
Design of Digital Circuits (252-0028-00L), Spring 2018

Optional HW 3: Basic Microarchitectural Design
SOLUTIONS

Instructor: Prof. Onur Mutlu
TAs: Juan Gomez Luna, Hasan Hassan, Arash Tavakkol, Minesh Patel, Jeremie Kim, Giray Yaglikci

Assigned: Thursday, Apr 25, 2018

1 Big versus Little Endian Addressing

Consider the 32-bit hexadecimal number 0xcafe2b3a.

1. What is the binary representation of this number in little endian format? Please clearly mark the bytes
and number them from low (0) to high (3).

3a 2b fe ca
0 1 2 3

2. What is the binary representation of this number in big endian format? Please clearly mark the bytes
and number them from low (0) to high (3).

ca fe 2b 3a
0 1 2 3

1/29

2 The MIPS ISA

2.1 Warmup: Computing a Fibonacci Number

The Fibonacci number Fn is recursively defined as

F (n) = F (n− 1) + F (n− 2),

where F (1) = 1 and F (2) = 1. So, F (3) = F (2) + F (1) = 1 + 1 = 2, and so on. Write the MIPS assembly
for the fib(n) function, which computes the Fibonacci number F (n):

int fib(int n)

{

int a = 0;

int b = 1;

int c = a + b;

while (n > 1) {

c = a + b;

a = b;

b = c;

n--;

}

return c;

}

Remember to follow MIPS calling convention and its register usage (just for your reference, you may not
need to use all of these registers):

• The argument n is passed in register $4.

• The result (i.e., c) should be returned in $2.

• $8 to $15 are caller-saved temporary registers.

• $16 to $23 are callee-saved temporary registers.

• $29 is the stack pointer register.

• $31 stores the return address.

Note: A summary of the MIPS ISA is provided at the end of this handout.

2/29

NOTE: More than one correct solution exists, this is just one potential solution.

fib:

addi $sp, $sp, -16 // allocate stack space

sw $16, 0($sp) // save r16

add $16, $4, $0 // r16 for arg n

sw $17, 4($sp) // save r17

add $17, $0, $0 // r17 for a, init to 0

sw $18, 8($sp) // save r18

addi $18, $0, 1 // r18 for b, init to 1

sw $31, 12($sp) // save return address

add $2, $17, $18 // c = a + b

branch:

slti $3, $16, 2 // use r3 as temp

bne $3, $0, done

add $2, $17, $18 // c = a + b

add $17, $18, $0 // a = b

add $18, $2, $0 // b = c

addi $16, $16, -1 // n = n - 1

j branch

done:

lw $31, 12($sp) // restore r31

lw $18, 8($sp) // restore r18

lw $17, 4($sp) // restore r17

lw $16, 0($sp) // restore r16

addi $sp, $sp, 16 // restore stack pointer

jr $31 // return to caller

2.2 MIPS Assembly for REP MOVSB

MIPS is a simple ISA. Complex ISAs—such as Intel’s x86—often use one instruction to perform the function
of many instructions in a simple ISA. Here you will implement the MIPS equivalent for a single Intel x86
instruction, REP MOVSB, which is specified as follows.

The REP MOVSB instruction uses three fixed x86 registers: ECX (count), ESI (source), and EDI
(destination). The “repeat” (REP) prefix on the instruction indicates that it will repeat ECX times. Each
iteration, it moves one byte from memory at address ESI to memory at address EDI, and then increments
both pointers by one. Thus, the instruction copies ECX bytes from address ESI to address EDI.

(a) Write the corresponding assembly code in MIPS ISA that accomplishes the same function as this in-
struction. You can use any general purpose register. Indicate which MIPS registers you have chosen to
correspond to the x86 registers used by REP MOVSB. Try to minimize code size as much as possible.

3/29

Assume: $1 = ECX, $2 = ESI, $3 = EDI

beq $1, $0, AfterLoop // If counter is zero, skip

CopyLoop:

lb $4, 0($2) // Load 1 byte

sb $4, 0($3) // Store 1 byte

addiu $2, $2, 1 // Increase source pointer by 1 byte

addiu $3, $3, 1 // Increase destination pointer by 1 byte

addiu $1, $1, -1 // Decrement counter

bne $1, $0, CopyLoop // If not zero, repeat

AfterLoop:

Following instructions

(b) What is the size of the MIPS assembly code you wrote in (a), in bytes? How does it compare to REP
MOVSB in x86 (note: REP MOVSB occupies 2 bytes)?

