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Abstract

The performance of multiple-instruction-issue processors can be severely limited by the com 

piler’s ability to generate efficient code for concurrent hardware. In the IM P A C T  project, we 

have developed IM P AC T-I, a highly optimizing C compiler to exploit instruction level con 

currency. The optimization capabilities of the IM P A C T -I C compiler is summarized in this 

paper. Using the IM P AC T-I C compiler, we ran experiments to analyze the performance of 

multiple-instruction-issue processors executing some important non-numerical programs. The 

multiple-instruction-issue processors have achieved solid speedup over a high-performance single 

instruction-issue processor.

To address architecture design issues, we ran experiments to charaterize the engineering 

tradeoffs such as the code scheduling model, the instruction issue rate, the memory load latency, 

and the function unit resource limitations. Based on the experimental results, we propose 

the IM P A C T  Architectural Framework, a set of architectural features that best support the 

IM P A C T -I C compiler to generate efficient code for multiple-instruction-issue processors. By 

supporting these architectural features, multiple-instruction-issue implementations of existing 

and new architectures receive immediate compilation support from the IM P A C T -I C compiler.
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1 I n t r o d u c t io n

Computer engineers have been striving to improve uniprocessor performance since the invention 

of the computer. This paper is concerned with exploiting instruction level concurrency to achieve 

high performance. The traditional approach to exploiting concurrency is to provide the neces 

sary support for instruction pipelining and overlapping [Kogge 81]. By optimizing a simple in 

struction pipeline structure, current pipelined processors can execute nearly one operation per 

cycle [Hennessy 81]. A natural extension to instruction pipelining is to provide parallel datap 

aths in order to fetch, decode, and execute several operations per cycle. Such processors have 

been referred to as multiple-instruction-issue processors in recent literature. Many hardware and 

software techniques for improving the performance and cost-effectiveness of multiple-instruction- 

issue processors have been studied [Fisher 81] [Rau 81] [Fisher 83] [Nicolau 85] [Patt 85] [Ellis 86] 

[Hwu 86] [Colwell 87] [Howland 87] [Weiss 87] [Cohn 89] [Jouppi 89] [Rau 89] [Smith 89] [Sohi 89] 

[Golumbic 90] [Warren 90] [Smith 90].

1.1 Our Approach And Contribution

An important problem in the design of multiple-instruction-issue processors is to ensure that the 

compiler can generate efficient code for the hardware. To solve this problem, we have constructed 

the IMPACT-I C compiler, a retargetable compiler with code optimization components especially 

developed for multiple-instruction-issue processors. These code improving techniques include func 

tion inline expansion, instruction placement, loop unrolling, memory disambiguation, register re 

naming, branch prediction, critical path depth reduction, and an integrated register allocation and 

code scheduling algorithm.
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Using the IMPACT-I C compiler, we conducted experiments to characterize the performance 

implications of engineering tradeoffs such as alternative code scheduling models, memory load 

latency, and function unit resource limitations. All experimental results are derived from important 

non-numerical programs with realistic input data. Based on the experimental results, we have 

identified a set of architectural features that best support the IMPACT-I C compiler to generate 

efficient code for multiple-instruction-issue processors. We call the collection of these architectural 

features the IMPACT Architectural Framework.

The IMPACT-I C compiler generates highly optimized code for processors designed within the 

IMPACT Architectural Framework. Experimental results show that multiple-instruction-issue pro 

cessors in this framework have achieved solid speedup over a high-performance single-instruction- 

issue processor. Supported by the advanced code optimization capabilities of the IMPACT-I C 

compiler, these multiple-instruction-issue processors have achieved a very encouraging performance 

level for non-numerical C programs.

1.2 Related Work

Fisher demonstrated that trace scheduling can find sufficient instruction-level parallelism to exploit 

VLIW architectures [Fisher 81]. Code scheduling and resource allocation for VLIW machines are 

done at compile-time [Fisher 81] [Ellis 86] [Colwell 87]. Rau has designed the ESL Polycyclic pro 

cessor [Rau 81] and the Cydra 5 supercomputer [Rau 89] that issue several operations in a single 

cycle. Cohn, Gross, Lam, and Tseng have studied the architecture and compiler tradeoffs in the 

design of iWarp which is capable of specifying up to nine operations in an instruction [Cohn 89]. 

Weiss and Smith have shown that loop unrolling and software pipelining are effective in increasing 

parallelism [Weiss 87]. Sohi has shown that restricted horizontal instruction formats are compa-
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rable to a format that can issue every operation to every function unit[Sohi 89]. These studies 

have focused mainly on numerical kernels and applications. In this paper, we have dealt with 

non-numerical programs.

Patt and Hwu have described a single-chip microarchitecture which allows the compiler to 

schedule several operations into an instruction word, and also supports dynamic code scheduling 

and branch lookahead to further explore concurrencies between instructions [Patt 85]. This paper 

focuses on compile-time optimizations for simple in-order execution architectures.

Jouppi and Wall have measured the instruction-level parallelism of some non-numerical Modula- 

2 and C programs using an optimizing compiler that performs local code scheduling. Assuming 

unit-time operation latency, they reported that there are between 1.6 and 2.1 concurrently ex 

ecutable operations per cycle [Jouppi 89]. In this paper, we have implemented more aggressive 

code scheduling techniques, and have considered non-unit-time operation latencies and machine 

constraints.

