
 1

LAB 4 – Finite State Machines

Goals

 Learn how to implement a finite state machine using Verilog.

 Design and implement a simple circuit that emulates the blinking lights of a Ford

Thunderbird.

To Do

 Understand how the clock signal is derived in the FPGA board.

 Write an FSM that implements the Ford Thunderbird blinking sequence.

 Follow the instructions. Paragraphs that have a gray background like the current

paragraph denote descriptions that require you to do something.

 To complete the lab you have to show your work to an assistant before the

deadline, there is nothing to hand in. The required tasks are clearly marked with

gray background throughout this document.

Introduction

Until now, we have only implemented combinatorial circuits in Verilog. In this exercise,

we will implement circuits with states, i.e., sequential logic circuits.

In this lab, you will design a finite state machine to control the tail lights of a 1965 Ford

Thunderbird1. There are three lights on each side that operate in sequence to indicate the

direction of a turn. Figure 1 shows the tail lights and Figure 2 shows the flashing

sequence for (a) left turns and (b) right turns.

Figure 1. Thunderbird Tail Lights

1 This lab is derived from an example by John Wakerly from the 3rd Edition of

Digital Design.

 2

Figure 2. Flashing Sequence (shaded lights are illuminated)

Both the car and the flashing sequence are uncommon in Europe, but this is a good

exercise to learn how to design a simple Finite State Machine (FSM).

Part 1 – FSM Design

Let us start with designing the state transition diagram for this FSM. Give each state a

name and indicate the values of the six outputs LC, LB, LA, RA, RB, and RC in each

state. Your FSM should take three inputs: reset, left, and right. The circuit should have

the following properties:

 On reset, the FSM should enter a state with all lights off.

 When you press left, you should see LA, then LA and LB, then LA, LB, and LC,

then finally all lights off again.

 This pattern should occur even if you release left during the sequence. If left is

still down when you return to the lights off state, the pattern should repeat.

 The operation when right is active should be similar.

 It is up to you to decide what to do if the user makes left and right simultaneously

true; make a choice to keep your design simple.

Using a pen, draw the state transition diagram. Indicate the input conditions that cause

transitions among states. Use the signals ‘left’ and ‘right’ for the direction indicator.

The job of an FSM is to do three things:

1. Determine the next state from the present state and the inputs (next state logic).

2. If a Mealy FSM is used, realize the output function based on the present state and

the inputs (output logic).

3. Advance from the present state to next state when a clock event arrives (state

register).

In section 3.4 of the H&H textbook, you see how to prepare a state transition table. This

is essentially a translation of the state diagrams into a table form so that we can use our

knowledge in designing combinatorial circuits to derive the Boolean equations for next

state logic and output logic.

 3

If we use a hardware description language (Verilog or VHDL) we do not really need to

fill a state transition table, because we will use the compiler to map the behavior to first

Boolean equations and then to logic gates automatically. What we have to do is to still

determine how to encode the states and assign binary values to the states.

Along with your state transition diagram, add a small table describing how you will map

the states to binary values.

The next step is the output mapping. We have six outputs, LA, LB, LC and RA, RB, RC

that each drive the light signals. The output logic table can be used to determine what

happens in each state. We use this description to derive our output logic.

Along with your state transition diagram, add a small table or a verbal description of how

you will map the states to the 6 output lights.

Now we are essentially ready with the design and we can start our project.

Part 2 – Verilog Implementation

Start Vivado and create a new project (you could call it Lab4). Add a new Verilog source

and implement the finite state machine using what you have learned in the lecture about

Verilog. Be sure to include a clock input (clk) and a reset (rst) in your circuit.

Refer to earlier labs if you have problems with creating a new project.

Question of Style

The syntax of hardware description languages will allow you to write the same FSM in a

number of different ways. It has been our experience that clearly separating

 the state register (where clock moves the next state to the present state)

 the next state logic (where the next state is determined by the present state and

inputs)

 the output logic (where the outputs are determined by the present state and inputs)

works the best. This style is also used in the examples in the textbook.

Figure 3. A simple view of an FSM.

 4

It is also good practice to use a naming style that clearly identifies the signals that are

registered. If you want to know how every registered signal is connected, please see

Figure 3 as a reference.

In this example, there are two signals associated with the ‘state’. The next state signal is

called ‘state_n’ and the present state signal is called ‘state_p’. This is just an example, but

it is good practice to use the same ‘basename’ and to add some identifiers as a suffix to

differentiate the present and next states. In this way, you are always able to distinguish

which signals are registered. Note that in your textbook the examples are not in this

fashion, but we still believe it makes the life easier.

The important thing is to be consistent in the way you write the code. This allows you to

find problems easier, makes code reuse easier, and allows others to understand your code

easier.

Part 3- Implementing the Clock

You have described a clock input (clk) in your circuit. The question is where do we get

this clock from? You could be tempted to use one of the push buttons or the switches for

this purpose. This is not a good idea, because these mechanical components, generally do

not transition from one logic-level to another one cleanly, but exhibit multiple transitions

as seen in Figure 4.

