Design of Digital Circuits Lab 3 Supplement:
 Verilog for Combinational Circuits

Prof. Onur Mutlu

ETH Zurich
Spring 2019
19 March 2019

What Will We Learn?

- In Lab 3, you will design more combinatorial circuits.
- Convert a binary number to 7-Segment display encoding.
- Implement a circuit to drive the 7-Segment display.
- Show the addition result on the 7-Segment display.

7-Segment Display

- A 7-segment display consists of seven separate LEDs in a single package.
- Each of the seven segments is labeled using the letters a, b, c, d, e, f, g.

Representing Different Numbers

- We can represent different characters or digits by making particular segments glow at the same time.

$$
\begin{aligned}
& \text { O19j4507 } \\
& \text { OMOHTOEF }
\end{aligned}
$$

Binary Number to 7-Segment Encoding

- As a first step, you will fill in the truth table that converts a binary number to a 7 -segment encoding.
- Note: A segment should glow when the corresponding output is logic-0.

Drive the 7-Segment Display

- Design a "decoder" that receives a 4-bit input and returns a 7-bit output signals, and converts a binary number to a 7-segment display encoding.

Show the Results of the Addition

- Show the result of our adder circuit from Lab 2 using the 7segment display. You need one overflow bit on a LED.
- Attach an instance of the decoder to the output of the adder.

- Hint: Create a new "top" module that will create an instance of each module and make appropriate connections between them.

Last Words

- In Lab 3, you will design more combinatorial circuits.
- Convert a binary number to 7-Segment display encoding.
- Implement a circuit to drive the 7-Segment display.
- Show the addition result on the 7-Segment display.
- In the report, you will learn how to choose only one display to show your input number on.

Design of Digital Circuits Lab 3 Supplement:
 Verilog for Combinational Circuits

Prof. Onur Mutlu

ETH Zurich
Spring 2019
19 March 2019

