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THE PURPOSE OF COMPUTING
IS INSIGHT, NOT NUMBERS

To study, and when the occasion arises to put what one has
learned into practice—is that not deeply satisfying ?
Confucius, Analects 1.1.1
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PREFACE

There has been much progress in the 10 years since the first edition was written,
but of the many books that have appeared on the topic none has put the emphasis
on the frequency approach and its use in the solution of problems. For these
reasons, a second edition seems necessary.

The material has been extensively rearranged, rewritten, and added to,
so that in some respects it is a new book; however, the main aims, style, and
motto have not changed.

As always, the author is greatly indebted to others for much that is in the
book. Mostimportant are his management and colleagues at the Bell Telephone
Laboratories. Professor Roger Pinkham has over the years been a constant
source of stimulation and inspiration. It would take a list of at least 100
names to thank all who have contributed to some extent, and at the top of this
list would be M. P. Epstein. My thanks also go to all the unmentioned people
on the list and to A. Ralston for many helpful suggestions. Thanks also to
Mrs. Jeannie Waddel for typing and helping to organize the manuscript.

R. W. HAMMING
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Algorithms
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AN ESSAY ON NUMERICAL METHODS

1.1 THE FIVE MAIN IDEAS

Numerical methods use numbers to simulate mathematical processes, which in
turn usually simulate real-world situations. This implies that there is a purpose
behind the computing. To cite the motto of the book, The Purpose of Comput-
ing Is Insight, Not Numbers. This motto is often thought to mean that the
numbers from a computing machine should be read and used, but there is much
more tothe motto. The choice of the particular formula, or algorithm, influences
not only the computing but also how we are to understand the results when they
are obtained. The way the computing progresses, the number of iterations it re-
quires, or the spacing used by a formula, often sheds light on the problem. Fin-
ally, the same computation can be viewed as coming from different models, and
these different views often shed further light on the problem.  Thus computing is,
or at least should be, intimately bound up with both the source of the problem and
the use that is going to be made of the answers—it is not a step to be taken in isola-
tion from reality.

Much of the knowledge necessary to meet this goal comes from the field of
application and therefore lies outside a general treatment of numerical methods.
About all that can be done is to supply a rich assortment of methods and to
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comment on their relevance in general situations. This art of connecting the
specific problem withthe computingisimportant, but it is best taught in connection
with a field of application.

The second main idea is a consequence of the first. If the purpose of com-
puting is insight, not numbers, as the motto states, then it is necessary to study
Sfamilies and to relate one family to another when possible, and to avoid isolated
formulas and isolated algorithms. In this way a sensible choice can be made
among the alternate ways of doing the problem, and once the computation is done,
alternate ways of viewing the results can be developed. Thus, hopefully, the in-
sight can arise. For these reasons we tend to concentrate on systematic methods
for finding formulas and avoid the isolated, cute result. It is somewhat more
difficult to systematize algorithms, but a unifying principle has been found.

This is perhaps the place to discuss some of the differences between numeri-
cal methods and numerical analysis (as judged by the corresponding textbooks).
Numerical analysis seems to be the study in depth of a few, somewhat arbitrarily
selected, topics and is carried out in a formal mathematical way devoid of relevance
to the real world. Numerical methods, on the other hand, try to meet the need
for methods to cope with the potentially infinite variety of problems that can
arise in practice. The methods given are generally chosen for their wide appli-
cability in creating formulas and algorithms as well as for the particular result being
found at that point.

The third major idea is roundoff error. This effect arises from the finite
nature of the computing machine which can only deal with finitely represented
numbers. But the machine is used to simulate the mathematician’s number sys-
tem which uses infinitely long representations. In the machine the fraction 4 be-
comes the terminated decimal 0.333...3 with the obvious roundoff effect. At
first this approximation does not seem to be very severe since usually a minimum
of eight decimal places are carried at every step, but the incredible number of
arithmetic operations that can occur in a problem lasting only a few seconds is the
reason that roundoff plays an important role.  The greatest loss of significance in
the numbers occurs when two numbers of about the same size are subtracted so that
most of the leading digits cancel out, and unless care is taken in advance, this can
happen almost any place in a long computation.

Most books on computing stress the estimation of roundoff, especially the
bounding of roundoff, but we shall concentrate on the avoidance of roundoff. It
seems better to avoid roundoff than to estimate what did not have to occur if com-
mon sense and a few simple rules had been followed before the problem was put on
the machine.

The fourth mainidea is again connected with the finite nature of the machine,
namely that many of the processes of mathematics, such as differentiation and in-
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tegration, imply the use of a limit which is an infinite process. The machine has
finite speed and can only do a finite number of operations in a finite length of time.
This effect gives rise to the truncation error of a process.

We shall generally first give an exact expression for the truncation error and
deduce from it various bounds. A moment’s thought should reveal that if we
had an exact expression, then it would be practically useless because to know the
exact error is to know the exact answer. However, the exact-error expression is
very useful in studying families of formulas, and it provides a starting point for a
variety of error bounds.

The fifth main idea is feedback, which means, as its name implies, that num-
bers produced at one stage are fed back into the computer to be processed again
and again; the program has a loop which uses the output of one cycle as the input
for the next cycle. This feedback situation is very common in computing, as it is
a very powerful tool for solving many problems.

Feedback leads immediately to the associated idea of stability of the feedback
loop—will a small error grow or decay through the successive iterations? The
answer may be given loosely in two equivalent ways: first, if the feedback of the
error is too strong and is in the direction to eliminate the error (technically, nega-
tive feedback), then the system will break into an oscillation that grows with time;
second and equivalently, if the feedback is delayed too long, the same thing will
happen.

A simple example that illustrates feedback instability is the common home
shower. Typically the shower begins with the water being too cold, and the user
turns up the hot water to get the temperature he wants. If the adjustment is too
strong (he turns the knob too far), he will soon find that the shower is too hot,
whereupon he rapidly turns back to cold and soon finds it is too cold. If the
reactions are too strong, or alternately the total system (pipes, valve, and human)
is too slow, there will result a * hunting >’ that grows more and more violent as time
goeson. Another familiar example is the beginning automobile driver who over-
reacts while steering and swings from side to side of the street. This same kind of
behavior can happen for the same reasons in feedback computing situations, and
therefore the stability of a feedback system needs to be studied before it is put on
the computer.

1.2 SECOND-LEVEL IDEAS

Below the main ideasin Sec. 1.1 are about 50 second-level ideas which are involved
in both theoretical and practical work. Some of these are now discussed.
At the foundation of all numerical computing are the actual numbers
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themselves. The floating-point number system used in most scientific and engi-
neering computations is significantly different from the mathematician’s usual
number system. The floating-point numbers are not equally spaced, and the
numbers do not occur with equal frequency. For example, it is well known that
a table of physical constants will have about 60 percent of the numbers with a
leading digit of 1, 2, or 3, and the other digits—4, 5, 6, 7, 8, and 9—comprise only
40 percent.

Although this number system lies at the foundation of most of computing,
it is rarely investigated with any care. People tend to start computing, and only
after having frequent trouble do they begin to look at the system that is causing it.

Immediately above the number system is the apparently simple matter of
evaluating functions accurately. Again people tend to think that they know how
to do it, and it takes a lot of painful experience to teach them to examine the pro-
cesses they use before putting them on a computer.

These two mundane, pedestrian topics need to be examined with the care
they deserve before going on to more advanced matters; otherwise they will con-
tinually intrude in later developments.

Perhaps the simplest problem in computing is that of finding the zeros of a
function. Inthe evaluation of a function near a zero there is almost exact can-
cellation of the positive and negative parts, and the two topics we just discussed,
roundoff of the numbers and function evaluation, are basic, since if we do not
compute the function accurately, there can be little meaning to the zeros we find.
Because of the discrete structure of the computer’s number system it is very unlikely
that there will be a number x which will make the function y = f(x) exactly zero.
Instead, we generally find a smallinterval in which the function changessign. The
size of the interval we can use is related to the size of the argument x, since for large
x the number system has a coarse spacing and for x small (in size) it has a fine
spacing. This is one of the reasons that the idea of the relative error

true — calculated
true

Relative error =

plays such a leading role in scientific and engineering computations. Classical
mathematics uses the absolute error

Absolute error = |true — calculated|

most of the time, and it requires a positive effort to unlearn the habits acquired in
the conventional mathematics courses. The relative error has trouble near places
where the true value is approximately zero, and in such cases it is customary to use
as the denominator

max{| x|, |f(x)[}

where f(x) is the function computed at x.
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The problem of finding the complex zeros of an analytic function occurs so
often in practice that it cannot be ignored in a course on numerical methods,
though it is almost never mentioned in numerical analysis. A simple method re-
sembling one used to find the real zeros is very effective in practice.

In the special case of finding all the zeros of a polynomial the fact that the
number of zeros (aswell as other special characteristics)isknown in advance makes
the problem easier than for the general analyticfunction. One of the best methods
for finding them is an adaptation of the usual Newton’s method for finding real
zeros, and this discussion is used to extend, as well as to analyse further, Newton’s
method. It is only in situations in which a careful analysis can be made that
Newton’s method is useful in practice; otherwise its well-known defects outweigh
its virtues.

What makes the problem of finding the zeros of a polynomial especially
important, besides its frequency, is the use made of the zeros found. The method
is a good example of the difference between the mathematical approach and the
engineering approach. The first merely tries to find some numbers which make
the function close to zero, while the second recognizes that a pair of ““ close ** zeros
will give rise to severe roundoff troubles when used at a later stage. In isolation
the problem of finding the zeros is not a realistic problem since the zeros are to
be used, not merely admired in a vacuum. Thus what is wanted in most practice
is the finding of the multiple zeros as multiple zeros, not as close, separate ones.
Similarly, zeros which are purely imaginary are to be preferred to ones with a small
real part and a large imaginary part, provided the difference can reasonably be at-
tributed to uncertainties in the underlying model.

Another standard algorithmic problem both in mathematics and in the use
of computation to solve problems is the solution of simultaneous linear equations.
Unfortunately much of what is commonly taught is usually not relevant to the
problem as it occurs in practice ; nor is any completely satisfactory method of solu-
tion known at present. Because the solution of simultaneous linear equations is
so often a standard library package supplied by the computing center and because
the corresponding description is so often misleading, it is necessary to discuss the
limitations (and often the plain foolishness) of the method used by the package.
Thus it is necessary to examine carefully the obvious flaws and limitations, rather
than pretending they do not exist.

The various algorithms for finding zeros, solving simultaneous linear equa-
tions, and inverting matrices are the classic algorithms of numerical analysis.
Each is usually developed as a special trick, with no effort to show any underlying
principles. Theidea of an invariant algorithm provides one common idea linking,
or excluding, various methods. An invariant algorithm is one that in a very real
sense attacks the problem rather than the particular representation supplied to the
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computer. The idea of an invariant algorithm is actually fairly simple and ob-
vious once understood. In many kinds of problems there are one or more classes
of transformations that will transform one representation of the equations into
another of the same form. For example, given a polynomial

PX)=a,x"+a,_ X" 1+ +a,=0

the transformation of multiplying the equation by any nonzero constant does not
really change the problem. Similarly, when a, # 0, replacing x by 1/x while also
multiplying the equation by x" merely reverses coefficients. These transforma-
tions form a group (provided we recognizc the finite limitations of computing),
and it is natural to ask for algorithms that are invariant with respect to this group,
where invariant means that if the problem is transformed to some equivalent form,
then the algorithm uses, at all stages, the equivalent numbers (within roundoff, of
course). Inasensethe invariance is like dimensional analysis—the scaling of the
problem should scale the algorithm in exactly the same way. It is more than
dimensional analysis since, as in the example of the polynomial, some of the trans-
formations to be used in the problem may involve more than simple scaling.

