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How Do Problems 

Get Solved by Electrons?
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Recall: The Transformation Hierarchy
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Crossing the Abstraction Layers
◼ As long as everything goes well, not knowing what happens     

underneath (or above) is not a problem.

◼ What if
❑ The program you wrote is running slow?

❑ The program you wrote does not run correctly?

❑ The program you wrote consumes too much energy?

❑ Your system just shut down and you have no idea why?

❑ Someone just compromised your system and you have no idea how?

◼ What if
❑ The hardware you designed is too hard to program?

❑ The hardware you designed is too slow because it does not provide the 
right primitives to the software?

◼ What if
❑ You want to design a much more efficient and higher performance system?
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Some Example “Mysteries”
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Four Mysteries: Familiar with Any?

◼ Meltdown & Spectre (2017-2018)

◼ Rowhammer (2012-2014)

◼ Memory Performance Attacks (2006-2007)

◼ Memories Forget: Refresh (2011-2012)
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Mystery #1: 

Meltdown & Spectre
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What Are These?

8
Source: J. Masters, Redhat, FOSDEM 2018 keynote talk.



Meltdown and Spectre Attacks

◼ Someone can steal secret data from the system even though 

❑ your program and data are perfectly correct and 

❑ your hardware behaves according to the specification and

❑ there are no software vulnerabilities/bugs

9



Meltdown and Spectre

◼ Hardware security vulnerabilities that essentially effect almost 
all computer chips that were manufactured in the past two 
decades

◼ They exploit “speculative execution” 

❑ A technique employed in modern processors for high performance

◼ Speculative execution: Doing something before you know that 
it is needed

❑ We do it all the time in life, to save time

◼ Guess what will happen and act based on that guess 

❑ Processors do it, too, to run programs fast 

◼ They guess and execute code before they know it should be executed
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Speculative Execution (I)

◼ Modern processors “speculatively execute” code to improve 
performance: 

if (account-balance <= 0) { 

// do something

} else if (account-balance < 1M) {

// do something else

} else {

// do something else

}

11

Guess what code will be executed and execute it speculatively

- Improves performance, if it takes a long time to access account-balance

If the guess was wrong, flush the wrong instructions and execute the correct code 



Speculative Execution is Invisible to the User
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Meltdown and Spectre

◼ Someone can steal secret data from the system even though 

❑ your program and data are perfectly correct and 

❑ your hardware behaves according to the specification and

❑ there are no software vulnerabilities/bugs

◼ Why?

❑ Speculative execution leaves traces of secret data in the 
processor’s cache (internal storage)

◼ It brings data that is not supposed to be brought/accessed if there 
was no speculative execution

❑ A malicious program can inspect the contents of the cache to 
“infer” secret data that it is not supposed to access

❑ A malicious program can actually force another program to 
speculatively execute code that leaves traces of secret data
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Processor Cache as a Side Channel

◼ Speculative execution leaves traces of data in processor cache

❑ Architecturally correct behavior w.r.t. specification

❑ However, this leads to a side channel: a channel through which 
someone sophisticated can extract information

◼ Processor cache leaks information by storing speculatively-
accessed data

❑ A clever attacker can probe the cache and infer the secret data 
values 

◼ by measuring how long it takes to access the data

❑ A clever attacker can force a program to speculatively execute 
code and leave traces of secret data in the cache
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More on Meltdown/Spectre Side Channels

15
Source: https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html

https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html


Three Questions

◼ Can you figure out why someone stole your secret data if 
you do not know how the processor executes a program?

◼ Can you fix the problem without knowing what is 
happening “underneath”, i.e., inside the microarchitecture?

◼ Can you fix the problem well/fundamentally without 
knowing both software and hardware design?

◼ Can you construct this attack or similar attacks without 
knowing what is happening underneath? 
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Three Other Questions

◼ What are the causes of Meltdown and Spectre?

◼ How can we prevent them (while keeping the performance 
benefits of speculative execution)?

❑ Software changes?

❑ Operating system changes?

❑ Instruction set architecture changes?

❑ Microarchitecture/hardware changes?

❑ Changes at multiple layers, done cooperatively?

❑ …

◼ How do we design high-performance processors that do not 
leak information via side channels?
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Meltdown/Spectre Span Across the Hierarchy
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Takeaway

Breaking the abstraction layers 
(between components and 
transformation hierarchy levels) 

and knowing what is underneath

enables you to understand and 
solve problems
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… and Also Understand/Critique Cartoons!

