

P

LAB 8 – Full System Integration

Goals

● Learn how a processor is built.

● Learn how the processor communicates with the outside world.

● Implement the MIPS processor and demonstrate a simple “snake” program on the FPGA starter
kit.

To Do

● Learn the components of the MIPS processor. The ALU was designed in Lab 5. Several other
components are given.

● Assemble the components of the MIPS processor.

● Make the changes to the processor so that memory mapped I/O write operations can be performed.

● If everything is correct, you should observe a tiny “snake” that loops on the 7-segment LED.

● Make changes to the system to control the speed at which the snake crawls. The speed should be
based on the amount specified by the switches on the board.

● [Optional] For the challenge seekers, try to change the snake's motion pattern. Additionally, you
could try to change the direction of snake’s motion based on a switch input.

● Follow the instructions. Paragraphs that have a gray background like the current paragraph denote
descriptions that require you to do something.

● This lab spans two lab sessions.

● To complete each lab session, you have to show your work to an assistant before the deadline.
You will get up to 7 points for each lab session.

Introduction

This is it. This is the exercise we have been working towards the entire semester. During this week's
exercise, we will finally put together a microprocessor and run your own programs. In order to see the
processor in live action, we will add some I/O interfaces to control and display a crawling snake on the 7-
segment LED. Figure 1 shows a simplified block diagram of how the final system looks. This lab is
divided into two parts spread over two weeks. In the first part, we put together the basic building blocks of
a processor and try to run a “crawling snake” program. In the second part, we extend the I/O functionality
to control the speed of the crawling snake using the switches present on the FPGA starter kit.

Figure 1. Simplified block diagram of this exercise

P

The MIPS processor that we will implement is closely based on the architecture presented in your textbook;
specifically, the single-cycle processor depicted on page 383 in Figure 7.11. In the example code, we
adhere to the same signal names and organization as the figure in the book to make it easier to follow the
given source code. The processor itself is not terribly complicated, and its performance pales in comparison
to a modern Intel processor. However, it is far from being useless. The MIPS that we implement runs faster
than 10 MHz, and can execute 32-bit instructions. This easily beats state-of-the-art processors from the
early 1980s (e.g., Intel 8086 and Motorola 68000). For example, anything that landed on the moon had a
much less capable processor. The system clock on the FPGA board is 50 MHz, which is slightly faster than
what we can use for our processor (the critical path is around 25 ns); but the provided clock_div block
generates a clock that is 4 times slower (12.5 MHz), so you do not have to design it separately.

While the processor itself provides interesting functions, it alone cannot communicate with the external
world. It requires input and output interfaces. To this extent, we modify the MIPS processor to have
standard I/O signals. In this standardized interface, we have a separate data output (IOWriteData) and
data input (IOReadData) bus (each 32 bits wide). Since we want to address multiple I/O resources we will
also provide an address signal IOAddr. This address helps us to identify which I/O resource we are
accessing (writing to the 7-segment display or reading from the register that holds the direction input, etc.).
Finally, there is a signal IOWriteEn that tells us that we are actually performing a write operation (not a
read I/O operation).

We use two registers (the challenge requires another register): (i) to store the current value to be displayed
on the 7-segment display and (ii) the speed level for the crawling snake. We design the I/O interface
controller that ties all these circuits together and enables the processor to access the various I/O circuits that
we have added.

It is important to note that we could do most of these changes also inside the processor. We add these
changes into another hierarchy because we do not want to re-design the processor every time we have a
new I/O device. In other words, the MIPS processor (with the I/O interface) stays constant even if we
completely change the I/O circuits.

P

SESSION I

THE CRAWLING SNAKE

In this first part, we put together the building blocks of the MIPS processor. For this exercise, we provide
you a Vivado project that already contains many parts of the processor. Once you examine the code, you
realize that there is nothing very mysterious about any part of it, in fact you could easily write all of it
without problems. However, the instructions will guide you through the exercise by explicitly saying which
parts of the code are relevant for which task. Note that the given code and architecture are not necessarily
perfect.

Go to the course webpage and download the .zip file containing the archive with the Vivado project
directory. Extract the directory in your working directory and start Xilinx Vivado. Open the project file
lab8.xpr that is among the extracted files.

In the directory of the extracted files, you will find the following file structure:

top.v Top level hierarchy that connects the MIPS processor to the I/O on the
FPGA board.
You will modify this file for Part 2.

top.xdc Constraints file of the top level.
You will modify this file for Part 2.

MIPS.v The main processor.
For Part 1 you have to add code inside of this file only.

