
Design of Digital Circuits (252-0028-00L), Spring 2018

Optional HW 6: Systolic Arrays, Caches, and Virtual Memory
SOLUTIONS

Instructor: Prof. Onur Mutlu
TAs: Juan Gomez Luna, Hasan Hassan, Arash Tavakkol, Minesh Patel, Jeremie Kim, Giray Yaglikci

Assigned: Friday, June 8, 2018

1 Systolic Arrays

The following diagram is a systolic array that performs the multiplication of two 4-bit binary numbers.
Assume that each adder takes one cycle.

(a) How many cycles does it take to perform one multiplication?

9 cycles

(b) How many cycles does it take to perform three multiplications?

13 cycles.
Note that some input ports have to hold their values for an extra cycle because their nodes need to wait
for inputs from the previous nodes. You cannot completely overlap latencies of different nodes. However,
because no one was aware of this, we accepted 11 cycles as another possible answer.

1/9

(c) Fill in the following table, which has a list of inputs (a 1-bit binary number) such that the systolic array
produces the following outputs, in order: 5 ∗ 5, 12 ∗ 9, 11 ∗ 15. Please refer to the following diagram to
use as reference for all the input ports.

5x5 = 101x101 12x9 = 1100x1001 11x15 = 1011x1111

Cycles Row Inputs Column Inputs
a0 a1 a2 a3 a4 a5 a6 b0 b1 b2 b3 b4 b5 b6 a7 a8 a9 b7 b8 b9

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
2 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0
4 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0
5 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0
6 0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0
7 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1
8 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1
9 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
10 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1
11 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 1
12 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
13 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0
14 0

2/9

2 Instruction and Data Caches

Consider the following loop is executed on a system with a small instruction cache (I-cache) of size 16 B.
The data cache (D-cache) is fully associative of size 1 KB. Both caches use 16-byte blocks. The instruction
length is 4 B. The initial value of register $1 is 40. The value of $0 is 0.

Loop: lw $6, X($1)

addi $6, $6, 1

sw $6, Y($1)

subi $1, $1, 4

beq $1, $0, Exit

j Loop

Exit: ...

(a) Compute I-cache and D-cache miss rates, considering:

• X and Y are different arrays.

• X and Y are the same array.

The I-cache can keep 4 instructions. Thus, in each iteration there will be 2 cache misses. The I-cache miss
rate will be 2/6 = 0.33.

• X and Y are different arrays.

If X and Y are different arrays, there will be 2 cache misses every 4 iterations, that is, one read miss
and one write miss every 8 accesses. In that case, the D-cache miss rate will be 2/8 = 0.25.

• X and Y are the same array.

If X and Y are the same array, the D-cache miss rate will be one half of the previous one (0.125).

(b) Compute the average number of cycles per instruction (CPI), using a baseline ideal CPI (ideal caches)
equal to 2, and a miss latency equal to 10 clock cycles.

Since load and store instructions are one third of all the execute instructions, CPI is calculated as:
CPI = 2 + 0.33×10 + 0.33×0.25×10 = 6.1250 cycles, if X and Y are different arrays.
CPI = 2 + 0.33×10 + 0.33×0.125×10 = 5.7125 cycles, if X and Y are the same array.

(c) A compiler could unroll this loop for optimization. How would this affect CPI?

If the compiler unrolls the loop, the total number of executed instructions is reduced. As there will be
one I-cache miss every four executed instructions, the I-cache miss rate will be 1/4 = 0.25. The D-cache
miss rate remains the same.
The new CPI is:
CPI = 2 + 0.25×10 + 0.33×0.25×10 = 5.3250 cycles, if X and Y are different arrays.
CPI = 2 + 0.25×10 + 0.33×0.125×10 = 4.9125 cycles, if X and Y are the same array.

(d) How would the previous results change with a 32-byte I-cache?

3/9

If the size of the I-cache is 32 B, the entire loop fits in it. There will be only two cold misses in the first
iteration. Thus, the I-cache miss rate will be 2/60 = 0.033.