The size of the MIPS assembly code is 4 bytes × 7 = 28 bytes, as compared to 2 bytes for x86 REP
MOVSB.

(c) Assume the contents of the x86 register file are as follows before the execution of the REP MOVSB:

EAX: 0xccccaaaa

EBP: 0x00002222

ECX: 0xFEE1DEAD

EDX: 0xfeed4444

ESI: 0xdecaffff

EDI: 0xdeaddeed

EBP: 0xe0000000

ESP: 0xe0000000

Now, consider the MIPS assembly code you wrote in (a). How many total instructions will be executed
by your code to accomplish the same fuction as the single REP MOVSB in x86 accomplishes for the
given register state?

The count (value in ECX) is 0xfee1dead = 4276215469. Therefore, loop body is executed (4276215469 *
6) = 25657292814 times. Total instructions executed = 25657292814 + 1 (beq instruction outside of the
loop) = 25657292815.

(d) Assume the contents of the x86 register file are as follows before the execution of the REP MOVSB:

EAX: 0xccccaaaa

EBP: 0x00002222

ECX: 0x00000000

EDX: 0xfeed4444

ESI: 0xdecaffff

EDI: 0xdeaddeed

EBP: 0xe0000000

ESP: 0xe0000000

4/29

Now, answer the same question in (c) for the above register values.

The count (value in ECX) is 0x00000000 = 0. Therefore, loop body is executed 0 times. Total instructions
executed = 1 (beq instruction outside of the loop).

5/29

3 Data Flow Programs

Draw the data flow graph for the fib(n) function from Question 2.1. You may use the following data flow
nodes in your graph:

• + (addition)

• > (left operand is greater than right operand)

• Copy (copy the value on the input to both outputs)

• BR (branch, with the semantics discussed in class, label the True and False outputs)

You can use constant inputs (e.g., 1) that feed into the nodes. Clearly label all the nodes, program
inputs, and program outputs. Try to the use fewest number of data flow nodes possible.

6/29

4 Microarchitecture vs. ISA

a) Briefly explain the difference between the microarchitecture level and the ISA level in the transformation
hierarchy. What information does the compiler need to know about the microarchitecture of the machine
in order to compile a given program correctly?

The ISA level is the interface a machine exposes to the software. The microarchitecture is the actual
underlying implementation of the machine. Therefore, the microarchitecture and changes to the microar-
chitecture are transparent to the compiler/programmer (except in terms of performance), while changes to
the ISA affect the compiler/programmer. The compiler does not need to know about the microarchitecture
of the machine in order to compile the program correctly

b) Classify the following attributes of a machine as either a property of its microarchitecture or ISA:

Microarchitecture? ISA? Attribute

X The machine does not have a subtract instruction
X The ALU of the machine does not have a subtract unit

X The machine does not have condition codes
X A 5-bit immediate can be specified in an ADD instruction

X It takes n cycles to execute an ADD instruction
X There are 8 general purpose registers

X A 2-to-1 mux feeds one of the inputs to ALU
X The register file has one input port and two output ports

7/29

5 Performance Metrics

• If a given program runs on a processor with a higher frequency, does it imply that the processor always
executes more instructions per second (compared to a processor with a lower frequency)? (Use less than
10 words.)

No, the lower frequency processor might have much higher IPC (instructions per cycle).
More detail: A processor with a lower frequency might be able to execute multiple instructions per cycle
while a processor with a higher frequency might only execute one instruction per cycle.

• If a processor executes more of a given program’s instructions per second, does it imply that the processor
always finishes the program faster (compared to a processor that executes fewer instructions per second)?
(Use less than 10 words.)

No, because the former processor may execute many more instructions.
More detail: The total number of instructions required to execute the full program could be different on
different processors.

8/29

6 Performance Evaluation

Your job is to evaluate the potential performance of two processors, each implementing a different ISA. The
evaluation is based on its performance on a particular benchmark. On the processor implementing ISA A,
the best compiled code for this benchmark performs at the rate of 10 IPC. That processor has a 500 MHz
clock. On the processor implementing ISA B, the best compiled code for this benchmark performs at the
rate of 2 IPC. That processor has a 600 MHz clock.