DataMemory.v
(datamem_h.txt)

The initial content of the data memory (composed of 64 32-bit words).
The datamem_h.txt file contains the data part of the assembly program
in a hexadecimal form. This module “loads” the data. You will only
have to modify the .txt file if you do the challenges.

InstructionMemory.v
(insmem_h.txt)

The ROM (composed of 64 32-bit words) that contains the program.
The insmem_h.txt file contains the assembly instructions we want to run
on the MIPS processor in a hexadecimal form. This module “loads” the
instructions. You will modify the .txt file for Part 2.

RegisterFile.v Register file that creates 2 instances of reg_half.v as read ports and has
1 write port.
This is the implementation of a register. You do not need to modify it.

reg_half.v
reg_half.ngc

Component describing a single port memory and binary description of
how it is mapped in the FPGA.
These are used to implement the register. You do not need to modify it.

ALU.v ALU similar to the one from Lab 5.
You should not change anything in this file, but if you want you can use
your own implementation (just make sure that it works).

ControlUnit.v The unit that does the instruction decoding and generates nearly all the
control signals. Table 7.5 on page 379 lists most of them and their truth
tables (only the AluOp signal is generated differently in the exercise).
This is just a combinational circuit and it’s already given, you don’t
need to change anything here.

snake_patterns.asm Assembly program corresponding to the datamem_h.txt and
insmem_h.txt dump files that displays a crawling snake on the 7-
segment display when all the parts are connected properly.
You have to modify this file for Part 2, where you will also learn how to
generate the dump files.

P

MIPS Processor

In this part of the exercise we build the MIPS processor, which is implemented in the provided file MIPS.v.
This file, however, is incomplete since the main blocks are not yet connected (instantiated). Figure 2 shows
the corresponding block-level overview of the MIPS processor. Note that the output signals are not
connected because later in this exercise you have to decide how they should be implemented according to
their description.

To complete building the MIPS processor, you have to finish the following tasks.

Open the file MIPS.v. Note that all the required signals are already declared at the top of the module. Use
the block diagram in Figure 2 as a reference to add the correct instantiation for:

● Instruction Memory: Note that the address of the instruction to be read is determined by the PC
(program counter). The PC is always incremented by 4 to fetch the next instruction from the memory.
We add 4 instead of 1 because each address in memory stores one byte and each MIPS instruction
requires four bytes of memory. Therefore, we can throw away the 2 least significant bits of the address
(because they are not necessary here) and use the 6 most significant bits (7 to 2) for its 64 words.

● ALU: The given (or your) ALU from Lab 5 has 4 bits for AluOp, whereas the controller generates a
six-bit value that is the function field of an R-type instruction. You will have to select the ‘correct’ four
bits to connect here1.

● Data Memory: Just like the instruction memory, use the 6 most significant bits (7 to 2) of the actual
address.

● Control Unit.

Memory Mapped I/O

In order to see the processor in action, we must extend the MIPS processor previously built to communicate
with the external peripherals (e.g., 7-segment LEDs, switches, buttons). We will use a simple memory
mapped I/O architecture, i.e., part of the memory address space is reserved for I/O operations. When data is
written to or read from this address space, it is intercepted by the circuit and re-routed to the I/O circuitry.
To complete this part of the exercise you must complete the signal assignments for IsMemWrite,
IOWriteData, IOAddr, IOWriteEn.

Open the file MIPS.v and complete the assignments. The code is sufficiently commented to help you
complete the incomplete signals. For example, the IsIO signal has already been implemented. In our
processor, we reserve the address range 0x00007FF0 to 0x00007FFF for I/O operations.

1 At the moment, we are only using 7 ALU instructions, and the ALU does not need all 6 signals of the
Function field (of an R-type instruction). In Lab 9, we will need to modify the ALU a little bit and add
support for more bits. We wouldn’t want to also modify the Controller at that time, so we prepare for the
future.

