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LAB 9 – The Performance of MIPS 

Goals 

 Learn how to determine the performance of a processor. 

 Improve the processor performance by adding new instructions. 

To Do 

 Determine the speed of the processor in Lab 8. 

 Determine the bottleneck in the calculation. 

 Enhance the processor by implementing additional standard MIPS instructions. 

 Determine the new performance of the processor. 

 Follow the instructions. Paragraphs that have a gray background like the current paragraph denote 

descriptions that require you to do something. 

 To complete the lab, you must demonstrate your work to any of the taks. 

 You will have some questions to answer in the lab report. 

 All optional tasks are highly recommended. You can ask assistants for feedback on optional tasks. 

Introduction 

In the recent labs we have built a small working microprocessor based on the 32-bit MIPS. The ALU was 

built during Lab 5 and allowed us to implement a subset of the original R-type instructions. In Lab 7, we 

used these instructions to write a small program that can add a range of consecutive integers. Finally, in 

Lab 8, we managed to put pieces of the MIPS together to get our first microprocessor. During this lab we 

will be interested in improving the performance of the processor. 

Performance 

Before we begin, let us examine the current processor and find out how it can be improved. Refer to Lab 5 

if you have forgotten how to read the reports in Vivado. We will be using the program from Lab 7 (which 

sums up all the numbers between two integers A and B) as a benchmark in this exercise. 

The problem of adding consecutive integers is a known one, and we can exploit this to develop a faster 

algorithm for this task. To find the sum of all numbers from 0 to N one can use the Gauss formula: 
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To calculate the sum of all integers from A to B, we can calculate this first for B and then for A-1. By 

subtracting these two we will get the desired sum. 

However, as our limited processor has neither multiplication nor division instructions, we are unable to 

make use of this trick and must resort to a brute force method that sums up all numbers between A and B 

one by one. The problem with this method is that the execution time is proportional to the difference 

between the numbers A and B. 

Additional Instructions 

We could improve the performance of the program significantly by using the Gauss formula. The first 

problem is the division: normally division is a complex operation. However, for our purposes we only need 
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a simple division by two. From the class you should remember that dividing a binary number by powers of 

two is very simple. We just need to shift the bits of the binary representation of the number to the right. 

At the moment we do not have an instruction in our processor that can do this operation, but the original 

MIPS instruction set has an instruction named srl (shift right logical) for this purpose1.  We can use this 

instruction to do the final division by two. However, we still need a way to multiply two numbers. 

There are two solutions. One of them is to implement the multu2 (multiply unsigned) instruction from the 

original MIPS instruction set. The other is to implement the sll (shift left logical) instruction that would be 

able to multiply by two. By shifting and conditionally adding the multiplicand, it is possible to implement a 

bit-serial multiplication with the sll, srl and add commands. You are free to try this approach, but we 

recommend implementing the multu instruction. For the remainder of this lab, we will assume you plan to 

implement the multu instruction. 

Multiplication Result 

Unfortunately, our problems do not stop here. While it will be very straightforward to implement the core 

functionality of the multu instruction, the problem is that when you multiply two 32-bit numbers, the result 

requires 64 bits. The MIPS architecture allows only one register write-back, so it does not support writing a 

64-bit value back into the register file. 

One solution is to use two additional 32-bit registers that are called ‘hi’ and ‘lo’ to hold the 64-bit result. 

These will contain the most significant 32 bits and least significant 32 bits of the multiplication, 

respectively. Since these registers are not part of the standard register file, they cannot be accessed directly 

by other instructions. MIPS provides two additional instructions to move data from these registers: mfhi 

(move from hi) and mflo (move from lo)3. If we decide to use the mutlu instruction, we will have to 

implement these instructions as well. 

Determine the performance 

Before we start working on such a major change on our processor, we should first make sure that it is 

actually worth making the effort. For this lab, we assume that the multiplication result can be expressed 

with less than 32 bits4. This means that the multiplication result will be small enough to be stored only in 

the Lo register. You have two options here – choose the one that suits your challenge needs. 

Option 1 (challenging): Use the MARS simulator to write a faster version of the code that you have 

written in Lab 7. Make sure that the code is functional by testing it for smaller values5. If you have 

problems with the MARS simulator or assembly, refer to Lab 7.  