Smith, Johnson, and Horowitz have used trace-based simulations to determine that dynamic 

scheduling can achieve an execution rate of about two operations per cycle for non-numerical C 

programs [Smith 89]. This paper focuses on the static code scheduling approaches.

Smith, Lam, and Horowitz have proposed and studied a static scheduling architecture that 

allows operations to be moved across a preceding branch operation [Smith 90]. They have reported 

about 1.63 speedup against a scalar processor which executes approximately 0.9 operations per 

cycle, using a four-issue microarchitecture. In this paper, we have implemented more levels of 

static scheduling support. With aggressive code transformation optimizations, we have achieved a 

higher level of performance.
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1.3 Organization O f This Paper

This paper is organized into five sections. Section 2 presents our compiler technology and static code 

scheduling techniques. Section 3 presents experimental results. Section 4 describes the IMPACT 

Architectural Framework. Section 5 provides concluding remarks.

2 T h e  I M P A C T - I  C  C o m p ile r

The IMPACT-I C compiler serves two important purposes. First, it is intended to generate highly 

optimized code for existing commercial microprocessors. We have constructed code generators for 

the MIPS-R2000 [Kane 87] and the SPARC [Sparc 87] processors. We are constructing code genera 

tors for the AMD29K [Amd], the IBM RS/6000 [IBM 90], and the i860 [Intel 89] processors. Second, 

it provides a platform for studying new code optimization techniques for multiple-instruction-issue 

architectures. These new code optimization techniques, once validated, can be immediately applied 

to the multiple-instruction-issue implementations of existing and new commercial architectures.

2.1 Code Optimizations

Code improving techniques in the IMPACT-I C compiler can be categorized into two groups: 

machine-independent optimizations and machine-dependent optimizations. Machine-independent 

optimizations include classical local and global code optimizations [Aho 86], function inline expan 

sion [Hwu 89.2], instruction placement optimization [Chang 88] [Hwu 89.1], loop unrolling, intel 

ligent generation of switch statements [Chang 89.2], and jump optimization. Machine-dependent 

optimizations include profile-based branch prediction, constant preloading, graph-coloring-based 

register allocation [Chaitin 82] [Chow 84], and code scheduling. A profiler has been integrated into
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name description
cccp GNU C preprocessor
cmp compare files
compress compress files
eqn typeset mathematical formulas for troif
eqntott boolean minimization
espresso boolean minimization
grep string search
lex lexical analysis program generator
qsort quick sort
tbl format tables for troff
wc word count
yacc parsing program generator

Table 1: Benchmarks.

the IMPACT-I C compiler. When hardware resources are scarce, the profile information helps to 

identify the most frequently executed program sections and variables.

2.2 Base Performance

It is important to measure the performance of multiple-instruction-issue architectures using 

highly optimized code, because a naive compiler may produce redundant operations that show 

deceptive parallelism. To calibrate the quality of the code generated by the IMPACT-I C compiler, 

we have compared the execution time of its output code with those of a leading commercial compiler 

(MIPS CC) and a leading public domain compiler (GNU CC) on the DEC 3100 workstation.

Table 1 shows the benchmark programs that are used in this paper. The name column shows 

the names of the benchmark programs. The description column briefly describes the nature of 

each benchmark program. Table 2 1 shows the speedup of the IMPACT-I C compiler and the Gnu 

!**  GNU -O failed, reported speedup is that without optimization.
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name MIPS -03 GNU -O IMPACT
cccp 1.0 0.99 1.07
cmp 1.0 0.99 1.01
compress 1.0 0.77 ** 1.00
eqn 1.0 0.98 1.07
eqntott 1.0 0.85 0.98
espresso 1.0 0.88 1.00
grep 1.0 0.86 1.01
lex 1.0 0.97 1.01
qsort 1.0 0.94 1.00
tbl 1.0 0.93 1.00
wc 1.0 0.83 1.04
yacc 1.0 0.62 ** 0.96

Table 2: Code Quality.

CC (-0 ) over the MIPS CC (-03).

The quality of the code generated by the IMPACT-I C compiler is comparable to that of the 

MIPS C compiler which is known for its excellent code optimization capabilities. Therefore, the 

speedup numbers that we report for multiple-instruction-issue architectures in the Section 3 are 

based on very efficient sequential code.

2.3 Code Generation For Multiple-Instruction-Issue Machine

2.3.1 Code Optimization Techniques

A code generator for a parameterized multiple-instruction-issue architecture has been implemented. 

The code generator performs profile-based branch prediction to support the squashing branch 

scheme [McFarling 86] [Chang 89.1]. The IMPACT-I C compiler performs several code transfor 

mations that enlarge the scope of static scheduling, including function inline expansion, instruction
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for (i=0;  i<120; i++) -C 
c[i]  = max(a[i] , b[i]  ) ;  
m = max(m, c [ i ] ) ;

>

(1) mov i, 0;
LO: (2) load $P1, _a, i; /* a[i], $P1 is the

(3) load $P2, -b, i; /* b[i], $P2 is the
(4) jsr _max; /* max(a[i] , b[i]),
(5) store _c, i, $P0; /* cCi] = max (a[i],
(6) load $P1, _m, 0; /* m */
(7) mov, $P2, $P0; /* 0 i—

i
H- 1 _
1

* ‘—
(8) jsr _max; /* max(m, c[i]) */
(9) store _m, o nj o /* m = max(m, c[i])
(10) add i, i, 4; /* i++ */

(ID bit i, 120, LO; /* i<120 */

1st parameter register */
2nd parameter register */
$P0 is the return register */ 
b[i]) */

* /

LI:

Figure 1: A Simple Program

placement, super-block formation, loop unrolling, loop peeling, and branch expansion. The com 

piler also performs several code transformations that reduce the depth of critical paths, including 

induction variable expansion, register renaming, global variable register allocation, operation fold 

ing, and memory disambiguation.