• What is the performance in Millions of Instructions per Second (MIPS) of the processor implementing
ISA A?

ISA A: 10 instructions
cycle ∗ 500, 000, 000 cycle

second = 5000 MIPS

• What is the performance in MIPS of the processor implementing ISA B?

ISA B : 2 instructions
cycle ∗ 600, 000, 000 cycle

second = 1200 MIPS

• Which is the higher performance processor: A B Don’t know
Briefly explain your answer.

Don’t know.
The best compiled code for each processor may have a different number of instructions.

9/29

7 Single-Cycle Processor Datapath

In this problem, you will modify the single-cycle datapath we built up in Lecture 11 to support the JAL

instruction. The datapath that we will start with is provided below. Your job is to implement the necessary
data and control signals to support the JAL instruction, which we define to have the following semantics:

JAL : R31← PC + 4

PC← PC31...28 || Immediate || 02

Add to the datapath on the next page the necessary data and control signals to implement the JAL instruction.
Draw and label all components and wires very clearly (give control signals meaningful names; if selecting a
subset of bits from many, specify exactly which bits are selected; and so on).

PC

Instruction
memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore)

isStore)

isLoad)

ALUSrc)
isItype)

MemtoReg)

isLoad)

RegDest)
isItype)

10/29

8 LC-3b Microprogramming

As we learned in class, the LC-3b is a microprogrammed design, which means that control signals throughout
the LC-3b datapath (Patt+Patel, Appendix C, Figure 3) determine what the processor does during any given
cycle. The control signals are stored in a memory called the control store, and they must be carefully chosen
to correctly implement the LC-3b state machine (Patt+Patel, Appendix C, Figure 2). The contents of the
control store can be easily described using a 2D spreadsheet with rows representing different LC-3b states
and columns specifying all 35 control signal bits required for each state.

Unfortunately, a clumsy TA has accidentally erased the contents of the control store! Your task is to
recover this data manually (i.e., determine every bit in the control store) using your knowledge of the LC-3b
architecture.

Fill out the microcode in the microcode.csv file handed out with this homework. Enter a 1 or a 0 or
an X as appropriate for the microinstructions corresponding to each state. We have filled out state 18
as an example. Hint: all of the information can be inferred using the information and figures provided in
Patt+Patel Appendix C.

CMU 18-447 Introduction to Computer Architecture, Spring 2015

HW 2: ISA Tradeoffs, Microprogramming and Pipelining

Instructor: Prof. Onur Mutlu
TAs: Rachata Ausavarungnirun, Kevin Chang, Albert Cho, Jeremie Kim, Clement Loh

