

1

LAB 6 – Testing the ALU

Goals
• Learn how to write testbenches in Verilog to verify the functionality of the design.

• Learn to find and resolve problems (bugs) in the design.

To Do
• You will write a Verilog testbench that will verify that your ALU from Lab 5 works

correctly.

• We will provide an ALU code that contains bugs. Using the same testbench you
used for testing the ALU from Lab 5, you will simulate the buggy ALU to find the
bugs and correct them.

• Follow the instructions. Paragraphs that have a gray background like the current
paragraph denote descriptions that require you to do something.

• To complete the lab, you have to show your work to an assistant before the deadline.
The required tasks are clearly marked with gray background throughout this
document.

• You will have an additional exercise in the report.

Introduction
We have seen that it is impossible in practice to verify the functionality of the ALU
designed in Lab 5 using direct observation like we did in the earlier lab exercises. What we
need is a method that automatically checks whether the circuit works correctly. This
method is usually called functional verification.
The basic idea of software-based functional verification is not fundamentally different than
what we did so far to check the correctness of a circuit (i.e., manually checking the output
for different inputs). In this lab, we will perform functional verification in an automatic
way. We will implement a Verilog module, i.e., testbench, that would 1) apply arbitrary
inputs to the circuit that we are testing (unit-under-test (UUT)) and 2) check the correctness
of the output. The inputs to test with could be either generated inside the testbench module
using behavioral modeling in Verilog or loaded from a file as
test-vectors, which is a set of input data and the expected result. If the output of the UUT
matches the expected output for all test cases (e.g., all possible inputs), we could say that
the implementation is correct. Making the functional verification automatic enables more
test cases to be checked in a short amount of time compared to the manual effort. It is
especially important when the possible input space is too large.
There are additional advantages in performing functional verification in software. On an
FPGA, we can only observe the outputs of the top module. In contrast, when we use a
software tool that simulates our circuit, we also have access to all internal modules. It
makes tracing the bug much easier by reducing the testing time significantly.

2

So far, we have used Verilog to describe the actual circuit. As you have learned in class,
we can also use Verilog to describe testbench modules that:

• instantiate the UUT, i.e., the module that you would like to test

• define inputs to test the UUT with

• collect the outputs

• compare the outputs with the expected results
In this exercise, we will implement a testbench in Verilog and simulate our ALU circuit
from Lab 5. If there are mistakes in the circuit, you can find what went wrong and correct
the mistakes.

Preparation1
In this lab exercise, we will continue using the Verilog description of the ALU from
Lab 5. You are expected to finish that exercise before starting with the testbench.
Download the .zip file using the link below. The file includes a template/example for a
testbench file, the template for the test-vectors, and a Verilog description of an ALU, which
contains some bugs.
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=lab6_files.zip

Part 1 - Expected Results
Before we can start with writing our testbench, we need to prepare a set of inputs that we
know the expected results for. Typically, for large projects, we could use a golden-model
to find the expected result for a given input. A golden model could be any implementation
that we know is correct. For example, it could be another
previously-tested Verilog implementation of the circuit or a program written in a high-level
language (e.g., Java, C++, Matlab, Python). We could also use a systematic way of
generating several inputs so that the circuit is verified thoroughly2.
In this exercise, you will be given a set of inputs for the ALU designed in Lab 5. Determine
the correct ‘result’ for each of these inputs and, using a text editor, enter them to the file
‘testvectors_hex.txt’ that we provide. This file contains inputs for the ALU and your task
is filling in the expected value of ‘result’ in hexadecimal notation.
Note that our ALU has an additional single-bit output, called ‘zero’. The expected value of
that output can be easily determined based on the ‘result’. Thus, we can directly set its
expected value within the testbench. If the expected value of ‘result’ is all zeros, the
expected value of the signal ‘zero’ should be one.

1 If Vivado does not find the constraints file, you have to check “set as target
constraints file” on the desired .xdc.
2 As mentioned earlier, simulating each and every possible input is not practical.
Therefore, it is important to find a subset of all inputs that verify most of the
functionality. Inputs are chosen so that all functions of the circuit are tested, all limits and
special cases are covered.

3

Part 2 - Preparing the Testbench
In this part, we will create a testbench module and implement our testing logic.

Create a new RTL project and make sure Verilog is selected as the simulator language:

Since you want to test the ALU you implemented in Lab 5, you need to import your ALU
module as a source. Do that within the dialog you see above. Then, keep clicking “Next”
and complete project creation by clicking “Finish”.
After creating the project, you can start implementing the testbench. For this exercise, we
provide you a testbench template that is almost complete.
To use the provided file, you first have to add the file to the project. Click “Add Sources”
on the left-hand side and select “Add or create simulation sources”. Then browse to
ALU_test.v that you downloaded.
The new file will not be immediately visible in the project hierarchy. This is because, by
default, the hierarchy only shows the “Design Sources”. To view “Simulation Sources”,
expand the corresponding folder. After adding the ALU from Lab 5 as a source, you should
see both the ALU and the testbench in the project hierarchy.
There are a few modifications that you need to make in the testbench in order to simulate
the ALU properly.

4

Open the testbench file ALU_test.v and make the following modifications. These
modifications are also indicated as comment lines in the testbench file.