Option 2 (easy): Download and extract the Lab9_helpers.zip file from the course website. This file 

contains a faster version of the assembly code already implemented for you in “helper_mul.asm”. You can 

also try to run it in the MARS simulator to convince yourself that the code is correct. 

                                                           
1 There is also a similar instruction called sra (shift right arithmetic), the difference is that in a logical shift 

zeroes are inserted from the left side, and in the arithmetic shift the sign (MSB) is preserved. Since the 

numbers in our example are all positive integers, sra and srl would have given the same result, but srl is 

easier to implement. 
2 Similarly, there is a mult instruction where the operands can be signed. Since all numbers will be 

positive, mult and multu will deliver the same result, but multu is easier to implement. 
3 There are also mthi (move to hi) and mtlo (move to lo) instructions to store data to these registers, but we 

don’t need this functionality. 
4 To use the full 64 bits, we would need both Hi and Lo registers. The shift operation would then be 

slightly more complex as we would have to add the bit that is shifted out of Hi register as the MSB of the 

Lo register. In order to make the lab more manageable we will assume that the Lo register will contain the 

complete result; this limits the maximum number that we can use to slightly more than 32’000. 
5 Although it is tempting, do not use values larger than 100 for A and B. The simulation will just take a 

very long time, and will not give you additional information. 
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Please note that although the simulator will accept any valid instructions, our MIPS only supports a handful 

of instructions (the ones in Lab 6 and the new srl, mflo and multu). Make sure that you only use the 

allowed instructions. 

Modify the processor 

This is the slightly harder part. Note that all three instructions are actually R-type instructions. If you 

remember, in the last exercise we had left the ALUControl signal to be 6 bits wide in the ControlUnit 

(although at that time we only needed 4 bits). 

Download the Lab9_student.zip file from the course website. It contains a Vivado project with the 

processor designed in Lab 8 (MIPS.v) and a testbench (MIPS_test.v) to test the processor. If you look at the 

MIPS.v file, you may notice that we have changed the output of the processor to make debugging easier. 

The project also contains the ALU.v from Lab 8, which you have to modify. 

Your task is to modify the ALU component so that: 

1. It accepts a 6-bit aluop signal. 

2. It accepts a 5 bit ShAmt (shift amount) from the MIPS. 

3. It takes input B and shifts the value by ShAmt bits to the right when aluop is 6’b000010 (srl). 

4. It multiplies A and B and writes the result to an internal 32-bit register Lo when aluop is 

6’b011001 (multu). Note that for the register you will need to add clock and reset signals to the 

interface as well. 

5. It takes the present value of the register Lo and copies it to the output when aluop is 6’b010010 

(mflo). 

Make sure that other instructions are not affected. 

Since we have changed the interface of the ALU (now the aluop connection is 6 bits instead of four, and we 

need additional clock and reset connections), we also have to modify the MIPS.v slightly to make sure that 

the modified ALU is connected correctly. 

Make sure that the new ALU is integrated correctly at the top level. This requires small changes to the 

module instantiation within the MIPS.v file. You will need to extract the ShAmt signal (Shift Amount) 

from the instruction (Instr signal) to pass it to the ALU. You may need to declare additional wires for this. 

You can find bit positions for ShAmt from MIPS reference data: 

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=mips_reference_data.pdf 

Show and describe your design modifications to a TA. 

Performance 

We have a new processor, which hopefully reduces the computation time for large numbers considerably. 

There is a cost associated with this improvement. There is a more complex operation in the ALU 

component of the processor (multiplication), which should theoretically also increase the length of the 

critical path. 

When you compare the two implementations, you realize that this is not really apparent. First of all, the 

synthesizer will make use of the built-in multipliers within the FPGA to implement the costly multiplier. 

These are substantially faster than building a multiplier using individual gates, so most probably you will 

not see the penalty in the timing. 