Figure 1 illustrates a simple program that determines the maximum of array elements. This 

program is used in the following paragraphs to show the functionality of each code optimization.

Branch prediction: There are two unconditional jumps (subroutine calls) and one conditional

branch in Figure 1. If the code segment is invoked exactly once, the profile information should 

indicate that the two subroutine calls (4,8) have been executed 120 times, and the conditional 

branch (11) has been taken 119 times and not taken 1 time. For machines that support squashing 

branch, all three branches should be marked as likely branches and the branch slots should be filled
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(1) mov i, 0 t
LO: (2) load $P1 , -a, i;

(3) load $P2 , -b, i;
(4a) bge $P1, $P2, L2 ;
(4b) mov $P0, $P2;
(4c) jump L3;

L2 : (4d) mov $P0, $P1;
L3 : (5) store _c , i, $P0 ;

(6) load $P1 » 0;
(7) mov $P2, $P0 ;
(8a) bge $P1, $P2, L4;
(8b) mov $P0, $P2;
(8c) j ump L5;

L4 : (8d) mov $P0, $P1 ;
L5 : (9) store _m , 0, $P0 ;

(10) add i, i, 4;
(11) bit i, 120, L0;

LI:

/* if ! ($P1>=$P2) -C */ 
/* $P0 = $P2; */ 
/* } else { */ 
/* $P0 = $P1; */ 
/* > */

/ *  if ! ($ P 1>=$P2 ) -C * /  
/ *  $P0 = $P2 ; * /  

/* > else -C */ 
/ *  $P0 = $P1 ; * /  

/ *  > * /

Figure 2: After function inline expansion

by instructions from the target paths.

Function inline expansion: To perform static code scheduling in the inter-function (inter-

procedure) level in Figure 1, the function (procedure) calls must be inline expanded. Figure 2 

illustrates the result of function inline expansion.

Instruction placement: Although we have eliminated the two function calls from the simple

program in Figure 1, the expanded program has several additional branches (4a, 4c, 8a, 8c). In 

struction placement is an optimization that reorganizes code to increase sequential locality and 

to reduce the number of taken branches. The basic idea is to group basic blocks that tend to 

execute in a sequence together into a linear trace. We use the code segment in Figure 2 as an 

example. Assume that the elements in 6[] are usually larger than the elements in a[]. The most
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(1) mov i , 0 ;
LO: (2) load $P1, _a, i;

(3) load $P2, -b , i;
(4a) bge $P1, $P2, L2 ; /* unlikely */

(4b) mov $P0, $P2;
L3 : (5) store _c, i, $P0;

(6) load $P1, 0;
(7) mov $P2, $P0;
(8a) bge $P1, $P2, L4; /* unlikely * /
(8b) mov $P0, $P2;

L5 : (9) store _m, 0, $P0;
(10) add i , i , 4;
(11) bit i, 120, LO; /* likely * /

LI:

L2 : (4d) mov $P0, $P1;
(4e) jump L3; 1* likely * /

L4 : (8d) mov $P0, $P1;
(8e) jump L5; /* likely */

Figure 3: After instruction placement

likely instruction sequence is (1 —  2 —  3 —> 4a —* 46 —  4c —  5). Assume that the elements 

in the beginning of a[] and 6[] tend to be bigger than the rest. Then, the most likely instruction 

sequence is (6 —  7 —  8a —  86 —  8c —* 9). The profiler can capture the sequencing information

that is needed to guide the instruction placement optimization. The result of instruction placement 

is shown in Figure 3. Instruction placement forms groups of basic blocks that can be compacted 

by trace scheduling [Fisher 81]. Instruction (2) to (11) in Figure 3 forms a single trace. After 

instruction placement, the loop body contains no likely branch, except the loop back-edge. Note 

that (4c) and (8c) have been eliminated and (4e) and (8e) have been added to the program. Be 

cause (4c) and (8c) appear on frequently executed paths and (4c) and (8c) appear on infrequently 

executed paths, we can expect some speedup for single-instruction-issue architectures as well as for 

multiple-instruction-issue architectures.
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Super-block formation: The flow-dependence arc (46 —  5) can be eliminated if the result of

(46) can be copy propagated to (5). This is impossible because instruction {Ad) modifies %P0. We 

propose an optimization called super-block formation which allows traces to be customized. A 

super-block is a sequence of instructions that can be executed only from the top instruction and 

may contain multiple branch instructions. If a trace is not already a super-block, the trace can 

be converted to a super-block by creating a copy of the trace and redirecting all control transfers 

to the middle of the trace to the duplicate copy. From Figure 3, super-block formation produces 

Figure 4.

In Figure 4, label T3 and label Lb can be eliminated because all control transfers have been 

redirected to label L6 and label L7. More classical code optimizations can be applied to the 

super-block. The result is shown in Figure 5.

Loop unrolling: To increase the number of instructions in the super-block in Figure 5, we can

unroll the loop N times by duplicating the loop body (N  — 1) times. Figure 6 shows the new 

super-block after loop unrolling (N  = 2). For multiple-instruction-issue processors, the IMPACT-I 

C compiler typically unrolls small loops 8 or more times.