20
Source: https://xkcd.com/1938/

https://xkcd.com/1938/


An Important Note: Design Goal and Mindset

◼ Design goal of a system determines the design mindset and 
evaluation metrics

◼ Meltdown and Spectre are there because the design goal of 
cutting-edge processors (employed everywhere in our lives)

❑ has mainly been focused on high performance and low energy 
(relatively recently)

❑ has not included security (or information leakage) as an 
important constraint

◼ Incorporating security as a first-class constraint and 
“metric” into (hardware) design and education is critical in 
today’s world
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Two Other Goals of This Course

❑ Enable you to think critically

❑ Enable you to think broadly
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To Learn and Discover Further

◼ High-level Video by RedHat

❑ https://www.youtube.com/watch?v=syAdX44pokE

◼ A bit lower-level, comprehensive explanation by Y. Vigfusson

❑ https://www.youtube.com/watch?v=mgAN4w7LH2o

◼ Keep attending lectures and taking in all the material

◼ Go and talk with Prof. Mutlu in the future

❑ He has many bachelor’s/master’s projects on hardware security

❑ “Fundamentally secure computing architectures” is a key 
direction of scientific investigation and design

23

https://www.youtube.com/watch?v=syAdX44pokE
https://www.youtube.com/watch?v=mgAN4w7LH2o


Mystery #2:  RowHammer
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RowHammer: Another Mystery?

◼ DRAM Row Hammer (or, DRAM Disturbance Errors)

◼ How a simple hardware failure mechanism can create a 
widespread system security vulnerability
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Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
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Most DRAM Modules Are Vulnerable

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
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Recent DRAM Is More Vulnerable
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Why Is This Happening?

◼ DRAM cells are too close to each other!

❑ They are not electrically isolated from each other

◼ Access to one cell affects the value in nearby cells 

❑ due to electrical interference between 

◼ the cells 

◼ wires used for accessing the cells

❑ Also called cell-to-cell coupling/interference

◼ Example: When we activate (apply high voltage) to a row, 
an adjacent row gets slightly activated as well
❑ Vulnerable cells in that slightly-activated row lose a little bit of charge

❑ If row hammer happens enough times, charge in such cells gets drained

31



Higher-Level Implications

◼ This simple circuit-level failure mechanism has enormous 
implications on upper layers of the transformation hierarchy
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CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)  

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer
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A real reliability & security issue 

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

38Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems



One Can Take Over an Otherwise-Secure System

39

Exploiting the DRAM rowhammer bug to 
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


RowHammer Security Attack Example
◼ “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014). 

❑ Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors (Kim et al., ISCA 2014)

◼ We tested a selection of laptops and found that a subset of them 
exhibited the problem. 

◼ We built two working privilege escalation exploits that use this effect. 

❑ Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

◼ One exploit uses rowhammer-induced bit flips to gain kernel privileges on 
x86-64 Linux when run as an unprivileged userland process. 

◼ When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs). 

◼ It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory.

40
Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html


Security Implications

41



More Security Implications

42
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

https://lab.dsst.io/32c3-slides/7197.html


More Security Implications

43
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16 

“Can gain control of a smart phone deterministically”



More Security Implications?
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Where RowHammer Was Discovered…

45Kim+, “Flipping Bits in Memory Without Accessing Them: An 

Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
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How Do We Fix The Problem?
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Some Potential Solutions
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Cost• Make better DRAM chips

Cost, Power• Sophisticated Error Correction

Power, Performance• Refresh frequently

Cost, Power, Complexity• Access counters 



Apple’s Security Patch for RowHammer

◼ https://support.apple.com/en-gb/HT204934

HP, Lenovo, and many other vendors released similar patches

https://support.apple.com/en-gb/HT204934


A Cheaper Solution

• PARA: Probabilistic Adjacent Row Activation

• Key Idea
– After closing a row, we activate (i.e., refresh) one of 

its neighbors with a low probability: p = 0.005

• Reliability Guarantee
– When p=0.005, errors in one year: 9.4×10-14

– By adjusting the value of p, we can provide an 
arbitrarily strong protection against errors

49



Some Thoughts on RowHammer

◼ A simple hardware failure mechanism can create a 
widespread system security vulnerability

◼ How to find, exploit and fix the vulnerability requires a 
strong understanding across the transformation layers

❑ And, a strong understanding of tools available to you

◼ Fixing needs to happen for two types of chips

❑ Existing chips (already in the field)

❑ Future chips

◼ Mechanisms for fixing are different between the two types
50



Really Interested? 