P

 F
ig

 2
. B

lo
ck

 d
ia

gr
am

 o
f t

he
 M

IP
S

pr
oc

es
so

r t
ha

t w
e

w
ill

 im
pl

em
en

t i
n

th
is

 e
xe

rc
is

e.
 T

hi
s

di
ag

ra
m

 is
 a

lm
os

t i
de

nt
ic

al

to
 F

ig
 7

.1
4

on
 p

ag
e

38
7

of
 y

ou
r t

ex
tb

oo
k

Si
gn

 E
xt

en
d

Adder

A1 A2 A3 W
D3

RD
1

RD
2

W
E

A W
D

RD

W
E

Da
ta

M
em

or
y

O
p Co

nt
ro

l
Un

it

Fu
nc

t

A
RD

In
st

ru
ct

io
n

M
em

or
y

0 1

ALU

0 1

0 1

0 1

0 1

Adder

<<
2

4
<<

2

Ju
mp Me
mt
oR
eg

Me
mW
ri
te

Br
an
ch

AL
UC
on
tr
ol

AL
US
rc

Re
gD
st

Re
gW
ri
te

Instr In
st
r[
25
:2
1]

In
st
r[
20
:1
6]

In
st
r[

20
:1
6]

In
st
r[

15
:1
1]

In
st
r[
15
:0
]

In
st
r[
25
:0
]

AL
UR
es
ul
t

Wr
it
eD
at
a

ReadData

Result

PC
Sr
c

Sr
cB

Zero

Sr
cA

PC
Pl
us

4

PCCalc

PCbar

PCJump

PC
Br
an
ch

Si
gn
Im
m

PC

PCPlus4[31:28]

In
st
r[
31

:2
6]

In
st
r[
5:

0]

CL
K

RE
SE
T

IO
Re
ad
Da
ta

IO
Re
ad
Da
ta

 IsIO(ALUResult[31:4])

0 1

Re
ad
Me
mI
O IO

Wr
it
eD
at
a

IO
Ad
dr

IO
Wr
it
eE
n

Re
g

Fi
le

P

Crawling snake on the 7-segment LED

In this first part of the exercise, we only need a 28-bit output register that contains the value to be sent to
the four 7-segment LEDs. We assign a separate address for this register as given in the table below:

Address Direction Width Description

0x00007FF0 out 28 bits Value to be sent to the 7-segment display.

Therefore, the following instruction in assembly program:
sw $t0, 0x7FF0($0)

writes the content of the register $t0 to the address 0x00007FF02, which represents this other register
outside of the processor. Additional external circuitry (already implemented in top.v) converts these values
so that they can be displayed on the FPGA board. In this exercise, we will not use the decoder circuit from
Lab 3, since there are no digits to be displayed. We directly use the contents of the 28-bit register to
simulate the crawling snake.

It would be easy if the four 7-segment LEDs had individual signal lines. In practice, displays are rarely
driven by such parallel connections. Since humans can only distinguish movement that is slower than 20-50
ms, each of the four 7-segment LEDs is enabled sequentially. On the FPGA board, all four displays have a
separate enable pin (AN3, AN2, AN1 and AN0), and the segment connections are shared among all
displays. The enable pins are active low, meaning that the segment displays the number if the
corresponding AN signal is 0 and does not display anything if it is 1. To display all four numbers, we need
four clock cycles. In the first cycle, AN3 is set to 0, all others are set to 1 and the pattern to be displayed is
applied. In the next clock phase only AN2 is activated and the second number is applied, and so on. Once
the last number is displayed the loop starts with the first number again. We will see our pattern as long as
this process is repeated swiftly enough (faster than 20 ms). This logic has already been implemented for
you in the top.v file and the top.xdc contains the correct mapping.

The content of the 28-bit register defines the 7-segment display as follows:

2 We are using the ‘Compact Data at Address 0’ configuration of the MIPS. In this configuration, the
MMIO address range is from 0x00007FF0 to 0x00007FFF. We will use this range as it is easier for us
(only 16-bit addresses are used).

P

Assembly Program

We have a processor that is able to do memory mapped I/O; we have added an interface that uses the 7-
segment display and several buttons. Now we need to make everything work. For this purpose, we need an
assembly program that implements the crawling snake. This has already been implemented for you in the
snake_patterns.asm file. Try to understand the code, it has been sufficiently commented. The files
datamem_h.txt and insmem_h.txt contain the data and instruction op-codes corresponding to the file
snake_patterns.asm. We will learn how to generate these hexadecimal dump files in Part 2.

Generate the programming file in Xilinx Vivado and program the FPGA. You should see a crawling snake
moving as shown in the figure above. Fix any problems you might have. Show your results to an assistant.

P

SESSION II

SPEED UP THE SNAKE

In this part of the exercise, we will try to control the snake's speed. The idea is to use two switches on the
starter kit to control 4 different speed values. The tasks are the following:

1. Extend the top-level hierarchy to accept inputs from switches and transfer the values to registers.

2. Understand the provided assembly program snake_patterns.asm and modify it to accept a 2-bit
input value from the switches. Based on the input, increase or decrease the speed of the snake.