It is surprising how many common algorithms do not satisfy this criterion.
The principle does more than merely reject some methods; it also, like dimensional
analysis, points the way to proper ones by indicating possible forms that might be
tried.

1.3 THE FINITE DIFFERENCE CALCULUS

After examining the simpler algorithms, it is necessary to develop more general
tools if we are to go further. The finite difference calculus provides both the
notation and the framework of ideas for many computations. The finite dif-
ference calculus is analogous to the usual infinitesimal calculus. There are the
difference calculus, the summation calculus, and difference equations. Each has
slight variations from the corresponding infinitesimal calculus because instead of
going to the limit, the finite calculus stops at a fixed step size. This reveals why
the finite calculus is relevant to many applications of computing: in a sense it un-
does the limiting process of the usual calculus. It should be evident that if a limit
process cannot be undone, then there is a very real question as to the soundness of
the original derivation, because it is usually based on constructing a believable
finite approximation and then going to the limit.

The finite difference calculus provides a tool for estimating the roundoff
effects that appear in a table of numbers regardless of how the table was computed.
This tool is of broad and useful application because instead of carefully studying
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each particular computation, we can apply this general method without regard to
the details of the computation. Of course, such a general method is not as power-
ful as special methods hand-tailored to the problem, but for much of computation
it saves both trouble and time.

The summation calculus provides a natural tool for approaching the very
common (and often neglected) problem of the summation of infinite series, whichis
the simplest of the limiting processes (since the index n of the number of terms
taken runs through the integers only).

The solution of finite difference equations is analogous to the solution of
differential equations, especially the very common case of linear difference equa-
tions with constant coefficients, which is a valuable tool for the study of feedback
loops and their stability. Thus finite difference equations have both a practical
and a theoretical value in computing.

1.4 ON FINDING FORMULAS

Once past the easier algorithms and tools for doing simple things in computing,
it is natural to attack one of the central problems of numerical methods, namely,
the approximation of infinite operations (operators) by finite methods. Inter-
polation is the simplest case. In interpolation we are given some samples of the
function, say, y(—1), y(0), and y(1), and we are asked to guess at the missing
values—to read between the lines of a table. While it is true that because of the
finite nature of the number system used there are only a finite number of values to
be found, nevertheless this number is so high that it might as well beinfinite. Thus
interpolation is an infinite operator to be approximated.

There is no sense to the question of interpolation unless some additional as-
sumptions are made. The classical assumption is that given n + 1 samples of the
function, these samples determine a unique polynomial of degree n, and this poly-
nomial is to be used to give the interpolated values. Withthe above data consist-
ing of three points, the quadratic through these points is

x(x—1)
2

=D+ - + D)

P(x)=

We are to use this polynomial P(x) as if it were the function. This method is
known as the exact matching of the function to the data.

The error of this interpolation can be expressed as the (n + 1)st derivative
(of the original function) evaluated at some generally unknown point 0 in the
interval. Unfortunately in practice it is rare to have any idea of the size of this
derivative.
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For samples of the function we may use not only function values y(x) but also
values of the derivatives y'(x), y"(x), etc., at various points. For example, the
cubic exactly matching the data y(0), y(1), »'(0), and y'(1) is

P(x) = (1 — 3x% + 2x*)y(0) + (3x% = 2x%)y(1) + (x — 2x% + x*)y'(0)
+ (¢ =2y ()

It is important to use analytically found derivatives when possible. Then we can
usually get a higher order of approximation at little extra cost since generally once
the function values are computed, the derivatives are relatively easy to compute.
No new radicals, logs, exponentials, etc., arise, and these are the time-consuming
parts of most function evaluation. Of course a sine goes into a cosine when
differentiated, but this is about the only new term needed for the higher derivatives.
Even the higher transcendental functions, like the Bessel functions, satisfy a
second-order linear differential equation, and once both the function and the first
derivative are found, the higher derivatives can be computed from the differential
equation and its derivatives (which are easy to compute). Thus we shall empha-
size the use of derivatives as well as function values for our samples.

Although a wide variety of function and derivative values may be used to
determine the interpolating polynomial, there are some sets, rather naturally oc-
curring, for which n + 1 data samples do not determine an nth-degree polynomial.
Perhaps the best example is the data y(—1), y(0), ¥(1), y"(—1), »"(0), and »"(1)
which do not determine a fifth-degree polynomial—the positions and accelera-
tions at three equally spaced points do not determine a quintic in general.

The classic method for finding formulas for other infinite operators, such
as integration and differentiation, is to use the interpolating polynomial as if it
were the function and then to apply the infinite operator to the polynomial. For
example, if we wish to find the integral of a function from —1 to +1, given the
values y(—1), y(0), and y(1), we find the interpolating quadratic as above and
integrate it to get the classical Simpson’s formula:

[ 76 dx = 1(=1) + 5O + D)

This process is called analytic substitution; in place of the function we could
not handle we take some samples, exactly match a polynomial to the data, and
finally analytically operate on this polynomial. This is the classical method for
finding formulas. It is a two-step method: find the interpolating function and
then apply the operator to this function.

There is another direct method that is almost equivalent to the analytic-
substitution method. Inthis method we make the formula true for a sequence of
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functions y(x) = 1, x, x2, x3, ..., x™. For example, to derive Simpson’s formula
by this method we assume the form

[ 709 dx = aiy(= 1) + 26 50) + ay(1)

and substitute the sequence of functions 1, x, and x2. The three resulting equa-
tions determine the three unknown coefficients a;, and the resulting formula is
exactly the same (in this case). The two methods differ in the case where there is
no interpolating polynomial; it may be that there is a formula even if there is no
interpolating polynomial. For example, we have the formula

[ 7002 = A£15(=1) 4 3500) + 50~ 3hly (= 1) ~ 327°0) + D]

which is exact for sixth-degree polynomials when, as we have noted above, there
is in general no interpolating polynomial of fifth degree.

It would seem as if the two methods were equivalent, for if there were an
interpolating polynomial, then the formula would surely be true for the corre-
sponding powers of x; and conversely, if it were true for the individual powers,
then it would be true for any linear combination, namely a polynomial. The
difference lies in the words if there is an interpolating polynomial, then .... Ttcan
happen that the two-stage process fails on the first step, but the one-step direct
method will work.

There are two main advantages of the direct method. First the derivations
are much easier, and second the direct method provides a basis for extensive
generalizations. The importance of this method is hard to overestimate. It
means that we can find a very wide range of formulas, all within a common frame-
work of ideas and methods, and that we will therefore be able to compare one
formula to another and then decide which one to use. Perhaps more important,
it means that we can decide the kind of formula we want and then with this single
method and its generalizations find almost any formula we want—we can fit the
formula to the problem rather than fit the problem to the formula. Thus we can
try to achieve the insight that is the main goal of the book, as stated in our motto,
The Purpose of Computing Is Insight, Not Numbers.

With a general method for finding polynomial approximation formulas it 1s
necessary to have a corresponding method for finding the error of the formula.
The general method of finding the error is somewhat difficult to understand the
first time. It is based on the use of a Taylor series with the integral remainder,
and bysubstitutingthis into the formulaforwhich wewant theerror (and manipulat-
ing the results a bit) we get the desired error formula. Once we have the exact-
error term, it can be transformed in various ways to get suitable practical-error
estimates.
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The method for finding the truncation error term for polynomial approxi-
mation unfortunately gives it in the form of a derivative, much as the interpolation
method did. This, as noted before, is unfortunate because the high-order deriva-
tives are seldom available.

This brings up a central dilemma. Should one use a high-order formula
(error term has a high-order derivative) or use the repetition of a low-order for-
mula—the composite formula? The answer is simple in principle. It depends
on the size of the high-order derivative as compared to the other lower-order
derivative. This is, of course, almost no answer at all, because we seldom can
decide which is better, and the basis of the choice depends on the location in the
complex plane of the singularities of the function being integrated—something we
seldom know.

1.5 CLASSICAL NUMERICAL ANALYSIS

Much of classical numerical analysis, as we have indicated, is based on polynomial
approximation for the infinite operations of differentiation, integration, and inter-
polation. The polynomial approximation is also used in the numerical integra-
tion of ordinary differential equations. The most widely used methods for this
are the predictor-corrector methods. A polynomial is fitted to some of the data
at past points and is used to extrapolate to the next point—to predict. The pre-
dicted value is used in the differential equation to get the predicted slope. This
slope along with past data is used to find another polynomial which produces the
corrected value, and the corrected value of the slope is found.  Ifthe predicted and
corrected values are sufficiently close, then the step is accepted as accurate enough,
and if not, the step size of integration may be halved (doubled if the two values are
too close).

There are so many possible predictor-corrector methods of the same order
of accuracy that it is necessary to have a general theory to compare the various
formulas within a common framework. Otherwise chaos and prejudice would
reign.

So far we have discussed the exact-matching interpolating polynomial, and
this is the more usual method. There are other methods, more or less classical,
for the selection of the approximating polynomial. One method is the minimum
sum of squares of the residuals between the formula and the data given. Another
more modern method picks the polynomial with the minimum maximum error—
the minimax, or Chebyshev, approximation. Still other criteria could be used if
desired, though the labor of finding the polynomial may be fairly high in some
cases.
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1.6 MODERN NUMERICAL METHODS—
FOURIER APPROXIMATION

The difficulty with polynomial approximation in practice is that it is in the nature
of polynomials to “ wiggle” and to go to infinity for large absolute values of the
argument x. Physically occurring functions tend to wiggle much less than poly-
nomials and to remain bounded for large values of the argument. Thus poly-
nomials are a poor basis for approximation, even though they are easy to compute
and to think about. The fact that the Weierstrass approximation theorem states
that any continuous function can be uniformly approximated in a closed interval
by a polynomial isirrelevant for two reasons.  First, the degree of the Weierstrass
polynomial is generally very high for even a low degree of approximation; second,
we are not finding the polynomial the way the theorem states it can be found. In-
deed, it is ““ well known ! that for the simple function y(x) = 1/(1 + x?) in the
interval | x| < 3.63 ... the sequence of polynomials that exactly matches the func-
tion at a set of equally spaced points does not approach the function uniformly as
the number of points increases indefinitely—the function and the polynomial
differ by arbitrarily large amounts, and the sequence of approximating poly-
nomials fails to converge.

Since polynomials are rather poor functions to use for approximating many
functions that occur in practice, it is natural to look for other sets of functions.
Among the many sets that are known to be complete (meaning that they can ap-
proximate any continuous function in a closed interval) the functions sin nx and
cosnx (n=0,1,...) have been the most studied and are the most useful. Ap-
proximation in terms of them is usually called Fourier approximation because
J. B.J. Fourier (1768-1830) used them extensively in his work.

In the simplest case of approximating a function in an interval we are given
a periodic function of period, say 2r, and are asked to approximate the function
¥(x) by a form

Y =2+ 3 (4, cos kx + by sin kx)
k=1

2
It is easy to show that since the functions are orthogonal, that is,
2% 0 k # m
f coskxcosmxdx={ m k=m#0
0 2 k=m=0

2
f sinkxcosmxdx = 0
0

2 . 0 k#m
jo sin kx sin mx dx _{n k=m#0

! Meaning that it can be found in the literature.
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the coefficients in the expansion are given by
1 p2=¢ 1 p2r .
%= jo y(x)coskxdx b= - J.o y(x) sin kx dx

The Fourier functions have a number of interesting properties beyond
merely remaining bounded for all values. The error of an approximation that
uses only a finite number of terms can be expressed in terms of the function rather
than, as in the polynomial case, some high-order derivative. Furthermore, the
rate of convergence, that is, how fast the finite series approaches the function as
we take more and more terms, can be estimated easily from the discontinuities of
the function and its derivatives.