1 LC-3b Microcode [40 points]

In
s
t
r
u
c
t
io

n

s
t
a
t
e

IR
D

C
o
n
d

J L
D

.M
A
R

L
D

.M
D

R

L
D

.I
R

L
D

.B
E
N

L
D

.R
E
G

L
D

.C
C

L
D

.P
C

G
a
t
e
P
C

G
a
t
e
M

D
R

G
a
t
e
A
L
U

G
a
t
e
M

A
R
M

U
X

G
a
t
e
S
H
F

P
C
M

U
X

D
R
M

U
X

S
R
1
M

U
X

A
D

D
R
1
M

U
X

A
D

D
R
2
M

U
X

M
A
R
M

U
X

A
L
U
K

M
IO

.E
N

R
.W

D
A
T
A
.S

IZ
E

L
S
H
F
1

size 1 2 6 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 1 1 1 1

BR 0 0 2 10010 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X 0 X X X

ADD 1 0 0 10010 0 0 0 0 1 1 0 0 0 1 0 0 X 0 1 X X X 0 0 X X X

LDB 2 0 0 11101 1 0 0 0 0 0 0 0 0 0 1 0 X X 1 1 1 1 X 0 X X 0

STB 3 0 0 11000 1 0 0 0 0 0 0 0 0 0 1 0 X X 1 1 1 1 X 0 X X 0

JSR 4 0 3 10100 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X 0 X X X

AND 5 0 0 10010 0 0 0 0 1 1 0 0 0 1 0 0 X 0 1 X X X 1 0 X X X

LDW 6 0 0 11001 1 0 0 0 0 0 0 0 0 0 1 0 X X 1 1 1 1 X 0 X X 1

STW 7 0 0 10111 1 0 0 0 0 0 0 0 0 0 1 0 X X 1 1 1 1 X 0 X X 1

RTI 8 X

XOR 9 0 0 10010 0 0 0 0 1 1 0 0 0 1 0 0 X 0 1 X X X 2 0 X X X

RES1 10 X

RES2 11 X

JMP 12 0 0 10010 0 0 0 0 0 0 1 0 0 0 0 0 2 X 1 1 0 X X 0 X X X

JMP 12 0 0 10010 0 0 0 0 0 0 1 0 0 1 0 0 1 X 1 X X X 3 0 X X X

SHF 13 0 0 10010 0 0 0 0 1 1 0 0 0 0 0 1 X 0 1 X X X X 0 X X X

LEA 14 0 0 10010 0 0 0 0 1 0 0 0 0 0 1 0 X X X 0 2 1 X 0 X X 1

TRAP 15 0 0 11100 1 0 0 0 0 0 0 0 0 0 1 0 X X X X X 0 X 0 X X X

STW 16 0 1 10000 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X 1 1 1 X

STB 17 0 1 10001 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X 1 1 0 X

ALL 18 0 0 100001 1 0 0 0 0 0 1 1 0 0 0 0 0 X X X X X X 0 X X X

ALL 18 0 0 100001 1 0 0 0 0 0 1 0 0 0 1 0 X X X 0 0 1 X 0 X X X

ALL 19 0 0 100001 1 0 0 0 0 0 1 1 0 0 0 0 0 X X X X X X 0 X X X

ALL 19 0 0 100001 1 0 0 0 0 0 1 0 0 0 1 0 X X X 0 0 1 X 0 X X X

JSR 20 0 0 10010 0 0 0 0 1 0 1 1 0 0 0 0 2 1 1 1 0 X X 0 X X X

JSR 20 0 0 10010 0 0 0 0 1 0 1 1 0 0 0 0 2 1 1 1 1 X X 0 X X X

JSR 21 0 0 10010 0 0 0 0 1 0 1 1 0 0 0 0 2 1 X 0 3 X X 0 X X 1

BR 22 0 0 10010 0 0 0 0 0 0 1 0 0 0 0 0 2 X X 0 2 X X 0 X X 1

STW 23 0 0 10000 0 1 0 0 0 0 0 0 0 1 0 0 X X 0 X X X 3 0 X X X

STW 23 0 0 10000 0 1 0 0 0 0 0 0 0 0 1 0 X X 0 1 0 1 X 0 X X X

STB 24 0 0 10001 0 1 0 0 0 0 0 0 0 1 0 0 X X 0 X X X 3 0 X X X

STB 24 0 0 10001 0 1 0 0 0 0 0 0 0 0 1 0 X X 0 1 0 1 X 0 X X X

LDW 25 0 1 11001 0 1 0 0 0 0 0 0 0 0 0 0 X X X X X X X 1 0 X X

FREE 26 X

LDW 27 0 0 10010 0 0 0 0 1 1 0 0 1 0 0 0 X 0 X X X X X 0 X 1 X

TRAP 28 0 1 11100 0 1 0 0 1 0 0 1 0 0 0 0 X 1 X X X X X 1 0 X X

LDB 29 0 1 11101 0 1 0 0 0 0 0 0 0 0 0 0 X X X X X X X 1 0 X X

TRAP 30 0 0 10010 0 0 0 0 0 0 1 0 1 0 0 0 1 X X X X X X 0 X 1 X

LDB 31 0 0 10010 0 0 0 0 1 1 0 0 1 0 0 0 X 0 X X X X X 0 X 0 X

ALL 32 1 X X 0 0 0 1 0 0 0 0 0 0 0 0 X X X X X X X 0 X X X

ALL 33 0 1 100001 0 1 0 0 0 0 0 0 0 0 0 0 X X X X X X X 1 0 X X

FREE 34 X

ALL 35 0 0 100000 0 0 1 0 0 0 0 0 1 0 0 0 X X X X X X X 0 X 1 X

1/6

11/29

9 REP MOVSB

Let’s say you are the lead architect of the next flagship processor at Advanced Number Devices (AND). You
have decided that you want to use the LC-3b ISA for your next product, but your customers want a smaller
semantic gap and marketing is on your case about it. So, you have decided to implement your favorite x86
instruction, REP MOVSB, in LC-3b.