3. Optionally, you have two challenge tasks to complete.

Extending the I/O functionalities

For the crawling snake exercise in the previous part, we only had to store the value to drive the 7-segment
display appropriately. In this part, we need to read the values from the switches on the starter kit. For this
purpose, we add an additional I/O register to the MIPS processor that is 2 bits wide (1 bit for each switch)
and assign an address. The table of I/O registers is as follows:

Address Direction Width Description

0x00007FF0 out 28 bits Value to be sent to the 7-segment display.

0x00007FF4 in 2 bits Speed step 0, 1, 2 or 3.

In the top.v file, create an input signal for the switches. Depending on the value of IOAddr set the
IOReadData signal that connects to the MIPS processor. Modify the XDC file so that the input signal is
connected to the correct FPGA pins. Synthesize the project to check for any errors. Note: IOReadData is a
32-bit signal, however we use only the 2 LSBs to read the status of the switches.

Pin Label on board Description

V16 SW1 Slide switch, MSB of speed step amount.

V17 SW0 Slide switch, LSB of speed step amount.

Modifying the Assembly program

The assembly code from Part 1 simply loops continuously with no controls. Therefore, we need to modify
the code to accept the input from the switches and accordingly control the speed of the crawling snake.

Using the MARS environment, modify the assembly program snake_patterns.asm so that it will read in the
2-bit switch value using memory mapped I/O. Then, depending on the input, modify the delay loop such
that the snake moves faster or slower.

Hint: You can use the MARS environment to check your modified code. Just remember to test it with a
smaller loop counter value.

Your modified program needs to be copied into the text file insmem_h.txt. To do this, you can use the
Memory Dump option within the MARS assembler. By selecting the “Memory Segment” as “.text”, and
“Dump Format” as “Hexadecimal Text”, you are able to generate the required file. All you have to do is
use a text editor and make sure that the file has exactly 64 lines. All lines after your real code have to be
filled with zeroes.

Since we use memory-based variables in the data memory, the “.data” segment has to be exported to
datamem_h.txt the same way as the “.text” segment. Notice that the datamem_h.txt file, after exporting,
contains many lines. Make sure that the file has 64 lines, and delete all lines after that.

P

Generate the programming file in Xilinx Vivado, program the FPGA and control the speed of the crawling
snake using the switches. Fix any problems you might have and show your results to an assistant.

Summary of the Design Flow

The following figure summarizes the steps to follow while building the system. The workflow can be
divided into hardware and software sections. The software section consists of the assembly program that
the MIPS processor executes. The hardware section comprises of the MIPS processor and the peripheral
system itself. The assembly code is written and validated using the MARS simulator environment. After
checking if the code produces the desired output, the data and instruction memories are dumped as
hexadecimal values. The two memory dumps represent the data and opcodes that are used by the MIPS
processor. The hardware architecture is constructed in Verilog using Xilinx Vivado. The DataMemory.v
and InstructionMemory.v files use the files dumped by MARS to instantiate the memory blocks. The XDC
file is modified to map the circuit to the FPGA board. Finally, the bit file used to program the FPGA is
generated. Remember to follow the steps when you make any changes to the files.

The Challenge

We now have a complete system consisting of a MIPS processor that can run our own programs, accept
inputs from the on-board switches, and display results on the 7-segment display. Here are some ideas for
the challenge seekers.

Challenge 1: Change the snake crawling pattern. For example, modify the assembly code to crawl the
snake in a zig-zag pattern as shown in the figure below.

Challenge 2: Toggle the direction of the snake. Add an additional switch input which will control the
direction of the snake's movement. For example, the snake moves forward (you can choose to either loop or
zig-zag) if the switch is 0 and backward when the switch is 1. This is more challenging because of the
limited number of instructions that can be executed in our MIPS processor. You will also need to modify
the top-level hierarchy to add a register to transfer the value of this new switch.

Last Words

In this exercise, we have realized a complete and working microprocessor that is able to execute a small
subset of the MIPS instruction set. It doesn't seem to be that complex, does it? There are two main reasons
why writing the code of the processor was (relatively) easy.

1. First, MIPS uses a simple architecture and one of its priorities is a simple design implementation.

2. Second, we started from a well-documented block diagram (taken from the book) that had already
decided how the processor was partitioned, what signals were used to connect them, and how the
signals were defined. All that was left was to convert the block diagram into Verilog syntax.

Additionally, we added the capability to interface with the rest of the world so that we can transfer the
processor to the FPGA board and actually see our programs execute.

In the following lab, we will improve the current processor by adding new instructions and speeding up
calculations.

