (Load Indirect) and STI (Store Indirect)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

o OP = opcode
=« E.g., LDI = 1010
= E.g.,, STI = 1011

o DR = destination register in LDI
o SR = source register in STI

a LDI: DR < Memory[Memory[PCT + sign-extend(PCoffset9)]]

a STI: Memory[Memory[PCT + sign-extend(PCoffset9)]] < SR

T This is the incremented PC



I.LDI in 1.C-3

= LDI assembly and machine code

i - Register file
LC-3 assemb|y I&structlon regls(;cer i
IR[1010| 011| 111001100 R
LDI R3, O0xI1CC LDI R3 x1CC R
Incremented PC IR[g:0] R3 [1111111111111111|DR
Sign- R4
. PC[0100 1010 0001 1100| [[SEXTJqyten
Field Values I EZ
OP DR PCoffset9 xFFCC R7
16
A 3 0x1CC - 5 o
16 ®
1. Address 16
Machine Code caleulation | D
[ MAR ] MEMORY [ MDR ]
OP DR PCoffset9
3. LoadeCc:|3> o
dd X
1010{011| 111001100 addrese® 2@
to MAR 2. Memory 4. Memory
15 12 11 9 8 0 read read

[ Now the address of the operand can be anywhere in the memory ]
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Base+Offset Addressing Mode

= LDR (Load Register) and STR (Store Register)

15 14 13 12 11 10 9

8 7 6

5 4 3 2 1 0

OP DR/SR

BaseR

offsetb

4 bits 3 bits

o OP = opcode
« E.g., LDR = 0110
= E.g., STR = 0111

3 bits

o DR = destination register in LDR

o SR = source register in STR

6 bits

o LDR: DR < Memory[BaseR + sign-extend(offset6)]

o STR: Memory[BaseR + sign-extend(offset6)] < SR

94



LLDR 1n LLC-3

LDR assembly and machine code

Instruction register Register filg
LC-3 assembly 15 0 RO
IR {0110 J001010| 011101 R1| 0000111100001111 | DR
LDR R1, R2, 0x1D DR Rl Rz xiD R2 | 0010001101000101 | BaseR
IR[5:0] R3
- IEE‘E Sign- R4
Field Values | oen A
R6
OP DR BaseR offset6 x001D a7
6 1 2 0x1D L L on
\ ADD / loaded
®
. 1. Add 16 16
MaCh|ne COde calcularcieosﬁ @
OP DR BaseR offset6 [ mAR ] MEMORY MDR
0110, 001010011101 -
. Memory
15 12 11 9 8 6 5 0 read

The address of the operand can also be anywhere in the memory
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Base+Oftfset Addressing Mode 1n MIPS

= In MIPS, Iw and sw use base+offset mode (or base

addressing mode)

High-level code

MIPS assembly

A[2] = a; SW $s3, 8($s0)
Memory[$s0 + 8] <« $s3
Field Values
op rs rt imm
43 16 19 8

= imm is the 16-bit offset, which is sign-extended to 32 bits

96



An Example Program in MIPS and 1.C-3

High-level code MIPS registers  LC-3 registers
a = A[0]; A = Ss0 A = RO

C = a + b - 5; b = $s2 b = R2
B[0] = c; B = S$sl B = Rl
MIPS assembly LC-3 assembly

lw  $t0, 0($s0) LDR R5, RO, #0

add S$tl1l, $t0, Ss2 ADD R6, R5, R2

addi $t2, S$tl, -5 ADD R7, R6, #-5

SW St2, 0(S$sl) STR R7, R1, #0



Immediate Addressing Mode

= LEA (Load Effective Address)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR PCoffset9
4 bits 3 bits 9 bits

o OP = 1110

o DR = destination register

a LEA: DR <« PCT + sign-extend(PCoffset9)

What is the difference from PC-Relative addressing mode?

s
(

Answer: Instructions with PC-Relative mode access memory,
but LEA does not

v
N

T This is the incremented PC
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LEA in LC-3

LEA assembly and machine code

LC-3 assembly

LEA R5, #-3
Field Values

OP DR PCoffset9

E 5 Ox1FD
Machine Code

OP DR PCoffset9
17110 101 111111101
15 12 11 9 8 0

Instruction register

IR

15 0

1110101} 111111101

LEA R5 x1FD

Incremented PC

PC

A
0100 0000 0001 1001 | [SEXT]

1111111

16

Register file
RO
R1
R2
IR[g:o] R3
Sign- R4
extend s 5 160000000010110
16 iy
111111101

A
ADD /

16

DR
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Immediate Addressing Mode 1n MIPS

= In MIPS, lui (load upper immediate) loads a 16-bit
Immediate into the upper half of a register and sets the
lower half to 0

= Itis used to assign 32-bit constants to a register

High-level code MIPS assembly
a = 0x6d5edf3c;

lui S$s0, 0x6db5e
ori $s0, 0x4f3c
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Addressing Example in 1.C-3
What is the final value of R3?