Loop peeling: Many loops iterate very few times (< 10) in the benchmark programs that we

have studied (see Table 1). For these loops, loop unrolling and software pipelining are less ef 

fective because the execution time that is spent in the parallel section (optimized loop body) is 

not substantially longer than in the sequential section (loop prologue and epilogue). An alterna 

tive approach is to peel off enough iterations, such that the loop typically executes as a piece of 

straight-line code. Figure 7 shows the result of applying loop peeling (N  =  1) on the code segment 

in Figure 5. Typically, the IMPACT-I C compiler peels off about 4 iterations. The peeled iterations
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(1) mov i, 0 ;
LO: (2) load $P1, _a, i;

(3) load $P2, -b, i;
(4a) bge $P1, $P2, L2 ; /* unlikely :
(4b) mov $P0, $P2 ;

L3 : (5) store _c, i, $P0;
(6) load $P1, 0;
(7) mov $P2, $P0 ;
(8a) bge $P1, $P2, L4; /* unlikely :
(8b) mov $P0, $P2;

L5 : (9) store _m, 0 , $P0 ;
(10) add i, i, 4;
(11) bit i, 120, LO; /* likely */

LI:

L6 : (5 0 store _c , i, $P0;
(6 0 load $P1 , _m , 0;
(7 0 mov $P2, $P0 9

(8a> ) bge $P1, $P2 , L4; /*' unlikely
(8b’) mov $P0, $P2 9

L7 : (9 0 store _m , 0 , $P0;
(10* ) add i, i, 4;
(11* ) bit i, 120, LO; /*1 likely *,
(12) jump Ll; /*1 likely

L2: (4d) mov $P0, $P1;
(4e) jump L6; /* likely */

L4 : (8d) mov $P0, $Pl;
(8e) jump L7; /* likely */

Figur? 4: After super-block formation
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Cl) mov i, 0 ;
(2) load $P1, _a, i;
(3) load $P2, _b, i;
(4a) bge $P1, $P2, L2; /* unlikely */

/* delete (4b) */

(5) store _c, i, $P2;
(6) load $P1, _m, 0;

/* delete (7) */

(8a) bge $P1, $P2, L4; /* unlikely */

/* delete (8b) */

(9) store _m, 0, $P2;
(10) add i, i, 4;

(ID bit i, 120, L0; /* likely */

Figure 5: After super-block formation and classical code optimization

(1) mov i, 0 ;
L0: (2) load $P1, _a, i;

(3) load $P2, _b, i;
(4a) bge $P1, $P2, L2; /* unlikely */
(5) store _c, i, $P2;
(6) load $P1, _m, 0;
(8a) bge $P1, $P2, L4; /* unlikely */
(9) store _m, 0, $P2;
(10) add i, i, 4;

(11) bge i, 120, LI; . /* unlikely */
(2") load $P1, _a, i; ' -- -

(3") load $P2, _b, i;
(4a") bge $P1, $P2, L2; /* unlikely */
(5") store _c, i, $P2;
(6") load $P1, _m, 0;
(8a") bge $P1, $P2, L4; /* unlikely */
(9") store _m, 0, $P2;
(10") add i, i, 4;

(11") bit i, 120, L0; /* likely */
LI:

Figure 6: After loop unrolling
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(1) mov i, 0 ;
(2") load $P1, _a, 0;
(3") load $P2, _b, 0;
(4a") bge $P1, $P2, L2; /* unlikely */
(5") store _c, 0, $P2;
(6") load $P1, _m, 0;

00 V—
/ bge $P1, $P2, L4; /* unlikely */

(9") store _m, 0, $P2;
(10") mov i, 4 ;
(2) load $P1, „a, i;
(3) load $P2, _b, i;
(4a) bge $P1, $P2, L2; /* unlikely */
(5) store _c, i, $P2;
(6) load $P1, _m, 0;
(8a) bge $P1, $P2, L4; /* unlikely */

(9) store _m, 0, $P2;
(10) add i, i, 4;

(11) bit i, 120, L0; /* unlikely */

LI:

Figure 7: After loop peeling
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L2: (4d) mov $P0, $P1;
(50 store _c, i, $P0;

(6 0 load $P1, _m, 0;

(7 0 mov $P2, $P0;

(8aO bge $P1, $P2, L4; /* unlikely */

(8b 0 mov $P0, $P2;

(9 0 store _m, 0, $P0;

(10O add i, i, 4 ;
(110 bit i, 120, LO; /* likely */
(12) j ump L1 ; /* likely */

L4: (8d) ■mov $P0, $P1 ;
(9") store _m, 0, $P0;
(10") add i, i, 4 ;
(11") bit i, 120, LO; /* likely */
(12") jump LI; /* likely */

Figure 8: After branch expansion

can usually be further optimized by classical code optimizations, e.g. copy propagation.

Branch expansion: Instruction placement and super-block formation introduce many spurious

branch instructions (12), (4e), and (8e) in Figure 4. In realistic programs where there are many 

nested i f  — then — else statements, the situation is much worst than in Figure 4. Branch expansion 

helps to eliminate some branch instructions by replacing them by their target basic blocks. The 

number of static instructions increases due to this optimization. But the number of dynamic 

(executed) instructions decreases. Figure 8 shows the result of branch expansion. Note that two 

super-blocks (Z2,Z4) are developed by this optimization.