1. Declare an array that is big enough to hold all our test cases and can store the inputs
aluop, a, b and the expected value of the output exp_result. Declaring arrays in
Verilog is not different from declaring multi-bit signals. For example, to declare a
4-element array of 5-bit regs, you need to write:
reg[4:0] example_array [0:3];

2. Add a statement that reads the contents of the ‘testvectors_hex.txt’ file into the
array declared above. Hint: You can use the readmemh function (check online
documentation for how to use). When reading the file, you can either specify the
full path to the file or add the file to the Vivado project and directly use the file
name. Note that the last line of the file is “X”, which is needed to specify the end
of the file for the testbench.

3. Generate the value of exp_zero from the exp_result. A simple assign statement
should be sufficient to do this.

4. In the testbench, instantiate your ALU from Lab 5. Ensure that you connect the test
signals correctly to the module you instantiated.

So far, we developed a testbench that will apply the vectors in the “testvectors_hex.txt” file
and check the actual outputs of our ALU against what we expect. Now, it is time to simulate
and see the results.

Part 3 - Simulating the ALU
There are many commercial software-based simulators that can be used to simulate Verilog
circuits. In this exercise, we use the built-in simulator from Vivado.
Make sure that the ALU_test module on the hierarchy is selected as “top simulation
module”. On the Flow Navigator window, there will be a ‘Simulation’ section. Expand
‘Run Simulation’ and select ‘Run Behavioral Simulation’.
If everything works fine, you should see a window similar to the one below. In order to
view the entire simulation period, you may have to right-click the waveforms window and
select ‘Full View’:

5

Fig.1 Vivado main window

The bottom part of Vivado contains the Tcl console. This is very important, as the $display
messages within the testbench will be displayed in this window3. If for some reason the
simulator did not start, it most probably means that the simulator has encountered an error
while compiling your Verilog code. The most common cause for this is a syntax error in
your testbench. Scroll up on the console to find the reason why the code did not compile.
Exit the simulator, correct the error in the editor and restart the simulator by selecting ‘Run
Behavioral Simulation’.
Since in the testbench we have a $finish statement, the simulator will automatically stop
once the $finish is reached4.
In case you want to simulate for a longer time, on the top part of the Vivado window you
can click on ‘Run all’ or press F3

so that the simulator continues the simulating.

Examine the console, make sure that the circuit is working correctly.

3 If you look carefully at Fig.1 you will see that the simulation has completed with
1 error. You could scroll up and see the error messages displayed during the simulation
that will help you identify the problems.
4 This happens when all the test-vectors have been exhausted.

6

Part 4 - Debugging Problems
Using a simulator can help you locate the problems in your circuits. You can not only
observe the outputs but the state of all internal variables as well.
Now, your task is performing a simulation to find and correct bugs in a Verilog module.
The ALU we provide, ‘bad_ALU.v’, is supposed to work the same way as your ALU, but
it contains some intentional mistakes that result in incorrect behavior in some cases.
Add the source ‘bad_ALU.v’ into your project. Modify your testbench to instantiate
bad_ALU instead of your ALU. Simulate the circuit and see the cases that result in errors.
There should be at least 7 errors (in 12 test-vectors). The console will display all cases that
resulted in an error. In addition to the console, you can also use the waveform. By default,
the waveform window will display all values with a particular radix that depend on the type
of the signal. To change the radix, you can right-click on the signal and hover over radix.
You can select multiple signals and quickly change the radix of all of them at the same
time.
By selecting the name of your instance (typically called uut) in the hierarchy browser, you
will be able to select internal signals of the bad_ALU in the objects window. This can be
seen in the figure below.

Fig.2 uut is highlighted in Vivado, and internal signals of the bad_ALU are selected

You can add any signal into the waveform by right-clicking on the signal and then clicking
“Add to the Wave Window”. The waveform viewer will not immediately display values
for the signals you add. To see the values of the newly added signals in the waveform, you

7

should restart the simulation to let the simulator sample these new signals. You can restart
the simulation by clicking the button we show below, which is located at the top of the
window in Vivado, or pressing the shortcut Ctrl+Shift+F5:

After restarting the simulation, you need to run the simulation again. Now, you should be
able to see all the waves.
Find and correct the errors. The code should be very close to working and should not
require a major re-write, but just a few small corrections5. Show an assistant the working
circuit.
Is there anything else wrong with the Verilog code of bad_ALU? Is it possible that the
Verilog code is not suitable for synthesis even though it simulates correctly? (Hint: Look
in the Design Summary to compare the performance and efficiency of the circuit with your
ALU implementation in Lab 5.)

Last Words
You have just used a simulator to verify and correct a Verilog module. A simulator is able
to run many thousands of test-vectors in a short period of time and is therefore much faster
than verifying all outputs manually. Additionally, the simulator allows peeking inside the
circuit allowing you to observe any internal nodes during operation.
However, the simulator alone is insufficient to test the circuit. You need a testbench that
can automatically check if the outputs are correct, and most importantly, a way to generate
meaningful test-vectors and corresponding expected responses. In practical designs,
developing testbenches and automated verification flows are an important part of a digital
design. Typically, more than half of the design time is spent in verification.

5 As the name implies the code is ‘bad’. Do not take this code as an example of
how to write Verilog.