Perhaps most important is the simple fact that the effect of taking equally
spaced samples of the continuous function can be easily understood. The higher
frequencies (speeds of rotation) appear as if they were lower frequencies. This
effect, called aliasiny because one frequency goes under the name of another, is a
familiar phenomenon to the watchers of TV and movie westerns. As the stage
coach starts up, the wheels start going faster and faster, but then they gradually
slow down, stop, go backwards, slow down, stop, go forward, etc. This effect is
due solely to the sampling the picture makes of the real scene. Figures 1.6.1 and
1.6.2 should make the effect clear. Once we know the sampling rate, we know
exactly what frequencies will go into what frequencies. The highest frequency
that is correct is called the Nyquist, or folding, frequency. In the polynomial
situation we have no such simple understanding of the effect of sampling.

It might appear that to calculate all the coefficients of a Fourier expansion
would involve a great deal of computing, but the recently discovered fast Fourier
transform (FFT) method requires about N log N operations to fit N data points.
This discovery has greatly increased the importance of Fourier approximation.

Appears as forward
FIGURE 1.6.1 motion



1.6 MODERN NUMERICAL METHODS—FOURIER APPROXIMATION 15

I
e
~
-

7

I
Appears standing Appears as backwards

still motion

FIGURE 1.6.2

Most of our functions are not periodic, and so the Fourier series is of limited
importance. For the general nonperiodic function there is a corresponding
Fourier integral

1) = _[: Flo)e™* do

Fo) = | : f(He=2x7 gy

The two functions /() and the transform F(c) have the same information: one
describes the function in the space of the variable ¢, while the other describes it in
the space of frequencies . These two equivalent views are part of the reason that
the Fourier integral gives such a useful approach to many problems.

When we resort to using a finite number of sample points, we again face
aliasing, exactly the same effect as before. The folding frequency now provides a
more natural barrier and leads to the concept of a *’ band-limited function,”
meaning that the frequencies in the function are confined to a band.

Theidea of a band-limited function is mirrored very closely in real problems.
A hi-fi system handles all the frequencies in a band and cuts off above and below
rather sharply; the better the hi-fi system, the wider the band. The idea of a band
of frequencies applies to most information transmission systems, servomecha-
nisms, and feedback control situations. This means, among other things, that
from the physics of the problem we can estimate the spacing we will need for our
samples, and vice versa, that from the spacing we can estimate the frequency con-
tent of the solution.
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With the aid of the Fourier integral, which closely parallels the Fourier
series with its nice mathematical properties, we can show the effect of taking a
finite slice of a function from a potentially infinitely long function. For example,
the light from a pulsar or Cepheid variable star shines for many years; yet we
observe it for a night or two and from that limited record try to estimate what the
staris doing. Itisoftenimportant to know the effect of the length of the observa-
tion on what we can hope to learn about the star. Similarly in other control
problems, the length of the observation affects what we can see, and the Fourier
integral enables us to understand this limitation.

Using this new tool of Fourier approximation, we can then look back at the
polynomial approximation methods and see them in a new way. Once this new
way becomes familiar, we can understand much more clearly what we were doing
before. Exactly the same computations can be viewed in a new, more revealing
light. This is especially true for the communications and control problems that
tend to dominate our technological age.

Once this new way of looking at computing becomes familiar, it is natural
to begin designing formulas to meet new criteria. In place of the discrete set of
integers that were the exponents of the variable x in polynomial approximation, we
now have a continuous band of frequencies to use and examine. We can pick the
formula that minimizes some property of this continuous error curve (in the
frequency space to be sure). One popular method is to make the error curve have
a minimax (Chebyshev) property.

This new approach is relevant to many design problems. For example, in
designing a simulator for humans to use while training for airplane or space travel,
weareinterested in building the simulator so that it * feels right >’ to the human who
is being trained. This to a first approximation means that the Fourier transform
(more generally, the Laplace transform) of the simulator should be close to the
transform of the real thing. It is less important that the simulator and real
vehicle go exactly the same place thanitis to *“ feel right.” Thus we are no longer
to judge the method of integrating a system of differential equations that describe
the simulator by how well the solutions agree, but rather by how well the trans-
forms agree—which is not the same thing! This new method of design is known
as the method of zeros and poles, and unfortunately it involves classical network
theory.

The role of digital communications systems is steadily increasing; more
and more we are sampling the continuous analog signal that occurs naturally in
the real world and converting it to a sequence of discrete digits. Thus we face
not only sampling but quantization effects of the digitizing of the analog signal.
This effect is like that of roundoff in many ways, but it is usually much more
severe, and because it occurs at the beginning, it again limits us to what we can
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hope to see of the original underlying physical phenomena. Without a good
understanding of these limitations we are not likely to understand what the num-
bers coming out of the computer mean and do not mean.

This leads gradually to the design of digital filters, which filter digital signals
much as the old analog filters were used in processing analog signals, with radio
and television being a couple of familiar examples. The differences from the
continuous signals are significant in the digital case, and it is the digital case
that digital computers must use.

1.7 OTHER CLASSES OF FUNCTIONS
USED IN APPROXIMATIONS

After polynomial and Fourier approximations, the exponential set of functions is
most used. The three sets, polynomials, Fourier, and exponentials (together
with combinations of the three), are invariant under a translation of the origin.
Thisis animportant property because in many situations there is no natural origin,
and without this property the choice of the origin would affect the answer. For
these three classes the answer is independent of the origin, though the particular
set of coefficients used in the approximation will differ as the origin is chosen dif-
ferently.

For the exponential functions there is the Laplace transform corresponding
to the Fourier transform, but it has much more difficult properties from the com-
puting point of view.

1.8 MISCELLANEOUS

When a problem has a singularily, as many practical problems do (often because
of the mathematical idealization), then the structure of the singularity indicates
the class of approximating functions to use, and the position gives the natural
origin. The methods used in this case are similar to those of the three usual cases.

Sometimes the problem has a natural set of functions to use, and again the
methods we have developed can be applied, though the details may get a bit messy
in many cases.

Optimization occurs frequently in practice, and the person practicing
numerical methods needs to know something about this rapidly growing field.
Most simulations imply an optimization in the background—the simulation is be-
ing done to optimize some aspect of the situation.

A central idea of mathematics is linear independence. In computing it is
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natural that this idea, which involves a yes no situation, becomes more vague.
Clearly in computing there will be some degree of linear independence, and various
forms for representing the same information will have varying degrees of linear
independence. The idea is still in its infancy and needs a great deal more de-
velopment, but it is clearly a central idea in computing,.

One of the more difficult problems requiring an algorithm is finding the
eigenvalues and eigenvectors of a matrix. Unfortunately, there is a great lack of
understanding of what the problem actually is and of what the answers are to be
used for, and there are no widely accepted methods for the general case. For the
particular case of a symmetric (also for a Hermitian) matrix reasonably effective
methods are known.

1.9 REFERENCES

The problem of supplying further references is a vexing one. The literature
is rapidly changing when compared to the lifetime of a book, and as a result most
references would soon be out of date and misleading. Furthermore, in a text like
this where most chapters can, and some have, been expanded into whole books,
there is little point in giving a lot of isolated references which will probably be
ignored by most readers. We shall assume that a few standard textbooks are
available and usually refer the reader to them for further information. The
occasional reference to the literature is to amplify a point that is not in standard
textbooks.
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NUMBERS

2.1 INTRODUCTION

Numbers are the basis of numerical methods. Thus logically they belong at the
beginning of a course on numerical methods. Onthe other hand, psychologically
they occur rather late in the development.

The situation in numerical methods is very like that in the calculus course
where the real number system is basic to the limit process. The calculus course,
therefore, often begins with a detailed, fairly rigorous discussion of the real number
system. Unfortunately, at this point in his education the student has little reason
to care about the topic, and it always turns out to be the most difficult part of the
entire course. Furthermore, the topic generally repels the student, and this at-
titude carries over to the rest of the course.

The history of mathematics further shows that the real number system was
very late in developing. The discoverers and developers of the calculus ignored
the niceties of the number system for many years. The biological principle
‘ ontogeny recapitulates phylogeny ’ means that * the development of the individ-
ual tends to repeat the development of the species.” This is very relevant to
teaching; the history of a subject gives important clues as to the ordering and
celative difficulties of the material being taught.
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History likewise shows that for a long time the number system used in com-
puting was essentially ignored and taken for granted. Putting the topic first,
therefore, requires justification, because we are asking the beginner to learn
material whose importance he is not psychologically prepared to accept. The
justification is the same as that for the calculus course. If we are to make rapid
progress and not to have to repeat some material several times, then it is necessary
to start with a firm foundation. The author’s own experience was that only after
many years of computing did he come to understand how the number system used
by the machines affected what was obtaincd and how at times it led him astray.

Thus we are asking the beginner to accept on faith that the material in this
chapter is basic and to put aside his natural psychological prejudicesinfavor of the
logical approach. Of course he wants to get on to solving real problems and not
to fuss with apparently trivial, irrelevant details of the number system used by
machines, which he thinks he understands anyway. In compensation we will try
to make the material a bit more dramatic than usual in order to sustain his interest
through this desert of logical presentation. Probably he should plan to review
this chapter later several times until he becomes thoroughly familiar with many of
the various peculiar features of the number system used by the machine. Ina
sense it is the rea/ number system, since they are the only numbers that can occur in
the computation; there are no other numbers, and the mathematician’s “real ”
number system is purely fictitious.

2.2 THE THREE SYSTEMS OF NUMBERS

There are three systems of numbers in the usual computing machine. First there
are the counting numbers 0, 1, 2, . . ., 32,767 (or some other finite, rather small
number). Note that this system begins with O rather than 1. Unless this fact is
thoroughly learned, when a loop is written in a program, the loop will not be able
to be done no times (meaning that it cannot be skipped). This number system is
usually intimately connected with the index registers of the machine, and the
range of the numbeis is thereby determined. Thisis the familiar counting system,
and little more need be said beyond the fact that it is definitely bounded and does
not extend to infinity.
The second system of numbers is the familiar fixed-point number system.
Typical numbers are:
3.141592654
0.012345678
—123.4567890

These numbers all have a fixed length, usually the word length of the machine (or
some simple multiple of it), and the differences between successive numbers are the
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same. They are the familiar numbers of hand computing. Almost all the tables
of numbers that the beginner has used (trigonometric, logarithmic, etc.) are in
fixed-point notation. The chief difference between the machine’s system and
hand calculation is that the human often changes the number of digits he carries as
circumstances seem to warrant, while the machine generally keeps the same num-
ber of digits (it may occasionally shift from single to double or even multiple pre-
cision).

The third system of numbers is the floating-point number system, which is
closely related to the so-called “ scientific notation *” used in many parts of science.
Thesystem is designed to handle both verylarge and very small numbers. Typical
numbers are:

.31415927 x 10!
.12345678 x 107!
—.12345678 x 10* cxponent

N e’
mantissa

The first block of eight digits in these above numbers is called the mantissa (in
analogy with logarithms), and the last digit is called the exponent (often ranging
from at least —38 to +38).

Usually the mantissa and the exponent are stored in the same word of the
machine, and as a result the mantissa of a floating-point number is usually shorter
than the corresponding fixed-point number.

For convenience we shall use in the examples in the book a three-digit
mantissa and a one-digit exponent for our floating-point number system. Not
only does this save space, but it also makes the examples much easier to follow.
Occasionally we will use a three-digit fixed-point number system. Examples of
our floating-point numbers are:

1= 314 x 10!
L q07x100
V2
-7 _ -2

oo = —314 X 10

0= .000x 107°

2.3 FLOATING-POINT NUMBERS

The floating-point number system has a number of unfamiliar properties, and the
rest of this chapter is devoted to examining some of them.
First, the zero
0=.000 x 10~°
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isrelativelyisolated from the adjacent numbers since the next two positive numbers
.100 x 10™° and .10l x 107°

are 1072 apart. No other number has a mantissa beginning with a zero digit.
Second, each decade has exactly the same number of numbers, 900 in all,
running

from .100 x 10°t0.999 x 10° a=-9,-8,...,0,...,9

Within a decade the numbers are equally spaced, but the spacing increases each
decade. Thusthe spacingisa fixed, arithmetic spacing for 900 numbers, followed
by a *““geometric spacing jump” and then another block of 900 arithmetically
spaced numbers, etc.