Induction variable expansion: After loop unrolling (see Figure 6), induction variables and

variables that are used as accumulators are often the source of anti-dependencies and output-

15



(1) 
LO: (2)

(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10) 
(U) 
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20) 

Ll:

mov i, 0; ■ 
add i2, i, 4; /* rename i to i2 for the 2nd itération */ •  
load $P1, _a, i;
load $P2, _b, i; B 
bge $P1, $P2, L2; •  
store _c, i, $P2;
load $P1, _m, 0; B  
bge $P1, $P2, L4; B  
store _m, 0, $P2;
add i, i, 4; /* replace i by i2 after here */ B 
bge i2, 120, Ll; B 
load $P1, _a, i2;
load $P2, _b, i2; B 
bge $P1, $P2, L2; B 
store _c, i2, $P2;
load $P1, '.m, 0; B  
bge $P1, $P2, L4; B  
store _m, 0, $P2;
add i, i2, 4; ■  
bit i, 120, L0; B

|

Figure 9: After induction variable expansion
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dependencies across iterations. In order to overlap the execution of different iterations, it is nec 

essary to rename these induction variables. Unfortunately, register renaming cannot be applied 

because an induction variable is alive in the loop. Induction variable expansion is designed specif 

ically to rename induction variables. Figure 9 shows the result of induction variable expansion. 

For a loop which is unrolled N  times, (N  — 1) temporary variables are introduced to represent the 

induction variable in iteration 2..N. In Figure 9, instruction (3) to (9) use the original induction 

variable. Instruction (2) creates a new induction for the second loop iteration. Instruction (11) 

to (18) use the new induction variable. Note that instruction (10) and (19) update the original 

induction variable to enforce consistency.

Register renaming: Register renaming needs to be applied to the code segment in Figure 9 in

order to overlap the execution of different loop iterations. The result is shown in Figure 10. $P1 in 

instruction (3) is renamed to tempi and $P2 in instruction (4) is renamed to temp2. Subsequent 

uses of $P1, prior to a new definition of SP1, are also renamed to tempi. When $P1 is redefined in 

instruction (12), it is renamed to a new temporary variable temp5. When a register is alive in the 

taken path of a branch, a bookkeep instruction needs to be inserted between the branch and the 

target instruction to undo the effect of register renaming. For example, $P1 is used before defined 

in L2 super-block. Therefore, instruction (5) must first branch to L2'. In £2', $P1 is updated 

before jumping to L2.

Note that the bookkeep cost can be reduced with branch expansion and classical code optimiza 

tion by forming (£2' -*• £2), (£2” — L2), (£4' — £4), and (£4” -»  LA) super-blocks. Repeated 

applications of branch expansion and classical code optimization increase the static program size 

and decrease the number of dynamic (executed) instructions. However, increasing program size
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(1) mov i, 0 ;
LO: (2) add i2, i, 4;

(3) load tempi, _a, i;
(4) load temp2, _b, i;
(5) bge tempi, temp2, L2J; /* $P1 is live in L2 */
(6) store _c, i, temp2;
(7) load temp3, _m, 0;
(8) bge temp3, temp2, L4*; /* $P1 is live in L4 */
(9) store _m, 0, temp2;
(10) add i, i, 4;

(11) bge i2, 120, LI;
(12) load temp5, _a, i2;
(13) load temp6, _b, 12 ;
(14) bge temp5, temp6, L2"; /* $P1 is live in L2 */
(15) store _c, i2, temp6;
(16) load temp7, _m, 0;
(17) bge temp7, temp6, L4"; /* $P1 is live in L4 */

(18) store _m, 0, temp6;
(19) add i, i2, 4;
(20) bit i, 120, LO;

LI:

L2’: (100) mov $P1, 
(101) jump L2; 

L2": (102) mov $P1, 
(103) jump L2; 

L4’: (104) mov $P1, 
(105) jump L4; 

L4": (106) mov $P1, 
(107) jump L4;

tempi ; 

temp5; 

temp3; 

temp7;

Figure 10: After register renaming
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(19) add i, i2, 4; —  > (190 add i, i2, 4;
(20) bit i, 120, LO; — > (20’) bit i2, 116, LO;

Figure 11: After operation folding

may degrade instruction cache performance. The tradeoff between optimizing for efficiency and 

optimizing for instruction cache performance is not clear.

Operation folding: Operation folding eliminates flow-dependencies between instructions by

observing special instruction patterns of the form f(g (srcg), srcf) which can be transformed to 

(g(srcg), f'(srcg, srcf)). For example, the flow-dependence between instruction (19) and (20) in 

Figure 10 can be eliminated as shown in Figure 11.

Global variable register allocation: Global variable register allocation identifies all memory

accesses to a specific memory location in a loop, replaces all memory accesses by register accesses, 

and adds appropriate code to load and restore the memory location in the loop prologue and 

epilogue sections. Some flow-dependencies that are due to memory load and store instructions can 

be eliminated by global variable register allocation. In Figure 10, all memory accesses to _m can be 

converted to register accesses. Figure 11 shows the result of global variable register allocation for 

the most important super-block of this example. Note that after global variable register allocation, 

there are more opportunities for register renaming.