To keep the code simple, we use a very simple approach for the Instruction Memory. The program is 

defined as a constant look-up table. Since the program is embedded into the processor, the synthesizer is 

able to recognize which parts of the processor are not used and is able to optimize those parts away. If you 

have a multiplier but do not have an instruction that uses it, there is no need to synthesize a multiplier. As a 

result, the area numbers that you see also depend on the program you have loaded. This makes comparisons 

tricky. 

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=mips_reference_data.pdf
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Verification 

We follow the example from Lab 7 and make sure that the final result is written to the register $t2. We then 

wait until the processor is in a loop (PC equals to the end loop) and check the contents of the register to see 

if the value is indeed correct. To do this you again have two options: 

Option 1 (challenging): Your assembly program needs to be copied into the text file named 

“insmem_h.txt”. To do this, you can use the Memory Dump option within the MARS simulator. By 

selecting the “memory segment” as “.text” and “Dump Format” as “Hexadecimal Text” you will be able to 

generate the required file. All you have to do is to use an editor and make sure that the file has exactly 64 

lines; all lines after your real code will be filled with zeroes. If something is not clear, refer to Lab 7. 

Option 2 (easy): The Lab9_helpers.zip includes a “helper_insmem_h.txt” file that contains the binary 

program corresponding to the “helper_mul.asm” assembly program. Rename “helper_insmem_h.txt” to 

“insmem_h.txt” and place it in the same folder as the project files. 

Remember that the InstructionMemory.v file reads “insmem_h.txt” to initialize its contents. By changing 

this file and recompiling your circuit, you effectively reprogram your processor. 

Use the file MIPS_test.v file to test your processor as explained previously. It is a simplified version of the 

one used in Lab 6 in which we no longer have to read in the expected responses. We simply need a clock 

generator, an initial reset signal and give the processor sufficient time to finish the calculation. Run the new 

test bench in the Vivado simulator and monitor the value of ‘result’ and the PC in the wave window. 

Show your correctly running MIPS code to a TA. 

Note that this is a rather ad-hoc approach to verification and is unsurprisingly unhelpful if the result is 

incorrect. In this case, you will need to spend more effort in finding out why the circuit is not working as 

expected. This could involve tracing additional internal signals in the waveform viewer, implementing a 

more comprehensive testbench, or any other debugging technique you feel may help you identify the 

issue(s).  

Some Ideas 

Now that we have almost a full processor, here are some ideas you can try to implement (optional). 

- Use the files from the previous labs to display the output of the program on the 7-segment display. 

- Write a counter program in assembly and display the counter on the 7-segment display. 

- Write an assembly program to take inputs A and B from the switches and display the multiplied 

output on the 7-segment display. 

Final Words 

In this lab we have added instructions to ‘enhance’ the performance of our processor. In fact, rather than 

improving the original MIPS architecture we have just added some of the ‘missing’ instructions to the 

processor. The addition comes at a cost: more instructions have to be decoded and more hardware resources 

are required. Processor designers often face this trade-off when improving their designs. 

Since we are talking about adding instructions, why don’t we just add them the way we like? For example, 

we could add one instruction called gauss that takes N, adds one to it to generate (N+1), multiplies these 

values, divides the result by two and returns the result in one single cycle. This is possible, but once we 

start adding non-standard instructions to MIPS, tools (for example compilers, debuggers like MARS) will 

no longer work with this modified architecture. These tools would also need to be modified, which requires 

additional work. 

There is also the issue of how much we would gain by this gauss instruction. Adding a multiplication 

instruction reduced the calculation time tremendously for larger N (saving us millions of cycles). The gauss 

instruction would be able to reduce 4 instructions into a single one. The problem is that we would only 

need this instruction twice, so in total we could save only 6 cycles, overall not a very impressive gain for all 
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our efforts. Clearly, this is not always the case. Instruction set extensions is an active field of research, and 

in some cases can offer significant gains with little overhead. 

 

This is the last exercise, so these will be the final words of this lab series. First, we hope that you have 

learned something from them. In a short time (with some help) you have implemented your own 32-bit 

processor, wrote programs for it and have improved its performance. 

We also hope that you enjoyed the labs and have a better understanding about digital circuits and digital 

design in general. In the end, you can safely say that you have used professional digital design tools and 

gained practical experience in designing actual circuits, which are not that far from what is needed in 

industry. 