4/9

3 Reverse Engineering Caches

You’re trying to reverse-engineer the characteristics of a cache in a system so that you can design a more
efficient, machine-specific implementation of an algorithm you’re working on. To do so, you’ve come up with
four patterns that access various bytes in the system in an attempt to determine the following four cache
characteristics:

• Cache block size (8, 16, 32, 64, or 128 B)

• Cache associativity (1-, 2-, 4-, or 8-way)

• Cache size (4 or 8 KB)

• Cache replacement policy (LRU or FIFO)

However, the only statistic that you can collect on this system is cache hit rate after performing the
access pattern. Here is what you observe:

Access Pattern Blocks Accessed (Oldest → Youngest) Hit Rate

A 0 4096 8192 12288 16384 4096 0 1/7
B 0 1024 2048 3072 4096 5120 6144 3072 0 1/9
C 0 4 8 16 32 64 128 256 512 4/9
D 128 1152 2176 3200 128 4224 1152 2/7

Based on what you observe, what are the following characteristics of the cache? (Be sure to justify clearly
your answer for full credit.)

(a) Cache block size (8, 16, 32, 64, or 128 B)?

Let’s focus on access pattern C for this part. In this access pattern, for a given cache block size, all bytes
map to certain sets—regardless of cache associativity and regardless of cache size.
There is only one mapping that causes 4 accesses out of 9 to be hits: At a cache block size of 64 B,
addresses 4, 8, 16, and 32 all hit in the block brought in by the access to address 0. The other accesses go
to different cache blocks.

(b) Cache associativity (1-, 2-, 4-, or 8-way)?

Let’s focus on access pattern A for this part. In this access pattern, for a given cache associativity, all
bytes map to the same set—regardless of cache block size and regardless of cache size.
There is only one associativity that causes 1 access out of 7 to be a hit: An associativity of 4 allows address
4096 to be a hit. Any less, and no accesses would hit; any more, and address 0 would also hit.

(c) Cache size (4 or 8 KB)?

Let’s focus on access pattern B for this part. In this access pattern, given a cache associativity of 4, and
for a given cache size, all bytes map to the same set—regardless of cache block size.
There is only one cache size that maps blocks to sets in a way that causes 1 access out of 9 to be a hit: A
cache size of 4 KB causes all of the blocks to map to the same set, generating a hit for address 3072. At
8 KB, the access to address 0 also hits in the cache.

5/9

(d) Cache replacement policy (LRU or FIFO)?

Let’s focus on access pattern D for this part. In this access pattern, given a cache associativity of 4, and
given a cache size of 4 KB, for a given replacement policy, all bytes map to the same set—regardless of
cache block size.
First, notice that the access to address 128 will be a hit: Under LRU, the next block to be evicted would
be the one for address 1152; whereas, under FIFO, the next block to be evicted would be the one for
address 128.
Second, notice that the access to address 4224 then evicts the respective block. The access for address
1152 would then miss under LRU, but hit under FIFO, for a total of two hits (including the access to
address 128). FIFO is the only cache replacement policy that causes 2 accesses out of 7 to be hits.

6/9

4 Analyzing Cache Structure

Below, we have given you four different sequences of addresses generated by a program running on a processor
with a data cache. Cache hit ratio for each sequence is also shown below. Assuming that the cache is initially
empty at the beginning of each sequence, find out the following parameters of the processor’s data cache:

• Associativity (1, 2 or 4 ways)

• Block size (1, 2, 4, 8, 16, or 32 bytes)

• Total cache size (256 B, or 512 B)

• Replacement policy (LRU or FIFO)

Assumptions: all memory accesses are one byte accesses. All addresses are byte addresses.

Sequence No. Address Sequence Hit Ratio

1 0, 2, 4, 8, 16, 32 0.33
2 0, 512, 1024, 1536, 2048, 1536, 1024, 512, 0 0.33
3 0, 64, 128, 256, 512, 256, 128, 64, 0 0.33
4 0, 512, 1024, 0, 1536, 0, 2048, 512 0.25

Cache block size - 8 bytes
For sequence 1, only 2 out of the 6 accesses (specifically those to addresses 2 and 4) can hit in the cache,
as the hit ratio is 0.33. With any other cache block size but 8 bytes, the hit ratio is either smaller or
larger than 0.33. Therefore, the cache block size is 8 bytes.

