Design of Digital Circuits Lab 3 Supplement: Verilog for Combinational Circuits

> Prof. Onur Mutlu ETH Zurich Spring 2019 19 March 2019

What Will We Learn?

- In Lab 3, you will design more combinatorial circuits.
- Convert a binary number to 7-Segment display encoding.
- Implement a circuit to drive the 7-Segment display.
- Show the addition result on the 7-Segment display.

7-Segment Display

- A 7-segment display consists of seven separate LEDs in a single package.
- Each of the seven segments is labeled using the letters a, b, c,

d, e, f, g.

Representing Different Numbers

We can represent different characters or digits by making

particular segments glow at the same time.

Binary Number to 7-Segment Encoding

• As a first step, you will fill in the truth table that converts a

binary number to a 7-segment encoding.

Note: A segment should glow when the corresponding output is logic-0.

Drive the 7-Segment Display

Design a "decoder" that receives a 4-bit input and returns a 7-bit output signals, and converts a binary number to a 7-segment

display encoding.

Show the Results of the Addition

- Show the result of our adder circuit from Lab 2 using the 7segment display. You need one overflow bit on a LED.
- Attach an instance of the decoder to the output of the adder.

Hint: Create a new "top" module that will create an instance of

each module and make appropriate connections between them.

- In Lab 3, you will design more combinatorial circuits.
- Convert a binary number to 7-Segment display encoding.
- Implement a circuit to drive the 7-Segment display.
- Show the addition result on the 7-Segment display.
- In the report, you will learn how to choose only one display to show your input number on.

Design of Digital Circuits Lab 3 Supplement: Verilog for Combinational Circuits

> Prof. Onur Mutlu ETH Zurich Spring 2019 19 March 2019