Address 15 14 13

x30F6
x30F7
x30F8
x30F9
x30FA
x30FB
x30FC

12 11 10 9 8 76 543210
I 1.1 0(0 O 1|11 11T1TT1T1O0]I1
O 0 0 170 1T O0/[OO0OT1|1{0O1T 110
O 0 1 170 1T oOoj111111TO0T171
O 1 0 1(]0 1T O0/{0OT10{1{00O0O0®O
o 0 0 10 1 0j010{1{00T1O01
o 1 1 1{0 1T 0j00O0O1|0OO01T1T1O
1 01 00 1 11111 1TO0T1T11

R1<- PC-3

R2<- R1+14
M[x30F4]<- R2
R2<- 0

R2<- R2+5
M[R1+14]<- R2
R3<- M[M[x30F4 ]]
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Addressing Example in L.C-3
= What is the final value of R3?

Address 15 14 13 12 11 10

9 8
x30F6 [z} 0 1E R1 = PC-3 = 0x30F7 — 3 = 0x30F4
x30F7 [0, 0 01C 14 R2=R1+ 14 = 0x30F4 + 14 = 0x3102
x30F8 [0 0 03125 M[PC - 5] = M[0x030F4] = 0x3102
x30F9 0 00
x30FA 0 0(0 R2=R2+5=5
x30FB 0 00 1 + 14] = M[OX30F4" ¥ 14]=M[0x3102] = 5
0 1L

x30FC R3 = M[M[PC - 9]] = M[M[0x30FD — 9]] =

M[M[0x30F4]] = M[0x3102] = 5

= The final value of R3 is 5
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Control Flow Instructions
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Control Flow Instructions

= Allow a program to execute out of sequence

= Conditional branches and jumps

o Conditional branches are used to make decisions
= E.g., if-else statement

o In LC-3, three condition codes are used

o Jumps are used to implement
= Loops
= Function calls

o JMP in LC-3 and j in MIPS
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Condition Codes in 1.C-3

Each time one GPR (R0O-R7) is written, three single-bit registers
are updated

Each of these condition codes are either set (set to 1) or cleared
(set to 0)

o If the written value is negative
N is set, Z and P are cleared

o If the written value is zero
Z is set, N and P are cleared

o If the written value is positive
P is set, N and P are cleared

SPARC and x86 are examples of ISAs that use condition codes
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Conditional Branches in 1.C-3

= BRz

BRz PCoffset9

0000 |njz|p PCoffset9
4 bits 9 bits

a N,z p=which N, Z, and/or P is tested
o PCoffset9 = immediate or constant value

a if ((n AND N) OR (p AND P) OR (z AND 2))
s then PC <& PCT + sign-extend(PCoffset9)

o Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp

tThis is the incremented PC 106



Conditional Branches in 1.C-3

= BRz

Yes!

Program 164 0001 0000 0001
Counter |
BRz O0x0D9 PC | 0100 0000 0010 1000
Instruction
register BR N z P PCoffset9
IR [0000|0[1|0|011011001
9
Condition o .
registers
N Z p 0000000011011001
0 1 0 \
4 . ~\ \/ A\
BIRRIEIF D = 2 = |9 = 12 Hj Hj \ a0/
. (i.e., BRnzp) ) -
( N
. PCMUX
And whatifn=z=p =0?
\ y
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Conditional Branches in MIPS

= Branch if equal

a

beqg $s0, S$sl, offset

4 rs rt offset
6 bits 5bits 5 bits 16 bits
4 = opcode

rs, rt = source registers
offset = immediate or constant value

if rs == rt
= then PC ¢« PC' + sign-extend(offset) * 4

Variations: beq, bne, blez, bgtz

T This is the incremented PC
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Branch If Equal in MIPS and L.C-3

MIPS assembly LC-3 assembly
beg $s0, $sl, offset

Subtract
(RO - R1)

= This is an example of tradeoff in the instruction set
o The same functionality requires more instructions in LC-3

o But, the control logic requires more complexity in MIPS
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Lecture Summary

The von Neumann model
o LC-3: An example of von Neumann machine

Instruction Set Architectures: LC-3 and MIPS
o Operate instructions

o Data movement instructions

o Control instructions

Instruction formats

Addressing modes
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