The number 0 and the number —0 (namely, —.000 x 10~9) are logically the
same, and some machines make them the same, but some do not. Usually there
is no infinity corresponding to zero.

In mathematics there is a single, unique zero, while in computing there are
two kinds of zeros. The first, as in mathematics, occurs in expressions like

a'0=0
and behaves like a proper zero. But the zero that occurs in expressions like
a—-a=0
can come from a form like
1-(1-¢l+e=0

whenever &2 is less than 4 1073 (3 being the number of decimal places carried
in the mantissa). Clearly this zero differs from the mathematical zero. It is
this zero that arises in the subtraction of two apparently equal-sized numbers
which causes so much trouble when the finite arithmetic of the machine is
equated to the infinite arithmetic of mathematics.

All these remarks appear to be obvious, but their consequences continually
affect how we compute and the results we get from the machine.

It is natural in a floating-point number system to measure the error of a
number by the size of the difference relative to the correct number, and thus

true — calculated
true

Relative error =

This is distinctly different from the conventional absolute error used in much of
mathematics, where

Absolute error = |true — calculated|
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The idea of relative error fits most physical situations very well, since it is scale-
Jree; that is, a change in the size of the units of measurement does not change the
size of the relative error, while it does change the absolutc crror.

The use of relative error fails, however, when the true value is zero, or close
toit. Forexample, in computing sin # we would have

sin t — sin(.314 x 10%)
sin 7

Relative error =

andsincesin(.314 x 10")is not likely to be exactly zero, the relative error would be
infinite. For this reason it is often better in computing the relative error to use

max{|x|, |f(X)|}

as the denominator rather than f(x).

As a result of the discrete spacing of the numbers, there are numbers that
cannot come out of some calculations. For example, consider evaluating tan x.
The slope of the function is always greater than 1; thereforc as we go through
adjacent numbers in x, the corresponding values of tan x (see Fig. 2.3.1) must

__________________ y=tanx

FIGURE 2.3.1 l L 15
Graph of y =tan x. 0.5 1.0 1.5 2.0



24 2 NUMBERS

occasionally skip over some of the possible numbers (since both x and y start at the
origin and y has gotten further in its range than has x in its range).

When searching for gaps in the function values for consecutive values of the
argument, a somewhat crude rule to use is that the spacing is (roughly) propor-
tional to the size of the number. This produces the spacing in the y values
(roughly) proportional to x(dy/dx), and if the spacing in the number system
around y is finer, then there will be gaps, that is, if
&

dx
This can be translated into words as follows: when the slope of the line from the
origin to the current point on the curve is less than the derivative at that point,
there are likely to be gaps between consecutive function values.

It might be thought that if the slope is less than 1, as for the sine function in
the first quadrant, then there would be no missed values, but this neglects the fine
structure of the number system. Consider the table (in radians)

byl <

dy
or |y/x| <la'

X sin x

00 .841
1 .847
2 .852
3 .857
4

1.
1.
1.
1.
1. .862

0
0;
0
0:

We see that x has shifted to a new decade and hence to a coarser spacing than that
of the function values, thus producing the gaps in the sequence of function values.

PROBLEMS

2.3.1 Show that our number system has exactly 34,201 different numbers.
2.3.2 Discuss the gaps in the y values of y = V'x.

2.3.3 Discuss the gaps in the y values of y = x2.

2.3.4 Discuss the gaps in y = cos x for the first quadrant.

24 HOW NUMBERS COMBINE

Having looked at the individual numbers, let us now look very briefly at how
numbers combine in the four arithmetic operations. We assume familiarity with
conventional arithmetical practice.
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The product of two three-digit numbers in conventional arithmetic is a five-
or six-digit number, but in our number system there are only three-digit numbers!
Which number shall we take as the product? Common sense suggests taking the
three-digit number closest to the product. The following is a mechanism for
doingthis. Ifthe leading digit of the full six-digit product is a zero, then shift the
mantissa one position to the left and at the same time decrease the exponent (which
is the sum of the exponents of the two factors) by 1 to compensate for the shift.
Neglecting the sign of the product, add a 5 in the fourth position. Provided an
overflow on the left does not occur, the first three digits of what remains are taken
as the product. If an overflow does occur, then further shifting and adjusting of
the exponent are required.

512 % 10!
x .106 x 102

3072
0000
0512

054272 x 10°
542720 x 102 i gene

+ 5 round product

543 x 107 = hua

This process of rounding produces a very slight bias because the ambiguous
case of 500 in the last three places of the mantissa should be rounded up half the
time and rounded down half the time, but the mechanism just described always
rounds up. The effect is too slight to worry about in practice; it is chiefly of
theoretical interest.

Division is somewhat more complicated, but the effect of rounding is much
the same: we select the three-digit number closest to the mathematically correct
quotient, again with a slight bias.

Addition and subtraction require first comparing the exponents of the two
numbers and, if necessary, shifting one mantissa with respect to the other before
combining. The final shifting for roundoffis much the same as for multiplication.
Subtraction can produce many leading zeros (or even all zeros, in which case the
machine produces .000 x 10~°), and these need to be shifted off before the round-
ing occurs. (Beware of using .000 x 10° as zero.)
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Compute .314 x 10! + .419 x 1072,

314 x 10!

+ .00419 x 10*
.31819 x 10t

+ 5 round

318 x10'=,,
Compute .315 x 10? — .314 x 102,

315 x 102
- 314 x10%

.001 x 10?

10000 X 10°  ghiqqsete
+ 5 round

100 x10°= difference
Compute .749 x 10% +.436 x 102

749 x 102
+ 436 x10?

1.185 x 10?

.1185 x 10° shift right
+ 5 round

119 x10° =,

This briefly describes what ideally happens in roundoff. In practice there
are many minor variations and some not so minor. For example, since this pro-
cess of rounding is expensive in both hardware and machine speed, some machines
merely chop off or drop the last digits once the initial shifting has lined up the
leading digits. At first glance chopping may seem to be only moderately more
severe than rounding, but unfortunately in some problems chopping can produce
an ‘““epidemic” in the sense that in cycle after cycle of computing the effect will be
in the same direction and the cumulative effect will grow almost linearly. (See
Sec. 23.4.)

PROBLEMS

2.4.1 Show that a shift due to roundoff can occur.
2.4.2 Discuss using .000 x 10° as zero,
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2.5 THE RELATIONSHIP TO MATHEMATICS
AND STATISTICS

By now it should be clear that the mathematician’s number system is significantly
different from the floating-point number system of the machine, and the latter one
is used in most scientific and engineering calculations. 'What relationship have
they to each other?

Up to now we have adopted the harsh view that the numbers in the machine
are the only numbers there are and that the mathematician’s numbers are purely
artificial. This is very useful for many purposes, especially when trying to debug
a program by accounting for every last digit. It is also necessary if we are to
understand the limitations of what can be done on the machine.

On the other hand, usually the machine is used to simulate the mathe-
matician’s system, and the machine’s number system is sometimes a poor approxi-
mation of what is needed. The approximations in the initial numbers plus the
continual roundoffs in almost every arithmetic operation produce differences that
canbeserious. This is especially true when a subtraction produces a large number
of leading zeros which are then shifted off (and the exponent is correspond-
ingly adjusted).

To understand roundoff in the large, it is customary to regard it as a random
Dprocess in spite of the obvious fact that the same program run repeatedly will pro-
duce the same—not random—results (assuming that the machine is not defective).
This assumption of random behavior is not essentially different from what is done
in many real-world applications of statistics. In the statistical mechanics of gas
molecules we simply do not want to know the detailed behavior of the 6.02 x 1023
molecules in a mole of gas; we merely want the effects of the average behavior.
Similarly in practice we do not want to know the exact roundoff at all stages of a
computation, rather we want to know their average effect.

Thus statistics continually enters into numerical methods because of the
random roundoff effects. Furthermore, we usually deal only with samples of the
functions and not with the functions themselves. As a result, statistics lies in the
background of much of what we do, and occasionally it steps up into the fore-
ground. Itis necessary, therefore, whether we like the topic or not, to give serious
attention to the statistical effects in computing.

2.6 THE STATISTICS OF ROUNDOFF

Let us look first at the distribution of the roundoff of a single number. In the
mathematician’s number system all numbers in a short interval occur with equal
frequency. All numbersin the interval x5 — 3 < Xy < xo + 4 (measured in units
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of the last digit) go into the number x, (Where x, > 0 is a number in the machine).
Thus the roundoff has a uniform probability distribution in the last digit (Fig.
2.6.1).

1 (=1, %+
\ =
P& {0 otherwise

f P dx =1

The two most commonly used measures of a distribution are the mean (aver-
age) and the variance. The mean is the first moment of the distribution p(x),

xo+1/2 xo+1/2 o — 2 _ o — 2
A= xydx=[ xdx= (o= 1= (xo =)
*o=1/2 x0=1/2 2
1P&)
FIGURE 2.6.1
Distribution of roundoff. xo-% o o+t

while the variance is the second moment about the mean (measures the square of the
“spread”)

, (ot , I
Var{p(x)} = 6 = f 1/§x — x0)?p(x) dx = f 1/21 dt =5
X0~ -

Experimental tests of the uniform distribution of roundoff seem to show that
it is a reasonable model.

How shall we represent this roundoff? Itis conventional to let x be the true
(mathematician’s) number and x + ¢ be the computer number, where ¢ is the ad-
ditive roundoff. This notation is suitable for the fixed-point number system, but
for floating-point numbers it is better to use

x1+¢ |egl<ix107? (2.6.1)
We have chosen to let x be the mathematician’s number rather than the com-

puter’s number because in this book we are concerned with computing more from
the user’s point of view than from the machine’s. The difference in notation be-
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tween the two approaches is minor in principle, but it has the effect of focusing the
attention on one aspect or another in every formula in which the roundoff occurs.
Roundoff, once started, propagates through subsequent operations. For
example, in the multiplication of two numbers
X (1 + e)xa(1 + &) = x,x5(1 + & + &, + £,€2)
Usually ¢, €, can be neglected, but we need to add the roundoff ¢ from the present
operation to get the total roundoff
(1 +e)=xx(1 +6 +e,+6)  Je| <ix1072
€3 =& + 123 + ¢

Similarly for the other operations.

PROBLEMS

2.6.1 Calculate the mean and variance for chopping (see Sec. 2.4).

2.6.2 Examine the propagation of roundoff through division.

2.6.3 Show that for roundoff the third moment about the mean is 0 and the fourth is
1/80.

2.7 THE BINARY REPRESENTATION OF NUMBERS

The various features of the floating-point number system have been discussed in
terms of the familiar decimal representation. However, most computing is done
on machines that use the binary form for representing numbers. The binary rep-
resentation system is increasingly familiar these days, and so only a few details will
be given. As a general rule, if you have trouble with the binary system, then
probably it is because you do not really understand the decimal system, and the
way out of your trouble is to think about the similar situation in decimals. For
example, a decimal number means

1,414.214 =
1x10°+4x10°+1x10' +4x10°+2x 107 +1x 1072 4+ 4 x 1073
Similarly the binary number
1011.101 =
1x224+0x22+1x2'+1x2°4+1x27140x2"24+1x273

Itis important to recognize the difference between the kind of number system
used (counting, fixed, or floating) and the form of the representation of the number
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(binary, octal, decimal, hexadecimal, etc.). Regardless of the form of the repre-
sentation, the number is the same; thus 3 in decimal and 11 in binary are the same
number. Itis conventional to speak of the binary number or the decimal number
to save words, but in careful thinking it is necessary to differentiate between the
number system and the form of the representation.