Memory disambiguation: Memory disambiguation does not by itself perform code transfor 

mation. Its duty is to discover optimization opportunities for other code optimizations, such as 

global variable register allocation and code scheduling. For the C programming language, memory 

disambiguation is very difficult due to pointers.
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/* tm = mem[_m] */
(1) mov i, 0 ;
(100) load tm, _m, 0;

L0: (2) add i2, i, 4;
(3) load tempi, _a, i;
(4) load temp2, _b, i;
(5) bge tempi, temp2, L2’;
(6) store _c, i, temp2;
(7) mov temp3, tm;
(8) bge tm, temp2, L4* ;

(9) mov tm, temp2;
(10) add i, i, 4;
(11) bge i2, 120, LI;
(12) load temp5, _a, 12;
(13) load temp6, _b, 12 ;
(14) bge temp5, temp6, L2";
(15) store _c, i2, temp6;
(16) mov temp7, temp2;
(17) bge temp2, temp6, L4";
(18) mov tm, temp6;
(19) add i, i2, 4;
(20) bit i2, 116, L0;

LI: (101) store _m, 0, tm; /* mem[_m] = tm */

Figure 12: After global variable register allocation



2.3.2 Code Scheduling Algorithm

Prepass code scheduling is performed prior to register allocation to reduce the effect of artificial 

data dependencies that are introduced by register assignment [Hwu 88] [Goodman 88]. Postpass 

code scheduling is performed after register allocation.

Both prepass and postpass code scheduling algorithms consist of the following steps: 1) Form 

traces from basic blocks that are likely to be executed as a sequence. 2) Form a large super 

block from each trace of basic blocks by code duplication. 3) Construct a dependence graph 

for each super-block. 4) Improve the dependence graph by removing dependence arcs that can 

be resolved at compile-time. 5) Compute live-variable information. For each branch path, live- 

variable information tells us what variables must not be destroyed when that branch path is taken. 

6) Schedule the refined dependence graph according to machine constraints.

We have shown how super-blocks are formed in the previous subsection (Figure 1 - 12).

The construction of a dependence graph from a super-block is very straight forward by observing 

every pair of instructions in the super-block. There are three major categories of dependencies: data 

dependencies, control dependencies, and synchronization dependencies. Data dependencies can be 

further partitioned to six different types: register flow-dependence, register anti-dependence, regis 

ter output-dependence, memory flow-dependence, memory anti-dependence, and memory output- 

dependence. For example, instruction (5) in Figure 12 is register flow-dependent on instruction (3) 

because instruction (5) uses the result of instruction (3). Instruction (9) is register anti-dependent 

on instruction (8) because instruction (9) modifies a source register of instruction (8). Instruc 

tion (19) is register output-dependent on instruction (10) because they modify the same register. 

Without memory disambiguation, we have to assume that all memory load and store instructions
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may access the same location. For example, instruction (12) is memory flow-dependent on instruc 

tion (6). Instruction (6) is memory anti-dependent on instruction (3). Instruction (15) is memory 

output-dependent on instruction (6). Control dependencies exist between a branch instruction 

and any other instruction in the super-block. For example, instruction (5) is control-dependent 

on instruction (4). Instruction (6) is control-dependent on instruction (5). Dependencies due to 

synchronization instructions are beyond the scope of this paper and will not be discussed further.

After a dependence graph is constructed for a super-block, some memory dependencies can be 

eliminated by memory disambiguation.

Dataflow analysis[Aho 86] is applied to a super-block to determine for each branch what variable 

values must not be destroyed when that branch is taken. Let live-out(x) denote the set of variables 

which may be used before defined when a branch x is taken. The result of dataflow analysis on 

Figure 12 is shown in Figure 13.

2.3.3 Code Scheduling Models

Our code scheduler moves code both upward and downward across branch operations in a super 

block. If not because of branch operations, the order of any two operations may be reversed if 

there is no data dependencies between the two operations. Let X  and Y denote two operations 

in the same super-block and X  precedes Y  in the original code. If X  and Y  are both branch 

operations, their order may not be changed, except when they branch to the same location and are 

consecutive in the super-block. For simplicity, a static code scheduler typically does not schedule 

a branch before another preceding branch. If Y is a branch and X  is not a branch, then the static 

code scheduler is allowed to schedule Y ahead of X . If Y is to be scheduled ahead of X  and the 

destination register of X  is in live-out(Y), then a copy of X  must be inserted between Y and its
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(1) mov i, 0 ;
(100) load tm, _m, 0;

LO: (2) add i2, i, 4 ;
(3) load tempi, _a, i;
(4) load temp2, _b, i;
(5) bge tempi, temp2, L2} ; /* live-out(5) = {tempi, tm, i> */
(6) store _c, i, temp2;
(7) mov temp3, tm;
(8) bge tm, temp2, L4*; /* live-out(8) ;= {temp3, tm, i> */
(9) mov tm, temp2;
(10) add i, i, 4;
(11) bge i2, 120, LI; /* live-out(11) = {tm, i> */
(12) load temp5, _a, i2;
(13) load temp6, _b, i2;
(14) bge temp5, temp6, L2"; /* live-out(14) = {temp5, tm, i> */
(15) store _c, i2, temp6;
(16) mov temp7, temp2;
(17) bge temp2, temp6, L4"; /* live-out(17) = {temp7, tm, i> */
(18) mov tm, temp6;
(19) add i, i2, 4;
(20) bit i2, 116, LO; /* live-out(20) = {tm, i> */

LI: (101) store _m, 0, tm;

Figure 13: After dataflow analysis
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target instruction. Moving operations from above a branch operation to below is always safe. On 

the other hand, moving operations from below a branch to above is not always safe. If X  is a 

branch and Y  is not a branch, then the static code scheduler is allowed to schedule Y  ahead of X  

if the following two restrictions are not violated.