Associativity - 4
For sequence 2, blocks 0, 512, 1024 and 1536 are the only ones that are reused and could potentially result
in cache hits when they are accessed the second time. Three of these four blocks should hit in the cache
when accessed for the second time to give a hit rate of 0.33 (3/9).
Given that the block size is 8 and for either cache size (256B or 512B), all of these blocks map to set 0.
Hence, an associativity of 1 or 2 would cause at most one or two of these four blocks to be present in the
cache when they are accessed for the second time, resulting in a maximum possible hit rate of less than
3/9. However, the hit rate for this sequence is 3/9. Therefore, an associativity of 4 is the only one that
could potentially give a hit rate of 0.33 (3/9).

Total cache size - 256 B
For sequence 3, a total cache size of 512 B will give a hit rate of 4/9 with a 4-way associative cache and
8 byte blocks regardless of the replacement policy, which is higher than 0.33. Therefore, the total cache
size is 256 bytes.

Replacement policy - LRU
For the aforementioned cache parameters, all cache lines in sequence 4 map to set 0. If a FIFO replacement
policy were used, the hit ratio would be 3/8, whereas if an LRU replacement policy were used, the hit
ratio would be 1/4. Therefore, the replacement policy is LRU.

7/9

5 Caches

A byte-addressable system with 16-bit addresses ships with a two-way set associative, writeback cache with
perfect LRU replacement. The tag store (including the tag and all other meta-data) requires a total of 4352
bits of storage. What is the block size of the cache? Assume that the LRU information is maintained on a
per-set basis as a single bit. (Hint: 4352 = 212 + 28 .)

We formulate two basic equations:

4352 = 2index ∗ (2 ∗ (tag + dirty + valid) + LRU) (1)

tag + index + offset = 16 (2)

There is one dirty bit and one valid bit per block, and one LRU bit per set. So, now the Equation 1 looks
like: 4352 = 2index ∗ (2 ∗ (tag + 2) + 1) = (2index ∗ (2tag + 4)) + 2index

By using the hint (4352 = 212 + 28), we get 2index = 28, so index = 8, and from 2index ∗ (2tag + 4) = 212

we get (2tag + 4) = 24, so tag = 6.

By solving the Equation 2, we get offset = 2, so, the block size is 22 = 4 bytes

8/9

6 Virtual Memory

An ISA supports an 8-bit, byte-addressable virtual address space. The corresponding physical memory has
only 128 bytes. Each page contains 16 bytes. A simple, one-level translation scheme is used and the page
table resides in physical memory. The initial contents of the frames of physical memory are shown below.

Frame Number Frame Contents
0 Empty
1 Page 13
2 Page 5
3 Page 2
4 Empty
5 Page 0
6 Empty
7 Page Table

A three-entry translation lookaside buffer that uses Least Recently-Used (LRU) replacement is added to
this system. Initially, this TLB contains the entries for pages 0, 2, and 13. For the following sequence of
references, put a circle around those that generate a TLB hit and put a rectangle around those that generate
a page fault. What is the hit rate of the TLB for this sequence of references? (Note: LRU policy is used to
select pages for replacement in physical memory.)

References (to pages): 0, 13, 5, 2, 14, 14, 13, 6, 6, 13, 15, 14, 15, 13, 4, 3.

References (to pages): (0), (13), 5, 2, [14], (14), 13, [6], (6), (13), [15], 14, (15), (13), [4], [3].
TLB Hit Rate = 7/16

(a) At the end of this sequence, what three entries are contained in the TLB?

4, 13, 3

(b) What are the contents of the 8 physical frames?

Pages 14, 13, 3, 2, 6, 4, 15, Page table

9/9

	Systolic Arrays
	Instruction and Data Caches
	Reverse Engineering Caches
	Analyzing Cache Structure
	Caches
	Virtual Memory