◼ Our first detailed study: Rowhammer analysis and solutions (June 2014)

◼ Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, 
Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An Experimental 
Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer Architecture
(ISCA), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Source Code and Data] 

◼ Our Source Code to Induce Errors in Modern DRAM Chips (June 2014)

◼ https://github.com/CMU-SAFARI/rowhammer

◼ Google Project Zero’s Attack to Take Over a System (March 2015)

◼ Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

◼ https://github.com/google/rowhammer-test

◼ Double-sided Rowhammer

51

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://github.com/google/rowhammer-test


More on RowHammer Analysis

52

◼ Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk 
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors"

Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code 

and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer


Future of Memory Reliability

53https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

◼ Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


Takeaway

Breaking the abstraction layers 
(between components and 
transformation hierarchy levels) 

and knowing what is underneath

enables you to understand and 
solve problems
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Mystery #3: 

Memory Performance Attacks

55



Multi-Core Systems
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A Trend: Many Cores on Chip

◼ Simpler and lower power than a single large core

◼ Parallel processing on single chip → faster, new applications

57

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores



Many Cores on Chip

◼ What we want:

❑ N times the system performance with N times the cores

◼ What do we get today?

58



Unexpected Slowdowns in Multi-Core

59

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service 
in multi-core systems,” USENIX Security 2007.



Three Questions

◼ Can you figure out why the applications slow down if you 
do not know the underlying system and how it works?

◼ Can you figure out why there is a disparity in slowdowns if 
you do not know how the system executes the programs?

◼ Can you fix the problem without knowing what is 
happening “underneath”?

60



Three Questions

◼ Why is there any slowdown?

◼ Why is there a disparity in slowdowns?

◼ How can we solve the problem if we do not want that 
disparity?

❑ What do we want (the system to provide)?

61



Why Is This Important?

◼ We want to execute applications in parallel in multi-core 
systems → consolidate more and more

❑ Cloud computing

❑ Mobile phones

◼ We want to mix different types of applications together

❑ those requiring QoS guarantees (e.g., video, pedestrian detection)

❑ those that are important but less so

❑ those that are less important

◼ We want the system to be controllable and high performance

62
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Why the Disparity in Slowdowns?
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Why the Disparity in Slowdowns?
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Digging Deeper: DRAM Bank Operation
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DRAM Controllers

◼ A row-conflict memory access takes significantly longer 
than a row-hit access

◼ Current controllers take advantage of this fact

◼ Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first

(2) Oldest-first: Then service older accesses first

◼ This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.

*Zuravleff and Robinson, “Controller for a synchronous DRAM …,”US Patent 5,630,096, May 1997.
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The Problem

◼ Multiple applications share the DRAM controller

◼ DRAM controllers designed to maximize DRAM data 
throughput

◼ DRAM scheduling policies are unfair to some applications

❑ Row-hit first: unfairly prioritizes apps with high row buffer locality

◼ Threads that keep on accessing the same row

❑ Oldest-first: unfairly prioritizes memory-intensive applications

◼ DRAM controller vulnerable to denial of service attacks

❑ Can write programs to exploit unfairness



// initialize large arrays A, B

for (j=0; j<N; j++) {

index = rand();

A[index] = B[index];

…

}

68

A Memory Performance Hog

STREAM

- Sequential memory access 

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = j*linesize;

A[index] = B[index];

…

}

streaming

(in sequence)

random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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What Does the Memory Hog Do?
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Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, request size: 64B

128 (8KB/64B) requests of STREAM serviced 

before a single request of RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.



Now That We Know What Happens Underneath

◼ How would you solve the problem?

◼ What is the right place to solve the problem?

❑ Programmer?

❑ System software?

❑ Compiler?

❑ Hardware (Memory controller)?

❑ Hardware (DRAM)?

❑ Circuits?

◼ Two other goals of this course:

❑ Enable you to think critically

❑ Enable you to think broadly

70
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For the Really Interested…

◼ Thomas Moscibroda and Onur Mutlu, 

"Memory Performance Attacks: Denial of Memory Service 
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY), 
pages 257-274, Boston, MA, August 2007. Slides (ppt)

71

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt


Really Interested? … Further Readings

◼ Onur Mutlu and Thomas Moscibroda, 

"Stall-Time Fair Memory Access Scheduling for Chip 
Multiprocessors"
Proceedings of the 40th International Symposium on Microarchitecture
(MICRO), pages 146-158, Chicago, IL, December 2007. Slides (ppt)

◼ Onur Mutlu and Thomas Moscibroda, 

"Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems”

Proceedings of the 35th International Symposium on Computer Architecture
(ISCA) [Slides (ppt)]

◼ Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut 
Kandemir, and Thomas Moscibroda, 

"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Takeaway

Breaking the abstraction layers 
(between components and 
transformation hierarchy levels) 

and knowing what is underneath

enables you to understand and 
solve problems
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Mystery #4:  DRAM Refresh
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DRAM in the System
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A DRAM Cell

◼ A DRAM cell consists of a capacitor and an access transistor

◼ It stores data in terms of charge status of the capacitor

◼ A DRAM chip consists of (10s of 1000s of) rows of such cells
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DRAM Refresh

◼ DRAM capacitor charge leaks over time

◼ The memory controller needs to refresh each row periodically 
to restore charge

❑ Activate each row every N ms

❑ Typical N = 64 ms

◼ Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling 
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First, Some Analysis

◼ Imagine a system with 1 ExaByte DRAM (2^60 bytes)

◼ Assume a row size of 8 KiloBytes (2^13 bytes)

◼ How many rows are there?