Specifically, you want to implement the following definition for REP MOVSB (in LC-3b parlance): REP-
MOVSB SR1, SR2, DR which is encoded in LC-3b machine code as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1010 DR SR1 0 0 0 SR2

REPMOVSB uses three registers: SR1 (count), SR2 (source), and DR (destination). It moves a byte
from memory at address SR2 to memory at address DR, and then increments both pointers by one. This is
repeated SR1 times. Thus, the instruction copies SR1 bytes from address SR2 to address DR. Assume that
the value in SR1 is greater than or equal to zero.

1. Complete the state diagram shown below, using the notation of the LC-3b state diagram. Describe
inside each bubble what happens in each state and assign each state an appropriate state number. Add
additional states not present in the original LC-3b design as you see fit.

CMU 18-447 Introduction to Computer Architecture, Spring 2013

HW 3: Microprogramming Wrap-up and Pipelining

Instructor: Prof. Onur Mutlu
TAs: Justin Meza, Yoongu Kim, Jason Lin

Assigned: Mon., 2/11, 2013
Due: Mon., 2/25, 2013 (Midnight)

Handin: /afs/ece/class/ece447/handin/hw3

1 Adding the REP MOVSB Instruction to the LC-3b [25 points]

Let’s say you’re the lead architect of the next flagship processor at Advanced Number Devices (AND). You’ve
decided that you want to use the LC-3b ISA for your next product, the Flopteron, but your customers want
a smaller semantic gap and marketing is on your case about it. So, you’ve decided to implement your favorite
x86 instruction, REP MOVSB, in LC-3b.

Specifically, you want to implement the following definition for REP MOVSB (in LC-3b parlance):

REPMOVSB SR1, SR2, DR

which is encoded in LC-3b machine code as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1010 DR SR1 0 0 0 SR2

REPMOVSB uses three registers: SR1 (count), SR2 (source) and DR (destination). It moves a byte from memory
at address SR2 to memory at address DR, and then increments both pointers by one. This is repeated SR1

times. Thus, the instruction copies SR1 bytes from address SR2 to address DR. Assume that the value in SR1

is greater than or equal to zero.

(a) Complete the state diagram shown below, using the notation of the LC-3b state diagram. Describe
inside each bubble what happens in each state and assign each state an appropriate state number. Add
additional states not present in the original LC-3b design as you see fit.

To State 18

State Number

10

32

 .

 .

A

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P[IR[15:12]]

 .

 .

REPMOVSB

1/4

12/29

CMU 18-447 Introduction to Computer Architecture, Spring 2013

HW 3 Solutions: Microprogramming Wrap-up and Pipelining

Instructor: Prof. Onur Mutlu
TAs: Justin Meza, Yoongu Kim, Jason Lin

1 Adding the REP MOVSB Instruction to the LC-3b [25 points]

State diagram

R=0

R=0

MAR <− SR2

50

To 18
10, 46

REP = 0

REP = 1

State Number

40

42

R = 1

SR2 <− SR2 + 1

MDR <− M[MAR[15:1]’0]

51

R = 1

To 46

M[MAR[15:1]’0]<−MDR

43

44

MAR <− DR

DR <− DR + 1

SR1 <− SR1 − 1
[REP]

1/8

13/29

2. Add to the LC-3b datapath any additional structures and any additional control signals needed to
implement REPMOVSB. Clearly label your additional control signals with descriptive names. Describe
what value each control signal would take to control the datapath in a particular way.

Modifications to the data path

DRMUX

IR[11:9]

IR[8:6]
IR[2:0]

111
DR IR[8:6]

SR1MUX

IR[11:9]

IR[2:0]

SR1

Bus[15]

16 16

16
Regfile Modifications

Microsequencer Modifications

DRMUX Modifications SR1MUX Modifications

REGFILE

SR2
OUT

SR2
OUT

ALU

6

6

J[5]

REP

−1+1

MUX
INC/DEC

MUX
SR2

2
INCDEC

2 2

COND[2]

......