Restriction 1: Y  is not in live-out(X).

Restriction 2: Y  must not cause an exception that may terminate the program execution.

For example, it is not safe to move a division operation above a branch because of the possi 

bility of dividing by zero. As another example, it is not safe to move a memory load operation 

above a branch because of the possibility of memory access violation. We have implemented a 

code scheduling algorithm that enforces the above two restrictions. We refer to this algorithm as 

restricted code percolation.

It is possible to free the code scheduler from the second restriction if the division operation and 

the memory load operation do not cause exceptions. Instead of trapping on divide by zero or illegal 

memory access, a magic value is returned. Page faults can be handled in the usual manner. We 

refer to this code scheduling model as general code percolation.

Using aggressive hardware support, the first restriction can also be removed. Smith, Lam, and 

Horowitz have described such a scheme [Smith 90]. This scheme squashes percolated operations 

if the branch direction is incorrectly predicted. We have implemented a scheduling method where 

operations can be freely moved above N branch operations in the same super-block, where N is a 

design parameter. We refer to this scheduling model as speculative execution.

In Section 3, we show the relative performance of the three static code scheduling models. We 

set N to 32 for the speculative execution model.
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time operations [precedence is from left to right]
1 (2) (3) (4) (7)
2 (5) (6) (8) (9) (10) (11) (12) (13) (16)
3 (14) (15)(17)(18)(19)(20)

Figure 14: After code scheduling (restricted code percolation)

time operations [precedence is from left to right]
1 (2)(3)(4)(7) (12)(13)
2 (5) (6) (8) (9) (10) (11) (14) (15) (16) (17) (18) (19) (20)

Figure 15: After code scheduling (general code percolation)

Assuming that all operation latencies are unit time and we have infinite computation resource, 

we apply static code scheduling to the code segment in Figure 13 using aforementioned code schedul 

ing models. There is an implicit linear precedence order among operations that are issued concur 

rently. We assume that a taken branch can squash all lower precedence operations that are issued 

concurrently with the taken branch. A legal schedule using the restricted code percolation model 

is shown in Figure 14. Each row gives the operations that may be issued concurrently in a single 

cycle. A legal schedule using the general code percolation model is shown in Figure 15. A legal 

schedule using the speculative execution model is shown in Figure 16.

* = speculative execution
time operations [precedence is from left to right]
1 (2)(3)(4)(7) (10*) (12)(13) (19*)
2 (5)(6)(8)(9)(11) (14)(15)(16)(17)(18) (20)

Figure 16: After code scheduling (speculative execution)
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3 E x p e r im e n t s

3.1 Evaluation Methodology

A machine description file has been written to describe the instruction set, the microarchitecture, 

and the code scheduling model of each processor architecture under study. The machine description 

file is used to guide the IMPACT-I C compiler to optimize each benchmark program for each 

processor architecture. Using a profiler, we measure the execution count of every operation and 

collect branch statistics. From the profile information, we can derive the best and the worst case 

execution time of each super-block, assuming ideal cache. The worst case is due to long operation 

latencies that protrude from one super-block to another super-block. For the benchmark programs 

used in this paper, the difference between the best case and the worst case execution time is always 

negligible. In the following discussion, we use the worst case execution time measure.

The experiment is to study the speedup of multiple-instruction-issue processors versus a single- 

instruction-issue processor for various scheduling models, memory load latencies, and function unit 

resource limitations. The experiment produces a total of (X*Y )  numbers, where X  is the number of 

processor configurations under study, and Y  is the number of benchmark programs. Let cycle(i,j) 

denote a function that returns the number of cycles to execute the benchmark program j  on the 

machine i. Let cyc le (l,j)  denote the number of cycles to execute the benchmark j  on the base 

architecture. We define the speedup(i) function as the harmonic 2 mean of (cy c le (l,. ) /cycle(i, .)) 

over all benchmarks.

2To report results conservatively, the harmonic mean is used instead of the arithmetic mean.
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fn base MIPS-R3000 SPARC i860
integer alu 1 1 1 1
barrel shifter 1 1 1 1
integer mul 3 12 47 11
integer div 25 35 ? 59
load 2 2 2 2
store - - - -
FP alu 3 6 10 3
FP conv 3 4 10 4
FP mul 4 6 12 5
FP div 25 12 64 38

Table 3: Operation latencies.

3.2 Base Architecture

The base architecture is a single-instruction-issue processor that uses the general code percolation 

model. We have chosen an instruction set that is a superset of the MIPS instruction set to establish 

a strong single-instruction-issue base architecture. All function units are pipelined. The base 

column of Table 3 3 shows the operation latencies. We assume in-order execution and deterministic 

operation latencies. Each processor includes a 64-entry integer register bank and a 32-entry floating 

point register bank. The architecture uses a squashing branch scheme and profile-based branch 

prediction. One branch slot (one instruction) is automatically allocated for each instruction that 

contains a predict-taken branch operation.

Considering one cycle branch latency, the base architecture has achieved an execution rate of 

better than 0.95 operations per cycle for the benchmark programs.