Perhaps the main stumbling block with the binary system is converting from
decimal to binary and back. For example, consider writing the number 417 in the
binary representation. Thatis, we wish to write 417 as a sum of powers of 2 with
coefficients of either 0 or 1

47=1"2"+a, 12" 1 +a,,2" 2+ +ay2°
If we divide both sides by 2, the remainder is a,. If we divide the quotient by 2,
the remainder is g, , and so on.

27
2|£8_+1=a0
2[104 +0 =g
2|52+0=a,
2|26 +0=a;
2|134+0=a,
2L_6+l=a5
2| 340=gq4
2|_l_+l=a7
2 0+1=aq

417 =110 100 001

To convert back we reverse the process. Multiply ag by 2 and add a4;
multiply the sum by 2 and add ag; etc.

1
2
2+1=3
X2
6+0=6
%2
12+1=13
X2
26+0=26

etc.
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The above process works for integers. For the fractional part we use a
similar trick of doubling and using the overflow on the left. For example,
J62=a_27'+a_,2"2+a_3273 +...
doubie
15d=a_; +a_,2" ' +a_5272 4 ...
andsoa-; =1.
In full

.762
2

_1_\ 524
2
t]oss
2
£| 096
2
il 192
2
EJ 384
2
ﬂ 768
2
ﬂ 536
Hence
762 =.1100001...
Reversing the process gets from the binary representation to the decimal.
Previously prepared tables for conversion purposes are another way of con-
verting from one form of representing a given number to another form of repre-
senting the same number.
The conversions are customarily done by the computing machine, and since
the machine works in binary arithmetic and since the above discussion has used
decimal arithmetic, there are differences in exactly what happens in the machine.

It is not hard to take the machine’s point of view and to deduce how to convert its
way.
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Some words of caution are needed however. The terminating decimal
.1 =+ =.0001100110011...

does not terminate in binary, and as a result adding 1/10 to itself 10 times will not
produce exactly 1 (just as in conventional decimals 1/3 + 1/3 + 1/3 = .333 + .333
+.333 =.999 # 1). Thus using the floating-point representation of numbers
for counting or for logical control is inviting trouble.

Another point of warning is needed. The conversion routines cannot al-
ways read in a decimal number, convert it to binary and back, and give the result
that is the same as the original number—at least not when the number of digits in
the two forms is reasonably balanced. Take, for example, a three decimal to ten
binary digit (binary digit is usually abbreviated bif) conversion. The 100 decimal
numbers

9.00 — 1001.000000
9.01 = 1001.xxxxxx
100 numbers{ 9.02 — 1001.xxxxxx

..................

9.99 — 1001.xxxxxx

N e’
64 distinct numbers

must go into 64 binary representations, so that some distinct decimals must go into
the same binary representation and cannot be distinguished in the reconversion
process. Thus in spite of the fact that 10> < 2!° = 1,024, there will be times when
a decimal number is read in and comes back slightly, and annoyingly, different.

PROBLEMS

Convert to binary:
2.7.1 1,728
2.7.2 1,972
2.7.3 1,066
2.7.4 0,345
2.7.5 0.592
276 1/12
2.7.7 1/16

Convert to decimal:
2.7.8 101 001
2.7.9 111 111
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2.7.10 100 001

2.7.11 111 111

2.7.12 .100 001

2.7.13 Show that the above argument for the nonunique conversion also applies to the
conversion from 8 decimals to 27 binary digits.

2.7.14 Describe the terminating decimals that also terminate in binary.

2.8 THE FREQUENCY DISTRIBUTION OF MANTISSAS

Although the mantissas of floating-point numbers are equally spaced, and hence
occur equally frequently in the form of representation, they are not equally frequent
in practice. Instead, the probability of getting the leading digit 1, 2, or 3 in a deci-
mal number is about 60 percent. For example, consider the 50 physical constants
whose leading digits are given in Table 2.8.1. In Sec. 2.9 we shall show why we
care about this phenomenon beyond mere curiosity.

This effect can be explained in terms of the mathematician’s smooth number
system since it is a characteristic of the numbers themselves and not peculiar to the
finite representation that the machine necessarily uses. We shall show that it is

Table 2.8.1 THE DISTRIBUTION OF THE LEADING
DIGITS OF 50 PHYSICAL CONSTANTS*

Number Theoretical

Leading of cases number

digit N observed Eq. (2.8.3) Difference
1 16 15 1
2 11 9 2
3 2 6 —4
4 5 5 0
5 6 4 2
6 4 3 1
7 2 3 -1
8 1 3 -2
9 3 2 1

50 50

*From Handbook of Mathematical Functions, AMS 55, National
Bureau of Standards, 1964 and Dover Publications, Inc.
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reasonable to adopt the model for the distribution that the probability density for
observing the number x in the base b is

1 1

r(x) = m ‘l',' <x<l1 (2.8.1)

This is called the reciprocal distribution (Fig. 2.8.1) for obvious reasons.
The cumulative probability distribution is defined as

x Inx+Inb
R() = fmr(t) de = 2222

R(1)=o and  R()=1 (282

b
b
Inbd

p(x)=r(x)

1
Inbd

y=1/b 1 *

FIGURE 2.8.1

Reciprocal distribution.

Thus the probability of observing the leading digit N is

N +1 N\ In(N+1)-InN
R( b__) _ R(F) =S Em T sy
which is what the table confirms.

We examine first the way multiplication transforms various distributions.
Let x come from the probability (density) distribution f(x), let y come from g(y),
and let the product z have the distribution i(z). Further, let their cumulative dis-
tributions be, respectively, F(x), G(y), and H(z), the measure of the set of points
for which xy < z.
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A study of Fig. 2.8.2 shows that
z z/(bx) z 1
H=[ [ " fag0)ydx+[ [ (g dydx
1/b°1/b 1/b “1/(bx)

* f,l I ,’,l:,x)f(x)g(y) dy dx
= :/bf(X)[G(b-z;) - G(%) +G(1) - G(i)] dx

[l
N\

y=z/bx .

y=1/bx
1/b

L

FIGURE 2.8.2
The cumulative probability distribution
for the product z = xy.

/

—

-~
<>

—

Differentiating H(z) with respect to z gives the density distribution
h(z) = £(2) [G(%) - GG’) +G(1) - G(gl;) -G+ 6(31;\)]
+ ] s (&) max+ ] 99 ()3
AL [ s

16 X

This is the basic formula which describes how the process of multiplication
combines the distributions of mantissas of two numbers x and y to give the dis-
tribution h(z) of the mantissa of the product.

Suppose, now, that one of the two factors, say y, has the reciprocal distribu-
tion; that is,

9(y) = yinb
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Putting this in Eq. (2.8.4), we get
1
f(x) bx ——dx + @ o

1/» x zlnb : X zlnb

= m_b (J:/bf (x) dx + J.:f (x) dx) -- 111 : (2.8.5)

W)=

Obviously the same applies if we assume f(x) is the reciprocal distribution. Thus
we have shown that if one of the factors of a product comes from the reciprocal
distribution, then regardless of the distribution of the other factor, the product
has the reciprocal distribution. This may be called the persistence of the recipro-
cal distribution once it is established. In a long sequence of multiplications if at
least one factor has the reciprocal distribution, then the result has the reciprocal
distribution.

Next we show how thereciprocal distributioncanarise. Weneed a measure
of how close a distribution is to the reciprocal distribution. After some tries we
measure the distance of A(z) from the reciprocal distribution r(z) by

ax { h@) = r2)
1/b<zs<1

r(z)

This measures the maximum relative error (which is natural for floating-point
numbers).
We just showed that

=L 10, (5) g (1O, (0,

} = D)} =D} (286

16 X

Subtract this from Eq. (2.8.4) and divide by r(z) to get the form for the distance
function

h(z) = r(2) _ J- fx) {Q[ZI(bX)] - r[Z/(bX)]}
1

r(z) n X r(2)
! f(x) [9(z[x) — r(z/x)
+J; x [ r(2) ] x

But

bx z
bxr(z) = e r(-‘;c)

xr(z) = _z_x_ = r(f)

nb X,
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and we have
h(z) —1(2) glz/(bx)] — r{z/(bx)]
o L )
v [9(zlx) = r(z]x)
aRClEe-rr el
Since f(x) > 0 in the two intervals
h(z) r(z)
e j f()D{g} dx + f f()D{g} dx
< D{g}

for all z, it follows that

D{h} < D{g}  (28.7)

How fast does the distribution approach the limiting distribution? Re-
membering that for any distribution g(x)

[ 1969 - a1 ax =0
1/b

we form a guess at the increase that must occur in replacing the square brackets by
their maximum D{g}. We can also calculate how the distance decredses for a
continued product of a sequence of numbers taken from aflat (uniform) distribu-
tion. See Table 2.8.2

Similar results can be obtained for division. For example, Eq. (2.8.4) be-
comes

0= [} 9 00(2) dx 7 [ 9000 ()

and the rest follows to produce the corresponding results for division.!

Table 2.8.2 DISTANCE FROM THE FLAT
DISTRIBUTION TO THE LIMITING DISTRI-

BUTION

Number Percentage of
of factors Distance original distance
1 1.558 100.0

2 0.3454 22.2

3 0.0980 6.29

4 0.0289 1.85

1 For further results see R. W. Hamming, On the Distribution of Numbers, Bell Systems
Technical Journal, vol. 49, no. 8, pp. 1609-1625, October, 1970.
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PROBLEMS

2.8.1 Derive the corresponding results for division.
2.8.2 Iff(x)=f(y) = b/(b— 1), show that for multiplication

h(z)= (b l)’ [lnb— (- 1Dinz]
2.8.3 If f(x) =g(») =b/(b — 1), show that for division

1 1
M) =36-1 (” "';5)

2.9 THE IMPORTANCE OF THE
RECIPROCAL DISTRIBUTION

The reciprocal distribution has many applications. For example, consider the
placing of the decimal or binary point before rather than after the first nonzero
digit. Scientific convention places it after, while computing convention places it
before, the digit. The difference first arose in the earliest electronic computers
where the choice in fixed-point notation meant that the product would not produce
an overflow on the left. What justification can we now give? If it is placed be-
fore, we run the risk in floating point of having a leading zero and of requiring time
to shift this off and adjust the exponent accordingly. On the other hand if it is
after the digit, we run the risk of getting two digits before the point and of requiring
an exponent adjustment to get to standard form. What are the probabilities of
these two (complementary) events? If xy < 1/b, then the probability of a shift
when both factors are from the reciprocal distribution is (Fig. 2.9.1)

1/(bx) 1 na
p_-"l/b-[ xlnbylnb 7 ax

¢t 1n1/(bx)—ln1/b] _ ‘L( lnx)
_f1/bln2b[ X dx_-fl/blnzb - X dx

« o (-] -2
T’ \ 2 /] 2

And so it is a matter of indifference where the point is placed in this model. For
numbers from the flat uniform distribution the probability depends on the base b
and for b =2, p ~ 0.38.

Inthe design of optimal library routines it is necessary to know the distribu-
tion of the input data. In the cases of square root and exponential routines it is
the distribution of the mantissa that is most important, but for other routines such
as the sine it is necessary to know something about the distribution of the ex-
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~n
zi-

1/o0

FIGURE 29.1
Probability of a shift. 1/b 1

ponents. Unfortunately almost nothing at this time is actually known, nor are
there any theories available to suggest what might be found under some suitable
conditions.

We will later give some other applications of the reciprocal distribution.

PROBLEMS
2.9.1 Inabase 16 system written as groups of four binary digits, show that the numbers
of the form
JXXX ..
O1xx...
.001x...
L0001 ...

are equilikely for the reciprocal distribution.
2.9.2 Ininformation theory the information measure of a distribution is

1=~ pinlp(] dx

Abpply this to the reciprocal distribution and compute the information loss from
the uniform distribution for base b.