REP

Additional control signals

• INCDEC/2: PASSSR2, +1, -1

• DRMUX/2:
IR[11:9] ;destination IR[11:9]
R7 ;destination R7
IR[8:6] ;destination IR[8:6]
IR[2:0] ;destination IR[2:0]

• SR1MUX/2:
IR[11:9] ;source IR[11:9]
IR[8:6] ;source IR[8:6]
IR[2:0] ;source IR[2:0]

• COND/3:
COND0: Unconditional
COND1: Memory Ready
COND2: Branch
COND3: Addressing Mode
COND4: Repeat

2 Pipelining [15 points]

(a) A non-pipelined machine

9 + 6 + 6 + 9 + 6 + 9 = 45 cycles

(b) A pipelined machine with scoreboarding and five adders and five multipliers without data forwarding

2/8

14/29

3. Describe any changes you need to make to the LC-3b microsequencer. Add any additional logic and
control signals you need. Clearly describe the purpose and function of each signal and the values it
would take to control the microsequencer in a particular way.

Additional control signals

• INCDEC/2: PASSSR2, +1, -1

• DRMUX/2:

– IR[11:9] ;destination IR[11:9]

– R7 ;destination R7

– IR[8:6] ;destination IR[8:6]

– IR[2:0] ;destination IR[2:0]

• SR1MUX/2:

– IR[11:9] ;source IR[11:9]

– IR[8:6] ;source IR[8:6]

– IR[2:0] ;source IR[2:0]

• COND/3:

– COND0: Unconditional

– COND1: Memory Ready

– COND2: Branch

– COND3: Addressing Mode

– COND4: Repeat

15/29

10 Mystery LC-3b Instruction (I)

A pesky engineer has implemented a mystery instruction on the LC-3b! It is your job to determine what
the instruction does. The mystery instruction is encoded as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1010 DR SR1 0 0 0 0 0 0

The modifications we make to the LC-3b datapath and the microsequencer are highlighted in the attached
figures (see the next two pages). We also provide the original LC-3b state diagram, in case you need it. (As
a reminder, the selection logic for SR2MUX is determined internally based on the instruction.)

The additional control signals are:

GateTEMP1/1: NO, YES

GateTEMP2/1: NO, YES

LD.TEMP1/1: NO, LOAD

LD.TEMP2/1: NO, LOAD

ALUK/3: OR1 (A|0x1), LSHF1 (A<<1), PASSA, PASS0 (Pass value 0), PASS16 (Pass value 16)

COND/4:
COND0000 ;Unconditional
COND0001 ;Memory Ready
COND0010 ;Branch
COND0011 ;Addressing mode
COND0100 ;Mystery 1
COND1000 ;Mystery 2

The microcode for the instruction is given in the table below.
State Cond J Asserted Signals

001010 (10) COND0000 001011 ALUK = PASS0, GateALU, LD.REG,
DRMUX = DR (IR[11:9])

001011 (11) COND0000 101000 ALUK = PASSA, GateALU, LD.TEMP1,
SR1MUX = SR1 (IR[8:6])

101000 (40) COND0000 110010 ALUK = PASS16, GateALU, LD.TEMP2
110010 (50) COND1000 101101 ALUK = LSHF1, GateALU, LD.REG,

SR1MUX = DR, DRMUX = DR (IR[11:9])
111101 (61) COND0000 101101 ALUK = OR1, GateALU, LD.REG,

SR1MUX = DR, DRMUX = DR (IR[11:9])
101101 (45) COND0000 111111 GateTEMP1, LD.TEMP1
111111 (63) COND0100 010010 GateTEMP2, LD.TEMP2

Describe what this instruction does.

16/29

Bit-reverses the value in SR1 and puts it in DR.