Figure 4. Push-button bounce (taken from www.labbookpages.co.uk)

The problem is that compared to the speed of the FPGA the change in a push button is

very very slow (in fact more than a million times slower). During the slow transition, the

FPGA will see many fast occurring transitions and would interpret each of them as a

clock edge. This is known as ‘bounce’, and usually specialized circuits (and sampling

techniques) are used to prevent this. In any case, using the push buttons is not a very safe

way of generating the clock.

If you look at your board, you may notice the text “CLK100Mhz (W5)”. In fact, your

board contains a 100Mhz crystal oscillator circuit. The output of this oscillator is

connected to the pin W5 (which is a special clock pin for this FPGA). We will simply

make sure in our design to connect the net “clk” to the pin W5 using the constraints file

 5

(XDC). In this way, we will have a clean clock signal. We will define the constraints in

Part 3.

Now we have a different practical problem: the clock is too fast. 100 MHz means that

every clock period is 10 nanoseconds long. The entire blinking sequence would be then

40 ns. This is a very short time: light travels less than 250 meters during that time. If we

want to see our sequence, we need to find a way to dramatically slow down the circuit.

This can be achieved in two ways. We can either implement a clock divider circuit that

divides the clock by a few million times, or we can generate an enable signal every few

million cycles, and then use this enable signal to control our next state transition.

In this exercise, we will give you a small clk_div circuit that takes in the same ‘clk’ and

‘rst’ signals, and generates a clk_en signal every 33’554’432 cycles (or once every 225

cycles). Considering that the main clock frequency is 100’000’000 cycles per second, this

means a clk_en signal is generated every 0.335s.

module clk_div(input clk, input rst, output clk_en);

reg [24:0] clk_count;
 always @ (posedge clk)

 //posedge defines a rising edge (transition from 0 to 1)

 begin
 if (rst)

 clk_count <= 0;

 else
 clk_count <= clk_count + 1;

 end

assign clk_en = &clk_count;
endmodule

The idea is pretty simple, we increment a 25-bit counter (called clk_cnt) at every clock,

and set the clk_en to ‘1’ when all the bits of the counter is ‘1’. By increasing the counter

size you can change the division factor as you please.

Make the necessary changes to integrate this divider into your code. We recommend that

you create a second Verilog file and add the clk_div as a second module to the project.

Then you can instantiate the clk_div in your top module. In the top module, you have to

modify the ‘state register’, so that it only updates the state when the clk_en signal is ‘1’.

Part 4 – Defining the Constraints

Now, all we have to do is to choose which buttons on the board we want to use for the

control, and which LEDs we will use as tail lights. Therefore, we need to provide a

constraint file to tell Vivado where we want to connect our pins.

Add and open a new constraint file to your project. Refer to Lab 2 for more information.

Enter the following constraints into your constraints file. Make sure that you have

consistent port names in the constraints file and your top module.

Clock signal
set_property PACKAGE_PIN W5 [get_ports clk]

 6

set_property IOSTANDARD LVCMOS33 [get_ports clk]
create_clock -period 10 -waveform {0 5} [get_ports clk]

LEDs
set_property PACKAGE_PIN U14 [get_ports LC]
set_property PACKAGE_PIN U15 [get_ports LB]
set_property PACKAGE_PIN W18 [get_ports LA]
set_property PACKAGE_PIN U19 [get_ports RA]
set_property PACKAGE_PIN E19 [get_ports RB]
set_property PACKAGE_PIN U16 [get_ports RC]
set_property IOSTANDARD LVCMOS33 [get_ports {LC LB LA RA RB RC}]

#Buttons
set_property PACKAGE_PIN W19 [get_ports left]
set_property PACKAGE_PIN U18 [get_ports reset]
set_property PACKAGE_PIN T17 [get_ports right]
set_property IOSTANDARD LVCMOS33 [get_ports {left reset right}]

Our design is now ready to be implemented.

Using the previous labs as a guide, generate the bitfile of your circuit and download it to

the FPGA board. Show an assistant that the circuit is working correctly.

Last Words

Once again in this lab exercise, you had to make several decisions. Choosing the state

encoding is such a decision:

 You could design an FSM with seven states. You could decode the seven states

with at least three bits. If you do this, you will save on the number of state holding

registers, but you will need a larger output decoding circuit that derives the LED

controls from the state. This will be a similar to the decoder circuit that we

designed in Lab 3. Instead of 4 inputs and 7 outputs, we have 3 inputs and 6

outputs.

 You could use 6-bits to decode the seven states cleverly, and directly use the

output of the state register for driving the LEDs. This will save you the output

decoder, but you will need twice the number of state holding flip-flops.

There is no clear better choice. As you continue doing more circuit design, you will

develop your own preferences. One other option is to realize the fact that the left and

right blinking operations are essentially the same. Perhaps it would be possible to design

just one state machine and use it twice?

Until now we were able to see whether our circuits functioned correctly by directly

observing them because the circuits had very few outputs, and it did not take much time

to see all of them. With the coming exercises, this will start to change, and we will need

better methods to see if our circuit actually works.