2.10 HAND CALCULATION

Hand calculations are used to see how a computation might go before program-
ming it for a machine and to check the results after a machinerun. We no longer
need to do extensive hand calculations, and as a result it is a dying art—one that is
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best left to die quietly. A whole book could be devoted to the topic, and the
knowledge of its contents would be of some use sometimes, but it is simply not
worth the effort to learn in detail when there are so many other things more worth
knowing. Besides, the topic is dull and disorganized.

The main thing to note is the types of error that are most common in hand
calculation. The two most prominent errors are both in copying numbers. The
first is to reverse a pair of digits—87 becomes 78—and the second is to double
the wrong number in a triple of numbers—776 becomes 766. They are the same
errors that are common in dialing phone numbers.
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FUNCTION EVALUATION

3.1 INTRODUCTION

Once we understand the number system, we can examine how numbers combine
when we evaluate functions. Mathematically equivalent formulas can have very
different roundoff characteristics. If the way we evaluate a function produces a
great deal of roundoff, then we cannot use it for practical computing. We need,
therefore, to see how to avoidroundoff when evaluating functions ; we need tolearn
how to evaluate functions for machine computation.

3.2 THE EXAMPLE OF THE QUADRATIC EQUATION

The formula for finding the zeros of the quadratic equation
ax* +bx+c=0

is given in textbooks as

X =

~b +./b* - 4ac
2a
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An examination of the formula suggests that when 4ac is small with respect
to b2, that is,

|4ac| < b*

then
~b+./b*—dac forb>0
-b- /b —d4ac forb<0

will result in severe cancellation for one root. Consider, for example, the par-
ticular case:

a=0.100 x 10!
x?—-80x+1=0 = —0.800 x 102
c= 0.100 x 10
_ 0.800 x 10% + 1/0.640 x 10* — 0.400 x 10!
x= 0.200 x 10°
0,300 x 102  0.800 x 107
- 0.200 x 10’ Approximate true values
0.800 x 102 = 80 80 — gy = 80(1 - sloz)
) 0.000 x 10™° =0 L+_‘.=x_(1+_!_)
* 30 80° 30 802

How can we avoid this cancellation?
Since

a(x — x)(x = x;) = ax? — a(x; + x,)x + ax,x,

it follows that the product of the two zeros is ¢/a. If we use the case without the
cancellation to find x; and then find x, from

we will get

x, = 0.800 x 10?

1 -1
% = oo ggr = 125 x 10
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‘We need, therefore, to rearrange the formula for the zeros to pick out the
one without the cancellation. One way is

- z -—
X = bt b —dac “224“ Use opposite sign of b
Xy =
2 axy

How good are these answers? One way of answering s to try to reconstruct
the polynomial from the zeros.

(x = 0.800 x 10%)(x — 0.125 x 10™!) = x? — x(0.800 x 102) + 0.100 x 10"

The reconstruction is exact; therefore, in some sense, the answers must be
exact since we appear to have lost no information around the whole loop.

This is not the complete answer on how to evaluate the formula ; we still need
to worry about (1) underflow, (2) overflow, and (3) 42 — 4ac < 0, but these are not
relevant here.

PROBLEM

3.2.1 Find the formula for the roots of ax?+ 2bx + ¢ =0 and note the savings in
arithmetic.

3.3 REARRANGEMENT OF FORMULAS

It would appear that there are an unlimited number of tricks for rearranging
formulas to avoid severe cancellation (in some region of the argument x), but they
are often the same tricks that were used in the calculus course to rearrange the ex-
pressions that arose in the delta process of formally taking the derivative of a
function.

EXAMPLE 3.1 Evaluate /x + 1~ J;c for large x. As in the calculus we
rationalize the numerator by

s Y~ I
‘*/""“*/"—)(\/%:\/;):\/:ﬁh/;

which has no cancellation. 1
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EXAMPLE 3.2 Evaluate %—f for small x.

In floating point there is no trouble except for x =0. As a special case, if
x =102, then

sinx =10"2
and
sin x
e |
x

as it should. In general since for small x

sinx =x u +
MX =X — o eee
6

then
sinx 1 x? + x*
x 6 120
is accurately evaluated by the sin x routine followed by division by x. The
trouble occurs in the fixed-point number system (which we do not use). /!
EXAMPLE 3.3 Evaluate sin(x + ¢€) — sin x for small ¢,
Using the trigonometric identity
b.a-b
sina —sinb=2cos£%—sma—2——
we have
=2 cos (x+8) in<
= 3) sin3
as a suitable form. 11/
EXAMPLE 3.4 Evaluate liac_c_;:_x for small x.
We have the identities
1 —cos x sin x x
sinx  I1tcosx 3 I

EXAMPLE 3.5 Evaluate

N+1 dx
fN T2 arctan(N + 1) — arctan N

for large N.
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In Fig. 3.3.1 for large N the area is the shaded region and is expressed as the dif-
ference between two large areas. We use the identity

a—->b
arctan a — arctan b = arctan
1+ab
to get
arctan 1

1+ NN+
asasuitable form. Note we also have avoided one arctan evaluation which is the
time-consuming part of the computation. il

y

FIGURE 3.3.1 N %

EXAMPLE 3.6 For large x evaluate
1

1
NEANCES

We write it as

rtlox I
(Vx +1)(x) \/x+l\/x(,/x+ +\/x) (x+1)\/x+x\/’c+l

PROBLEMS

For large x, or ¢ small with respect to x, rearrange for evaluation:

1 1
3.3.1 PR i
3.3.2 tan(x+¢e)—tanx Ans. S e

' €os x cos(x + &)
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1 2 1 2
1 xTE=1 Ans. 77D
334 Vx+1—+x

3.3.5 cos(x+ &) —cos x

3.3.3

N+1
3.3.6f ix’-‘=1n(N+ 1)—InN  Nlarge
N

337 e—2+e" Ans. 4 sinh?(¢/2)

3.4 SERIES EXPANSIONS

Sometimes rearrangements cannot be found to remove the cancellation, and some
other device must be used. One of the more effective tricks from the calculus
course is the expansion of the functions into a Taylor series about some suitable
point.

EXAMPLE 3.7 Evaluate ¢* — 1 for small x.
Expanding e* about x = 0, we get

x* X
X_ 1= IERTIDANTTPI |
e*—1 1+x+2+6+
-x(1+"+"—2+---) I
o 276
EXAMPLE 3.8 Evaluate for large N
N+1

N+1
J. Inxdx=(xInx—Xx)
N

N
=(N+DIn(N+1) =NInN—1

which has severe roundoff trouble in this form. See Fig. 3.4.1.
There are many ways of going about this problem. One way is to write it as

N[In(N+1)—InN] +In(N + 1) = 1 =Nln(1 +11v) +In(N+1) -1

and use
x2 x x*
1n(1+x)—x——2—+-§-—-4-+ |x| small
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Inx

-
[
w
>

FIGURE 34.1

to get

1 1 1 1
—N(N—W'i‘:wj—m'i‘ )+ln(N+1)—l
1 1 1

EXAMPLE 3.9 Evaluate )lc — ctn x for small x.
We have
1 cosx
——ctnx=—-— ——
x sinx
_sinx—xcosx
T xsinx
x3 xS x2 x4
( __3__!_'.,5_...)_)‘(1__2_!_*.2?_...)
= x3 x5
x(x—§+5’— )
x3 x2
—?(I—E-F )_x(1+ 2+..)
“x,(l x? .)‘3 15
6 1
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EXAMPLE 3.10 For small x evaluate
x* x3 x*

In(1—x) “("+'2‘+?+T+"')

In(1+x) x2 X

=73

x* +
4
Divide out the two series formally to get

1n<1-x)__(l+x+x_’+5_x’+-..) I

In(1 +x) 212
If we are given an ¢ that is small, then when we evaluate
In(1 + ¢)

by computing first 1 + ¢, we lose most of the accuracy in this first addition. For
this reason many math package libraries include the function:

given &, compute In(1 + ¢) directly

PROBLEMS

For large x, or € small with respect to x, compute:

1—cose

340 —

e(e‘””‘ — 1)

3.4.2 m One ans. b

1—¢ &3 &8
3.4.3 lnm Ans. —2(8+?+?+ )

3.44 Je"—l
e—1
e—sine

e—tane

3.4.6 (x4 Din— xtin

345

3.5 USE OF MACHINE TO DECIDE

The beginner is inclined to believe that he must personally analyze each problem
and program the machine accordingly. Only after a while does it occur to him
that the machine can make the choices, provided the program is written properly.
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For example, consider evaluating
e —1

for arange of x and a set of parameter valuesa. When |ax | is small, we need to
use the series approximation; otherwise we can use the direct evaluation and sub-
tract. If we do not mind the loss of one bit in the direct evaluation, then we need
only use the series for |ax| <. (Note:e®!=1.105....)

To evaluate e** — 1, see Fig. 3.5.1.

No Yes
y
Compute Compute
2
o (105157

FIGURE 3.5.1 Go on

The term neglected is of relative size

(ax)?

-3
ye <10

so that even if ax < 0, the relative error is less than 4 x 1073, and there is no loss
in accuracy in the power series approximation.

3.6 THE MEAN VALUE THEOREM

The mean value theorem is the third item from the calculus course that is widely
used in computing, especially in the more theoretical parts of deriving errors of
formulas.
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The mean value theorem Let y = f(x) be continuous fora < x < band
possess a derivative at each x for a < x <b. Then there is at least one

number 0 between a and b (see Fig. 3.6.1) such that
SB)-f@)={b-a)f'®) a<0<b

(.6.1)

Thisisequivalent to stating that at the position 0 the slope of the derivative is paral-

lel to the chord joining the two endpoints.

Equation (3.6.1) can sometimes be used to avoid roundoff (and sometimes a

lot of machine time). For example,

ln(N+a)-lnN=a?l)-

X

a [} b
FIGURE 3.6.1
and it is reasonable to pick 0 as the midvalue
2a
—-InN=z
In(N+a)—InN N1 a

Let N =100 and a = 1; then
In 101 — In 100 = 4.61512 — 4.60517 = 0.00995
Again,

2 1
30051 1005 0099

and no logs were evaluated in the computation.
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PROBLEMS

Apply the mean value theorem and check the result if numbers are given.
360 V82 —+81

3.6.2 sin(x+€)—sinx

3.6.3 arctan(N+1)—arctanN N=10

N+1
3.6.4f Inxdx N=10
N

3.7 SYNTHETIC DIVISION

Polynomials play a central role in computing. Not only do they occur naturally,
but everything that the four arithmetic operations (addition, subtraction, multi-
plication, and division) can produce is the equivalent of one polynomial divided
by another. It is important, therefore, to examine with some care the problem of
evaluating a polynomial for a given value of the argument x.

The polynomial

PO)=ayx¥ +ay_x" "' ay X"+t ax+a,
can be written in the ““chain” (nested) form
{lanx+ay_)x+ay_ ]x+ - -a}x+a,

which involves N additions and N multiplications.

The chain method is the same that occurs in the synthetic division process of
dividing a polynomial by a linear factor x — @. For example, the particular poly-
nomial

P(x) =x* +6x% ~Tx +8
divided by x — 2 leads to

x* + 2x% 4 10x + 13 = quotient
Divisor=x —2 [ x*+0x3+ 6x>— Tx+ 8

x* = 2x3
2x° + 6x2
2x3 — 4x?
10x2 = 7x
10x2 — 20x
13x+ 8

13x — 26

+ 34 = remainder
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which can be written as

:E‘)z ¥ 65__27)‘ S o l0x 134 x3—_42
oras
P(x) = x* + 6x> = Tx + 8 = (x — 2)(x> + 2x* + 10x + 13) + 34

When x = 2, we get
P(2) = 34 = remainder

This is a special case of the remainder theorem.