17/29

Code:

State 10: DR ← 0

State 11: TEMP1 ← value(SR1)

State 40: TEMP2 ← 16

State 50: DR = DR << 1

if (TEMP1[0] == 0)

goto State 45

else

goto State 61

State 61: DR = DR | 0x1

State 45: TEMP1 = TEMP1 >> 1

State 63: DEC TEMP2

if (TEMP2 == 0)

goto State 18

else

goto State 50

18/29

19/29

20/29

C.4. THE CONTROL STRUCTURE 11DRIR[11:9]111DRMUX(a) SR1SR1MUXIR[11:9]IR[8:6] (b)Logic BENPZNIR[11:9] (c)Figure C.6: Additional logic required to provide control signalsLC-3b to operate correctly with a memory that takes multiple clock cycles to read orstore a value.Suppose it takes memory five cycles to read a value. That is, once MAR containsthe address to be read and the microinstruction asserts READ, it will take five cyclesbefore the contents of the specified location in memory are available to be loaded intoMDR. (Note that the microinstruction asserts READ by means of three control signals:MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)Recall our discussion in Section C.2 of the function of state 33, which accessesan instruction from memory during the fetch phase of each instruction cycle. For theLC-3b to operate correctly, state 33 must execute five times before moving on to state35. That is, until MDR contains valid data from the memory location specified by thecontents of MAR, we want state 33 to continue to re-execute. After five clock cycles,th h l t d th “ d ” lti i lid d t i MDR th
21/29

C.2. THE STATE MACHINE 5R PC<! BaseR To 1812 To 18To 18RRTo 18To 18 To 18 MDR<! SR[7:0]MDR <! MIR <! MDRRDR<! SR1+OP2*set CCDR<! SR1&OP2*set CC [BEN]PC<! MDR 3215 0 01To 18To 18 To 18R R [IR[15:12]]2830R7<! PCMDR<! M[MAR]set CC BEN<! IR[11] & N + IR[10] & Z + IR[9] & P9DR<! SR1 XOR OP2* 4 22To 111011JSR JMP BR1010 To 10 2120 0 1LDBMAR<! B+off6set CCTo 18 MAR<! B+off6DR<! MDRset CCTo 18MDR<! M[MAR]2527 3762 STW STBLEASHFTRAPXORANDADDRTITo 8set CC set CCDR<! PC+LSHF(off9, 1)14 LDWMAR<! B+LSHF(off6,1) MAR<! B+LSHF(off6,1)PC<! PC+LSHF(off9,1)3335DR<! SHF(SR,A,D,amt4)NOTESB+off6 : Base + SEXT[offset6] RMDR<! M[MAR[15:1]’0]DR<! SEXT[BYTE.DATA]R 2931 18, 19 MDR<! SRTo 18R RM[MAR]<! MDR 1623 R R17To 19 24M[MAR]<! MDR**MAR<! LSHF(ZEXT[IR[7:0]],1)15To 18PC+off9 : PC + SEXT[offset9] MAR <! PCPC <! PC + 2*OP2 may be SR2 or SEXT[imm5]** [15:8] or [7:0] depending onMAR[0] [IR[11]]PC<! BaseRPC<! PC+LSHF(off11,1)R7<! PC R7<! PC13 Figure C.2: A state machine for the LC-3b
22/29

11 Mystery LC-3b Instruction (II)

An engineer implemented the mystery instruction described below on the LC-3b. Unfortunately, we do not
know what this engineer was thinking, and we can’t figure out what the instruction does. It is your job to
determine this. The mystery instruction is encoded as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1010 DR SR1 1 0 1 1 1 1

The instruction is only defined if the value of SR1 is not equal to zero.

The modifications we make to the LC-3b datapath and the microsequencer are highlighted in the attached
figures (see the next three pages).

We also provide the original LC-3b state diagram, in case you need it.

The additional control signals are:

GateLSHF/1: NO, YES

LD.TEMP/1: NO, LOAD

ALUK/3: AND, ADD, XOR, PASSA, PASSB, DECA (Decrement A)

COND/3:
COND0 ;Unconditional
COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing mode
COND4 ;Mystery

The microcode for the instruction is given in the table below.
State Cond J Asserted Signals

001010 (10) COND0 101000 ALUK = PASSB, GateALU, LD.REG, DRMUX = DR (IR[11:9])
101000 (40) COND4 010010 ALUK = PASSA, GateALU, LD.TEMP, SR1MUX = SR1 (IR[8:6])
110010 (50) COND0 110011 ALUK = DECA, GateALU, LD.REG, SR1MUX = DR, DRMUX

= DR (IR[11:9])
110011 (51) COND4 010010 GateLSHF, LD.TEMP

Describe what this instruction does.

The instruction finds the position of the most significant set bit in SR1 and places this in DR.