◼ How many refreshes happen in 64ms?

◼ What is the total power consumption of DRAM refresh?

◼ What is the total energy consumption of DRAM refresh 
during a day?

◼ A good exercise… Optional homework...

◼ Brownie points from me if you do it...

78



Refresh Overhead: Performance
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8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Refresh Overhead: Energy
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15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



How Do We Solve the Problem?

◼ Observation: All DRAM rows are refreshed every 64ms.

◼ Critical thinking: Do we need to refresh all rows every 64ms?

◼ What if we knew what happened underneath and exposed 
that information to upper layers?
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Underneath: Retention Time Profile of DRAM

82Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Aside: Why Do We Have Such a Profile?

◼ Answer: Manufacturing is not perfect

◼ Not all DRAM cells are exactly the same 

◼ Some are more leaky than others

◼ This is called Manufacturing Process Variation
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Opportunity: Taking Advantage of This Profile

◼ Assume we know the retention time of each row exactly

◼ What can we do with this information?

◼ Who do we expose this information to?

◼ How much information do we expose?

❑ Affects hardware/software overhead, power consumption, 
verification complexity, cost

◼ How do we determine this profile information?

❑ Also, who determines it?
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Retention Time of DRAM Rows

◼ Observation: Overwhelming majority of DRAM rows can be 
refreshed much less often without losing data

◼ Can we exploit this to reduce refresh operations at low cost?
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Only ~1000 rows in 32GB DRAM need refresh every 64 ms,

but we refresh all rows every 64ms
Key Idea of RAIDR: Refresh weak rows more frequently,

all other rows less frequently 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



RAIDR: Eliminating 

Unnecessary DRAM Refreshes

86

Liu, Jaiyen, Veras, Mutlu, 
RAIDR: Retention-Aware Intelligent DRAM Refresh
ISCA 2012.

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf


1. Profiling: Identify the retention time of all DRAM rows

→ can be done at design time or during operation

2. Binning: Store rows into bins by retention time

→ use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different 
bins at different rates

→ check the bins to determine refresh rate of a row

RAIDR: Mechanism
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1.25KB storage in controller for 32GB DRAM memory

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



RAIDR: Results and Takeaways
◼ System: 32GB DRAM, 8-core; Various workloads

◼ RAIDR hardware cost: 1.25 kB (2 Bloom filters)

◼ Refresh reduction: 74.6%

◼ Dynamic DRAM energy reduction: 16%

◼ Idle DRAM power reduction: 20%

◼ Performance improvement: 9%

◼ Benefits increase as DRAM scales in density
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Reading for the Really Interested

◼ Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2012. Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf


Really Interested? … Further Readings

◼ Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, August 2013. 
Slides (pptx) (pdf) Video

◼ Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson, 
Yoongu Kim, and Onur Mutlu,

"Improving DRAM Performance by Parallelizing 
Refreshes with Accesses"
Proceedings of the 20th International Symposium on High-Performance 
Computer Architecture (HPCA), Orlando, FL, February 2014. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf


Takeaway I

Breaking the abstraction layers 
(between components and 
transformation hierarchy levels) 

and knowing what is underneath

enables you to understand and 
solve problems
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Takeaway II

Cooperation between 

multiple components and layers 

can enable 

more effective 

solutions and systems
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Recap: Four Mysteries

◼ Meltdown & Spectre (2017-2018)

◼ Rowhammer (2012-2014)

◼ Memory Performance Attacks (2006-2007)

◼ Memories Forget: Refresh (2011-2012)
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Takeaways
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Some Takeaways

◼ It is an exciting time to be understanding and designing 
computing platforms

◼ Many challenging and exciting problems in platform design

❑ That noone has tackled (or thought about) before

❑ That can have huge impact on the world’s future

◼ Driven by huge hunger for data and its analysis (“Big Data”), 
new applications, ever-greater realism, …

❑ We can easily collect more data than we can analyze/understand

◼ Driven by significant difficulties in keeping up with that 
hunger at the technology layer

❑ Three walls: Energy, reliability, complexity
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