
Design of Digital Circuits
Lab 7 Supplement:

Writing Assembly Code

Prof. Onur Mutlu

ETH Zurich

Spring 2019

16 April 2019

What Will We Learn?

◼ In Lab 7, you will write MIPS Assembly code

◼ You will use the MARS simulator to run your code

◼ References

❑ H&H Chapter 6

❑ Lectures 9 and 10

◼ https://safari.ethz.ch/digitaltechnik/spring2019/doku.php?id=sche
dule

❑ MIPS Cheat Sheet

◼ https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?
media=mips_reference_data.pdf

2

https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=mips_reference_data.pdf

An Example of MIPS Assembly Code

◼ Add all the even numbers from 0 to 10

❑ 0 + 2 + 4 + 6 + 8 + 10 = 30

3

int sum = 0;

for(int i = 0;i <= 10;i += 2)

{

sum += i;

}

i=$s0; sum=$s1

addi $s0, $0, 0

addi $s1, $0, 0

addi $t0, $0, 12

loop: beq $s0, $t0, done

add $s1, $s1, $s0

addi $s0, $s0, 2

j loop

done:

High-level code MIPS assembly

◼ We first load the base address of the array into a register
(e.g., $s0) using lui and ori

Recall: Arrays: Code Example

4

int array[5];

array[0] = array[0] * 2;

array[1] = array[1] * 2;

array base address = $s0

Initialize $s0 to 0x12348000

lui $s0, 0x1234

ori $s0, $s0, 0x8000

lw $t1, 0($s0)

sll $t1, $t1, 1

sw $t1, 0($s0)

lw $t1, 4($s0)

sll $t1, $t1, 1

sw $t1, 4($s0)

High-level code MIPS assembly

Part 1: Simple Program with Limited Set of Instructions

◼ Write MIPS assembly code to compute the sum
𝐴 + 𝐴 + 1 +⋯ 𝐵 − 1 + 𝐵, given two inputs 𝐴 and 𝐵.

◼ Example

❑ 𝐴 = 5, 𝐵 = 10➔ 𝑆 = 5 + 6 + 7 + 8 + 9 + 10 = 45

◼ For this exercise, you can use a subset of MIPS
instructions: ADD, SUB, SLT, XOR, AND, OR and NOR,
which are the instructions supported by the ALU you
designed in the previous labs

◼ Additionally, you are allowed to use J, ADDI and BEQ

5

Part 2: A More Complex Program (I)

◼ Write MIPS assembly code to compute the Sum of Absolute
Differences (SAD) of two images

◼ Hints

❑ Recall the function calls and the use of the stack in Lecture 10

❑ Read how to implement recursive function calls in H&H 6.4

6

I1

I2 S(x, y) = I1 x, y − I2(x, y)

S

− =

Part 2: A More Complex Program (II)

◼ We provide you with a template with 4 TODO parts that
you need to complete.

❑ Initializing data in memory.

❑ Implement abs_diff() rountine. (from SAD code in manual)

❑ Implement the recursive_sum() routine. (from SAD code in manual)

❑ Complete the main function to do the corresponding function
calls.

◼ For some sections, you can choose between using our code
or writing your own.

❑ No extra credit for writing your own code.

❑ But it will be a good learning experience.

7

Last Words

◼ In this lab, you will do what a compiler does: transforming
high level code to MIPS assembly

◼ Exercise 1: Write simple code and get familiar with the
MARS simulator

◼ Exercise 2: Sum of Absolute Differences of two images

◼ In the report, you will compute Sum of Absolute
Differences of two colored images.

8

Design of Digital Circuits
Lab 7 Supplement:

Writing Assembly Code

Prof. Onur Mutlu

ETH Zurich

Spring 2019

16 April 2019

Backup Slides

10

MIPS R-Type Instructions

11

Description: Add two registers and store the result in a register $d.

Operation: $d = $s + $t; advance_pc (4);

Syntax: add $d, $s, $t

Description: Subtract $t from $s and store the result in $d.

Operation: $d = $s - $t; advance_pc (4);

Syntax: sub $d, $s, $t

Description: If $s is less than $t, $d is set to one. $d gets zero otherwise.

Operation:
if $s < $t: $d = 1; advance_pc (4); else: $d =
0; advance_pc (4);

Syntax: slt $d, $s, $t

Description: Bitwise and of $s and $t and store the result in the register $d.

Operation: $d = $s & $t; advance_pc (4);

Syntax: and $d, $s, $t

Description: Bitwise logic or of $s and $t and store the result in $d.

Operation: $d = $s | $t; advance_pc (4);

Syntax: or $d, $s, $t

Description: Exclusive or of $s and $t and store the result in $d.

Operation: $d = $s ^ $t; advance_pc (4);

Syntax: xor $d, $s, $t

ADD SUB

SLT XOR

AND OR

MIPS I-Type Instructions

12

Description:
Add sign-extended immediate to register $s and store the result
in $t.

Semantics: $t = $s + imm; PC=PC+4;

Syntax: addi $t, $s, imm

Description: Branch if the contents of $s and $t are equal.

Semantics: if $s == $t: advance_pc (offset << 2)); else: PC=PC+4;

Syntax: beq $s, $t, offsetADDI BEQ

MIPS J-Type Instructions

13

Description: Jump to the address.

Semantics: PC = nPC; nPC = (PC & 0xf0000000) | (target << 2);

Syntax: j target J