Mathematically, this can be expressed as DR = blog2SR1c.

Note: This instruction is semantically the same as FINDFIRST in the VAX ISA.

23/29

Code:

State 10: DR = 15

State 40: TEMP = SR1

if (SR1 is negative)

Go to State 18/19 (Fetch)

else

Go to State 50

State 50: DR = DR - 1

State 51: Left Shift TEMP

if (TEMP is negative)

Go to State 18/19 (Fetch)

else

Go to State 50

24/29

25/29

26/29

Initials: 15

DR

IR[11:9]

111

DRMUX

(a)

SR1

SR1MUX

IR[11:9]

IR[8:6]

(b)

Logic BEN

P
Z
N

IR[11:9]

(c)

27/29

16

R

PC<! BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<! SR[7:0]

MDR <! M

IR <! MDR

R

DR<! SR1+OP2*
set CC

DR<! SR1&OP2*
set CC

[BEN]

PC<! MDR

32

1

5

0

0

1
To 18

To 18 To 18

R R

[IR[15:12]]

28

30

R7<! PC
MDR<! M[MAR]

set CC

BEN<! IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<! SR1 XOR OP2*

4

22

To 11
1011

JSR
JMP

BR

1010

To 10

21

20
0 1

LDB

MAR<! B+off6

set CC

To 18

MAR<! B+off6

DR<! MDR
set CC

To 18

MDR<! M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<! PC+LSHF(off9, 1)

14

LDW

MAR<! B+LSHF(off6,1) MAR<! B+LSHF(off6,1)

PC<! PC+LSHF(off9,1)

33

35

DR<! SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<! M[MAR[15:1]’0]

DR<! SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<! SR

To 18

R R

M[MAR]<! MDR

16

23

R R

17

To 19

24

M[MAR]<! MDR**

MAR<! LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <! PC
PC <! PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on

MAR[0]

[IR[11]]

PC<! BaseR

PC<! PC+LSHF(off11,1)

R7<! PC

R7<! PC

13

28/29

MIPS Instruction Summary

Opcode Example Assembly Semantics

add add $1, $2, $3 $1 = $2 + $3

sub sub $1, $2, $3 $1 = $2 - $3

add immediate addi $1, $2, 100 $1 = $2 + 100

add unsigned addu $1, $2, $3 $1 = $2 + $3

subtract unsigned subu $1, $2, $3 $1 = $2 - $3

add immediate unsigned addiu $1, $2, 100 $1 = $2 + 100

multiply mult $2, $3 hi, lo = $2 * $3

multiply unsigned multu $2, $3 hi, lo = $2 * $3

divide div $2, $3 lo = $2/$3, hi = $2 mod $3

divide unsigned divu $2, $3 lo = $2/$3, hi = $2 mod $3

move from hi mfhi $1 $1 = hi

move from low mflo $1 $1 = lo

and and $1, $2, $3 $1 = $2 & $3

or or $1, $2, $3 $1 = $2 | $3

and immediate andi $1, $2, 100 $1 = $2 & 100

or immediate ori $1, $2, 100 $1 = $2 | 100

shift left logical sll $1, $2, 10 $1 = $2 << 10

shift right logical srl $1, $2, 10 $1 = $2 >> 10

load word lw $1, 100($2) $1 = memory[$2 + 100]

store word sw $1, 100($2) memory[$2 + 100] = $1

load upper immediate lui $1, 100 $1 = 100 << 16

branch on equal beq $1, $2, label if ($1 == $2) goto label

branch on not equal bne $1, $2, label if ($1 != $2) goto label

set on less than slt $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0

set on less than immediate slti $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0

set on less than unsigned sltu $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0

set on less than immediate sltui $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0

jump j label goto label

jump register jr $31 goto $31

jump and link jal label $31 = PC + 4; goto label

29/29

	Big versus Little Endian Addressing
	The MIPS ISA
	Warmup: Computing a Fibonacci Number
	MIPS Assembly for REP MOVSB

	Data Flow Programs
	Microarchitecture vs. ISA
	Performance Metrics
	Performance Evaluation
	Single-Cycle Processor Datapath
	LC-3b Microprogramming
	REP MOVSB
	Mystery LC-3b Instruction (I)
	Mystery LC-3b Instruction (II)