The integer multiplication and division latencies of the commercial processors are based on software 
implementation.
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Figure 17: Comparison of Scheduling Models for Load Delay 1

3.3 Comparison O f The Three Scheduling Models

Figures 17 through 19 show the speedup of all three code scheduling models over the base 

architecture for issue rates from one to eight. The graphs show the speedup when the memory load 

operation latency is one, two, and three cycles respectively. Except for the memory load latency, 

operation latencies are the same as that of the base architecture. No limitation has been placed on 

the function unit resources. Every operation code can be executed from every operation slot of an 

instruction.

The experimental results show that general code percolation and speculative execution substan 

tially out-perform restricted code percolation. They also show that speculative execution consis 

tently performs better than general code percolation, but the improvement is insignificant.

The experimental results indicate that increasing the memory load operation latency substan 

tially degrades the performance of multiple-instruction-issue architectures. This degradation is
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Figure 18: Comparison of Scheduling Models for Load Delay 2

Figure 19: Comparison of Scheduling Models for Load Delay 3
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Figure 20: Effects of Limited Resources for Load Delay 1 

most pronounced for high issue rates.

3.4 Limited Resource

The cost to replicate all function units for each additional operation slot in the instruction 

format can be very high. Therefore, we have evaluated performance degradations due to limited 

function unit resources. The results are shown in Figures 20 and 21.

The experimental results indicate that the ability to issue multiple branch and memory load 

operations per cycle is important for high issue rate architectures.

4  T h e  I M P A C T  A r c h it e c t u r a l  F r a m e w o r k

Figure 22 shows a high-level block diagram of the IMPACT Architectural Framework. In the ideal 

case, instructions are fetched and decoded every cycle. The control unit issues instructions to the 

function units in the order they are fetched.
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Figure 21: Effects of Limited Resources for Load Delay 2

Figure 22: Block diagram of the IMPACT Architectural Framework.
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4.1 Instruction Issue Rate

The number of operations that can be packed into an instruction is an architectural parameter. We 

have developed a variant of squashing branch, called inline target insertion [Hwu 90] [Chang 89.1], 

that uses profile-based branch prediction. Inline target insertion allows multiple branch operations 

to be issued per cycle, and allows branch operations to be fetched from branch slots. Independent 

of the length of the control unit pipeline, only one program counter needs to be saved in order to 

return from interrupt.

The ability to execute multiple branch operations per cycle is important for high issue rate 

architectures. Without this ability, the execution rate of four-issue architectures will be limited to 

below two times speedup over the base architecture.

4.2 Limited Function Unit Resources

The decoded instructions are forwarded directly to several independent function units. Figure 22 

shows four function units for an issue rate of four operations per cycle. Each function unit can be 

as simple as an integer ALU, or as complex as a composite of a cache interface, a floating-point 

ALU, an integer ALU, and branch logic.

The experimental results in Figures 20 and 21 indicate that the ability to execute multiple 

branch and memory load operations is important for high issue rate architectures.

4.3 Support For General Code Percolation

The expeiimental results show that general code percolation significantly out-performs restricted 

code percolation. They also show that speculative execution achieves very little speedup beyond 

general code percolation. Therefore, multiple-instructiondssue architectures should support the
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Figure 23: Comparison of Load Delays for General Percolation

general code percolation model. The hardware support includes disabling exceptions that are 

caused by divide by zero and by illegal memory accesses. Some recent processors already support 

a set of arithmetic operations that do not signal overflow exception [Kane 87] [Sparc 87] [Amd] 

[IBM 90] [Intel 89] .

4.4 M em ory Load Latency

The experimental results in Figure 23 clearly indicate that increasing the memory load latency 

substantially degrades the performance of high issue rate architectures. Memory load operations 

frequently appear on critical paths. As instruction issue bandwidth increases, critical paths be 

come more visible. Therefore, we strongly recommend a short memory load operation latency for 

multiple-instruction-issue machines.
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5 C o n c lu s io n

Our approach to the design of multiple-instruction-issue processors can be summarized into three 

steps. In step one, we constructed IMPACT-I, a highly optimizing C compiler for multiple- 

instruction-issue processors. In step two, we conducted experiments to derive the IMPACT Archi 

tectural Framework. Multiple-instruction-issue processors designed within this framework receive 

effective compilation support from the IMPACT-I C compiler. In step three, we ran experiments to 

verify that multiple-instruction-issue processors designed within the IMPACT Architectural Frame 

work have achieved solid speedup over a high-performance single-instruction-issue processor.

The IMPACT-I C compiler has code generators for several major commercial architectures 

either available or under construction. Within the IMPACT Architectural Framework, multiple- 

instruction-issue implementations of these architectures receive immediate compilation support 

from the IMPACT-I C compiler. This would significantly reduce the uncertainties and misconcep 

tions about software during hardware development. Furthermore, processors designed within the 

framework would have compiler support to deliver promised performance in their production use.

In terms of engineering tradeoffs, we recommend the following. First, general code percolation 

should be supported as the code scheduling model for multiple-instruction-issue processors. Sec 

ond, high issue rate processors should support short memory load latency. Third, high issue rate 

processors should have the ability to execute multiple branch and load operations in each cycle. All 

these features can be incorporated into existing commercial architectures in an upward compatible 

manner.

Future directions of the IMPACT Architectural Framework project include supporting multiple- 

instruction-issue implementations of major commercial architectures, enhancing the code optimiza-
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tion capabilities of the IMPACT-I C compiler, and extending the framework to support multipro 

cessor architectures.
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