The remainder theorem If a polynomial P(x) is divided by x — a, we get
P(x)=(x—a)Q(x)+R
where Q(x) is the quotient and R is the remainder, and we have
P@) =R
If R =0, then a is a zero of P(x).

The division process can be simplified by noting that the powers of x are
place holders and need not be written provided zero coefficients are supplied for the
missing terms. Furthermore, the quotient need not be written on the top line
since it is given by the numbers at the bottom of each column. Finally, we need
write not x — a, but a, and then add, instead of subtract, in the body of the form.
As a result of all these changes we get

divisor .’_Z_l l 0 6 - 7 8
12 /4 20 26
1 2 10 13 34 = remainder

S —
quotient

In this form it is clearly the chain method of evaluating a polynomial P(a).

If the quotient is again divided by the same linear factor, we will get another
quotient and anotherremainderr, . Dividing this new quotient again by the same
factor, etc., we find that we are performing exactly the same process that was used
to represent a number as a sum of powers of a number base (Sec. 2.7 where we used
the base 2), and correspondingly we are representing a polynomial as a sum of
powers of the linear factor we were dividing by. Thus we will get

Px)=ro+rx—a)+r,(x—a?+ - +ryx—aP



Using the Taylor-series expansion of a function

3.8 ROUNDOFF EFFECTS

" a
1) =f(@) + (x = Q)f'(@) + (x — a)? Lz(?‘) o
we see that
ro = P(a)
ry = P'(a)
P’(a)
=T
Pl”(a
=T )
Using our earlier example,
2[1 0 6 -7 8
2 4 20 26
21 2 10 13 [M=rPQ
2 8 36
ﬂl 4 18 l49=p'(2)
2 12

I _PO
2|11 6 L3_ ==
2

_P"()
1 (j-—s“

and we have

P(x) = 34 + 49(x — 2) + 30(x — 2)% + 8(x — 2) + (x — 2)*

3.8 ROUNDOFF EFFECTS

The preceding is a purely mathematical result.
machine’s floating-point number system with its ever-present roundoff? 1In par-
ticular, how large a remainder R can be considered as being zero?

We start by assuming that the coefficients g, of the polynomial have roundoff

errors in the floating-point form

ai(l + 8;)

53

How does it work out in the
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and we shall assume that the number a at which we want to evaluate the poly-
nomial is exactly known. Since double-precision arithmetic is very widely avail-
able and usually costs little more to use than single precision,’ it is widely used in
polynomial evaluation. In this case the roundoff of the evaluation process con-
tributes almost nothing to the error in the result—almost all the error arises from
the initial coefficients. Since the coefficients occur linearly in the division pro-
cess, the result is the sum of two divisions, one on the true coefficients g; and the
other on the errors a; ¢;.  If we assume that the ¢; are bounded,

le; | < e
then carrying out the following division process

|a|_|aN| lay-1] " |ao]

—|aN| ......... Ii

gives Re as the error bound on the remainder. This is an error bound due to the
error in the initial coefficients.

If single-precision arithmetic is used in the evaluation process, then we must
also consider the effects of the rounding of the individual products and sums.
Each arithmetic operation will include a factor

1+ ¢&*

If we examine the process of synthetic division, we observe that the first coefficient
ay goes through 2N arithmetic operations and so picks up 2N factors of this form.
The next coefficient ay., will have 2N — 1 operations done on it, the next ay_,
will have 2N — 3 operations, etc., down to an a, which will have 1 operation.

We are going to use the method of * backward analysis,” meaning that the
roundoff errors will be regarded as equivalent to small changes in the initial co-
efficients—we will answer the question “ what problem has exactly the calculated
answer?” The multiplication produces a factor 1 + ¢ on each of the terms that
enter into the multiplicand. But the addition process may shift one number with
respect to the other before the addition and roundoff take place. We are supply-
ingaterm1 + ¢to both numbers, thus putting in more roundoff'than there should
be, but the more the relative shift done, the less this excess. The typical termis of
the form

a(1 + gda* (L +ef) -+ (1 + &3 y)
and the error in the polynomial evaluation from this term will be

a ' [(1 +g)(1 +€}) - (1 + ehs 1) — 1]

! This is not true for the special-function evaluation of e*, In x, sin x, etc.
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which is, neglecting products of ¢;’s in comparison to ¢;’s
agafec + el + &3+t + el
For the purpose of bounding the ultimate error, all the ¢* are
lef | < 27"
for a k-bit machine. Thus if in place of g, in the polynomial we wrote
ak[l + & + (@)2"‘]

we would have more than allowed for all the roundoff of the single-precision arith-
metic done in the evaluation process, and we could proceed as before, using these
modified coefficients to obtain a bound.

3.9 COMPLEX NUMBERS—QUADRATIC FACTORS

It frequently happens that a function with real coefficients is to be evaluated for a
complex argument x + iy. For example, given
ez + e %

w=f)=—

evaluate this for z = x + iy. We have

e*cosy+e ¥ cosy ie*siny—e *siny
2 2

(=)
cosy+i 2 sin y

It is also very common to be asked to find

S =

ex -X

f@) +12)

where the bar means the conjugate x — iy. Inthe above example we will have

S2) +f(2) = (¢ + ™ ")cos y
The particular case of a polynomial is of importance, both because it occurs
frequently and because it has special properties. The direct evaluation using
complex arithmetic is unnecessarily expensive in machine time. We use the fact
that evaluating the polynomial at a point a + ib is the same as finding the remain-
der when dividing by the correspondinglinear factor. Notingthat corresponding
to the linear factor we can construct the real quadratic factor

[z = (a + ib)][z — (a — ib)] = 2% — 2az + a* + b?
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we divide the polynomial by this quadratic factor (using the obvious extension of
synthetic division to quadratic factors) to get the remainder ryz + r,.
Consider the special case of computing P(2 — 3i) where, as before,
P@)=z*+62-72+8
The quadratic factor is
[2—Q2=3)]z—-(2+3i)]=2>—4z+13

4 -13]|1 0 6 -7 8

-13 -52 -117

4 16 +36

1 4 +,9 T =23 -109 = remainder

quotient

Thus

P(2) = (22 — 4z + 13)(z% + 4z + 9) + (—23z — 109)

Atz=2-3iwehavez? -4z +13=0
so that

PQ2 —3i)=—232-3i)—109
= — 155 + 69i

Note how much complex arithmetic we have avoided in this process. This is a
very useful trick: we replace the evaluation of a polynomial at a complex number
by a division process using only real numbers and at the last moment let the com-
plex number enter (only linearly).

Error bounds follow along the lines of the linear-factor theory, and need not
be developed here in detail.

PROBLEMS

Evaluate the given polynomial for the argument value given.
3.9.1 P(x)=x5+4 6x%+ 15x*+20x>+ 15x2+ 6x+ 1; forx=—1+41.

392 P(x)=x*—2x + 5x* 4 4x+ 7; for x = 13 JZ'% .
3.9.3 P(x)=x*—2x>+5x*+4x+ T;forx = : +2\/5 .

3.9.4 Discuss the evaluation of P’(x + iy).
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3.10 REPEATED EVALUATIONS

Often we want to evaluate a function not once, but at a series of equally spaced
points (arguments). If machine time and costs are important, then significant
savings can be made by taking advantage of various features of the function.

EXAMPLES

ea+(n+l)h a+nh, h

=e"" e
{sin[a + (n + 1)h] = sin(a + nh) cos h + cos(a + nh) sin h
cos[a + (n + 1)h] = cos(a + nh)cos h — sin(a + nh) sin h

h 1 B \?
In[a+(n+1)h]=1n(a+nh)+a+nh _§(a+rzl1) +oee h<a+nh
I

For polynomials see Sec. 9.5.

The need for frequent evaluations of a polynomial even when the arguments
are not equally spaced is a common occurrence. For example, most library
routines for the special functions have some polynomial-evaluation steps. It
comes as a surprise to many people to learn that for polynomials of degree six or
higher there are arrangements that can save in the number of arithmetic operations
used versus those used by the obvious chain method (see Ralston [49], sec. 7.2, for
more details). Note that (1) often these shorter methods lead to severe roundoff
troubles, and (2) the conversion to the shorter form can be programmed on a
machine once and for all.

PROBLEMS

3.10.1 Discuss using the addition formula for tan x for finding successive, equally
spaced values of tan x. Include a discussion of the probable error trouble.

3.10.2 Note that the routine for successive values of the sine requires the corresponding
cosine values; develop a method that uses only the last two sine values.

3.10.3 Examine the roundoff error propagation in the sine routine and the effect of
writing cos h as 1 — ¢(h) for & small.

3.11 OVERFLOW AND UNDERFLOW

We have ignored one of the realities of computing, namely that not only are the
mantissas limited, but so also are the exponents. This limitation gives rise to
both overflow and underflow. It may seem strange at first that with the usual
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wide range of at least 10~ 38 to 1038 there should be trouble with exponents. But
this ignores a number of facts. First, it is quite common to have adequate
theories, with analytical results, at both ends of some range, and the computation
is to cover the ground between where certain effects (terms) are completely neg-
ligible to where certain other effects are similarly to be ignored. Thus it is
natural that in some cases being run there will be terms that are very small or very
large.

Secondly, even for modest ranges some very common functions such as the
exponential will have very large (small) values. Forexample,e?® = 0.720 x 10'%,

Thirdly, many mathematical theories about the real world include singulari-
ties, and it is sometimes necessary to compute very close to the singularity in order
to discover the nature of it. (See Chap. 42.)

When underflow occurs, it is almost always satisfactory to replace the num-
ber by the machine zero, 0.000 x 107°, Usually there is no comparable infinity
to use when overflow occurs, and at best the overflow number is replaced by some
very large number such as 0.900 x 10° (to leave room for some further increase
without again tripping the overflow alarm).

Because of the lack of symmetry in the machine hardware and corresponding
number system, it is preferable to arrange computations to have an underflow
rather than an overflow. Usually this is not hard to do. For example, to com-
pute

forl<x<10

ef—1
we write
e* 1
-1 1-—e*

It should be obvious how to do this in many cases; what is necessary is to think
about it before programming the details for a machine.




4

REAL ZEROS

4.1 INTRODUCTION

The problem of finding the real zeros of a continuous function occurs frequently
in science and engineering and has therefore received extensive treatment. We
shall give only a few of the simpler methods that are easy to understand and use.
We will look at the problem of finding complex zeros in Chap. 5, and in Chap. 6 we
will examine the important special case of polynomials.

It is in the nature of the problem of finding the real zeros of a function that
the positive and negative terms of the function almost exactly cancel. We there-
fore face roundoff, and all that was said in Chap. 3 about how to evaluate a func-
tion to avoid unnecessary roundoff clearly applies to the problem of finding real
zeros of a function.

The floating-point number system puts further restraints on what can be ex-
pected. We can at best hope to keep the relative error under control, and we
cannot expect to find zeros far from the origin with great absolute accuracy. The
roundoff also means that we cannot expect to find a number that makes the func-
tion exactly zero. It is for this reason that generally we do not try to find a zero;
rather we try to find an interval in which the function changes sign. We then
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measure the accuracy by the length of the interval relative to the maximum of the
function value and the argument. But even worse, we can expect in practice to
find a sequence of values, some with plus and some with minus signs!

4.2 GRAPHICAL SOLUTION

One of the easiest methods for humans to use is the graphical method of drawing a
curve and noting where it crosses the axis, or sometimes a pair of curves whose
mutual crossings indicate the zeros. Unfortunately this method is particularly
bad for unaided machines, and so we will look at it only briefly to set the stage for
further methods that are more suitable for machines. For machines with graphi-
cal output and with a human examining the output, it can be very useful and easy
to use.

EXAMPLE 4.1 Consider the problem of finding the real zeros of the function

y=eax_x2

We picture in our minds the plot of y = ¢°* (see Fig. 4.2.1) and the plot of y = x?
and look for their crossings. If @ were small and positive, it is clear that the x2
curve will rise quickly enough to cross the exponential curve at least once, and
since ultimately the exponential grows faster than any power of x, there will be a
second positive crossing.

When we plot the curves, we get a picture that confirms what we expected.
It is natural to ask for the value of a beyond which there is only the negative zero
and no crossing on the positive side. To find this we note that as a increases, the
two positive crossings will approach each other and finally merge into a double
zero. At this point both the function and the derivative will have a zero at the
same place.

y=e*—x?=0
Yy =ae”—-2x=0
Eliminate e** to get
ax? —2x=0
or

(spurious solution)
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Putting this in the second equation, we get

orfora>0,

FIGURE 4.2.1
ae’ —-=
( 2
a==-
G
Ix=e

‘.)’ =0 i
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PROBLEMS

4.2.1 Find graphically the first two positive zeros of tan x — x =0 to one decimal
place.

4.2.2 Find graphically the maximum of y = —x In x(0 <x <1). Check analytically.

4.2.3 Find the value of a for which sin x — ax = 0 has a double zero.

4.2.4 Show that there are no real zeros fory =e*—Inx — 1.

4.3 THE BISECTION METHOD

One of the best, most effective methods for finding the real zeros of a continuous
function is the bisection method. The bisection method begins with an interval
(x4, x,) in which the function changes sign, which is measured in the machine by

SOx)f(x2) <0

We then pick the midpoint x; (bisect the interval) and evaluate the function
there. If
<0  then thereis a sign change in (x,, X;)
S(x)f(x3){ >0  then there is a sign change in (x;, X,)
=0  then x,isa zero

Repeated bisections reduce the interval containing the sign change to an
arbitrarily small length—or until we meet the granularity of the number system
around x and the machine computes the midpoint as one of the two end values.
Ten bisections reduce the interval length by more than a factor of im;—three
decimal place improvement! Thusin practice it is rare that the bisection method
will be used for 20 steps.

The method is robust in the sense that small roundoff errors will not prevent
the method from giving an interval with a sign change, and if roundoff is mis-
leading you, it is not the fault of the method but of the program that evaluates the
function. There is one danger, namely that what you implicitly thought was a
continuous function had a pole and that you end up straddling an odd-order pole,
but this can be checked for easily.

The bisection method supposed that an interval had been found which had a
sign change in it, and the problem is usually stated as that of finding all the real
zeros in some given interval. This requires a search for intervals of sign change.
If we search with a large step size /4, then we run the risk of stepping over a pair of
zeros or of getting an interval with an odd number of zeros and finding only one
of them in the end. If we use a small step size 4, then we will spend most of the
time looking where there are no zeros. It is an engineering judgment to resolve this
dilemma.
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The problem of multiple zeros can be troublesome. One way to cope with
it is to search for sign changes in both the function (which indicates all odd-order
zeros) and the first derivative (which indicates all even-order zeros), but without a
lot of elaborate analysis the machine cannot be expected to solve the general

problem of the multiplicity of the zeros it isolates.

EXAMPLE 4.2 Find /2.

This is a zero of y = x> — 2. Try h = , starting at x = 0, for the search.

y0) = -2

yH=-Z

= -1

=1
We have the interval

l<x<l15

Bisect and try x = 1.25; (1.25) = —0.4375. We have the interval
1.25<x<1.5

Bisect and try x = 1.37; y(1.37) = —0.1231. 'We have the interval
1.37<x<1.5

Bisect and try x = 1.43; y(1.43) = 0.0449 ... > 0. And so forth.

i

As a practical matter, given the original interval, it is usually best to decide
on the number of subintervals to try in the search method and on the number of

bisections to use in case a sign change is found, rather than on interval sizes.

PROBLEMS

Find to one decimal place the real zero of':

4.3.1 het=1

432 cosx=x

433 xInx=1

Using the bisection method, compute:
14+ V5

2
435 2
4.3.6 Elaborate on the last paragraph of this section.

4.34

Hint: Find a quadratic of which it is a zero.
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44 THE METHOD OF FALSE POSITION

The method of false position (regula falsi) is a very ancient method, and it attempts
to do better than the obviously slow bisection method. The method of false
position again starts with two points at which the function has opposite signs; that
is, we have an interval in which there is a zero, and we wish to decrease the interval.
The straight line through the two points is used in place of the function, and the
zero of the straight line is used in place of the midpoint of the bisection method.
The main weakness of the method—its slow approach from one side—is apparent
from the picture. Further obvious faults tend to exclude the method from prac-
tical use on machines.

fx)

FIGURE 4.4.1 —

In more detail, given the two points (x, , f(x,)) and (x, , f(x,)) (see Fig. 4.4.1),
the line through them is

(x = xy)

Y09 = y(x,) + Y(x3) — y(x;)
27X

X, —
whose zero is given by
Xy — Xy
Y(x2) = y(x1)
_ x1y(x,) = X, y(%y)
P(x2) — y(xy)
Note (1) the symmetry of the formula and (2) that y(x,) — y(x,) is in fact an ad-
dition because we assumed y(x,)y(x,) <O.

x =Xy — y(x;)



4.5 MODIFIED FALSE POSITION 65

4.5 MODIFIED FALSE POSITION

A simple modification of the false-position method eliminates its worst feature,
the one-sided approach to the zero with the resulting large interval. The modi-
fication of the false-position method consists in dividing by 2 during each cycle of
the computation the function value at the end that is kept. Figure 4.5.1 shows
how this modification improves the method.

X1
—>x

W X3
FIGURE 4.5.1 —

The method is usually (but not always) faster than the bisection method and
has the defect that we cannot tell in advance how many steps will be required to
obtain an interval length less than the preassigned accuracy needed.

In more detail the algorithm is the following. Given a continuous function

Jf(x) for an interval a < x < b with j{a)f(b) <0,

af ) - bf(a)
Jb) - fla)

1 Compute x =
2 Compute f(x).
x  becomes new b
f(x) becomes new f(b)
fl@)

= becomes new f(a)

3 Compute f(a)f(x). Iff(a)f(x) (=0  thenyouare done
x  becomes new a

f(x) becomes new f(a)
1)
2

<0 then

>0 then

becomes new f(b)
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EXAMPLE 4.3 Find the zero of y = he* — 1 (using two-decimal arithmetic to
make it easily followed).

It is easy to see that

f0=-1<0
SM=e-1>0
hence
a=0 flag=-1
b=1 fB)=172
_ af(b) — bf(a) _0x 1.72 - 1(-1) _ 1 037
f(b) — f(a) 1.72 = (-1) 2.72
S(x)=037x145-1=0.54—-1=-046
next step
a=037 f(a) = —-0.46
b=1 1) =0.86
2
- 0.37(0.86) — 1(—0.46) _ 0.778 ~0.59
0.86 + 0.46 1.32
S(x)=0.59 x 1.80 — 1 = 0.06
next step
a=0.37 1@ = —0.23
2
b=0.59  f(b) =0.06
_ 0.37(0.06) — 0.59(—0.23)  0.16 —0.55

0.06 + 0.23 7025
f(x) =0.55 x 1.73 =1 = —0.05
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next step

a=0.55 fla)=—0.05

b=0.59 f(% =0.03

_0.55(0.03) — 0.59(0.05) _0.046 _ o
0.03 + 0.05 0.08
f(x) =0.038

a=0.55 f(Ta) = —0.025

b=0.58 ]:(2[7—2 =0.038

x % 0.565
End. "

An alternate version of the modified false-position method halves the ordi-
nate kept only when it stays on the same side of the zeros as on the previous step.
This modification is believed to speed up the convergence at the cost of a slight
amount of extra programming and testing. Unfortunately the method has not
been adequately analyzed, and experimental tests of selected functions are not
completely convincing.

PROBLEMS

Using the modified false-position method for three steps, find the zero of':
1 T

Ty 05¥<3

452 y=x2-2 0<x<L2

453 y=xlnx-—1 1<x<L2

451 y=tanx—

454 y=cosx—x Ostg

455 y=x*-2 0<xL2

4.5.6 The choice of halving the kept function value was arbitrary. Discuss other
possible choices and when to use them.

4.5.7 Draw a flow diagram of the modified false-position method.
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46 NEWTON’S METHOD

Newton’s method for finding the real zeros of a function y = f(x) is usually taught
inthe calculus course. Theidea behind the method is the ‘* analytic substitution
of the local tangent line for the function and then the use of the zero of this line as
the next approximation to the zero of the function.

In mathematical notation the tangent line at x; (Fig. 4.6.1) is

(%) =fx) + £/ (x)(x = x)

and hence solving for x = x, ., the next approximation is

Sx)
Xi+1 = X _f_'(xk)
y
f(x)
X
* o \
FIGURE 4.6.1

When it works, Newton’s method is fine, but it has three obvious faults as
canbeseeninFig.4.6.2. Thus, unless the local structure of the function is known
in some detail, the unmodified Newton’s method is to be avoided.

The worst features of the method can be partially compensated for by a
simple device. Letusintroduce a metric, or distance, to measure how well we are
doing. We will use |f(x)]| as this metric. The beginning of the next step in the
iteration process involves the evaluation of f(x) at the new point. If this new
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y y
’ \
A A
V L } | i
/ Xn+1 Xn Xn-1 *

Inflection point Multiple zero ‘Local minimum

Can cyzle and never Slow approach with f'=0 Risks being sent very far
converge and trouble in division step away for next approximation
FIGURE 4.6.2

value is not smaller in size than the previous value, we will not accept the step, but
instead we will go back and halve the step

—f(x)
S(x)

Xy — X =Axy =

using instead

Ax,

2
If this does not decrease the distance, we repeat the halving process until it does,
because we know that the local slope of the curve is in the direction to decrease the
distance and that a sufficiently small step will work (until the granularity of the
number system gets in the way). If this modification is used, it is well to add an-
other, namely that no new step is more than twice the preceding step (to prevent the
tedious shortening-up of the step size cycle after cycle). In this way the troubles
from inflection points are eliminated, and the method will creep up on multiple
zeros. Local minima, which are not always easily recognized, can cause trouble
in a machine.

How shall we end the iteration in Newton’s method? The approach to the
zero becomes one-sided, and we do not have an interval in which the zero lies. If
we use the size of the function at the point as the criterion, we will get different
answers depending on whether we use f(x) = 0 or kf(x) = 0 as our original equa-
tion. If we use the step size Ax = x;,; — X, as a measure, then when we quit, we
may be far from the zero and be only slowly creeping up onit. There is no com-
pletely satisfactory answer, and we will suggest using the size of the step relative to
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the zero being found as a measure. As will be shown in the Sec. 4.7, the error
tends to be squared each step when we are finally close (in some sense), and this
fact can be used by comparing three consecutive step sizes,

AXiyy ~ Ax, ~ =f"(xi+1)
(Ax)* 7 (Axmg)* T 2 (Xes1)

4.7 THE CONVERGENCE OF NEWTON’S METHOD

Newton’s method is highly favored theoretically because when it finally starts to
converge, the convergence is quite rapid. To show this we need a couple of im-
portant mathematical results.

The first result we need is the Taylor series with an integral remainder. For
our immediate use this can be found by integrating by parts the obvious identity

y&) =y@ + [y ds
Setting
u=y(s) du=y'(s)ds
dv=ds v=—(x—3)
we have

¥(x) = y(a) = [(x = $)y'(9)]

" + fxy”(s)(x —s)ds

= y(a) + (x — a)y'(a) + fy"(s)(x —s)ds

The second mathematical result we need is thatif f(x) and g(x) are continuous
and if f(x) > 0 (a < x < b), then

f ’ 1(0)9(x) dx = 9(6) f "f)dx  forsomed a<O<b

To prove this, write g as the minimum of g(x) and write G as the maximum (in the
interval). Thus

g<gx) <G
Multiply this inequality by the nonnegative quantity f(x)
af(x) < f(x)g(x) < Gf(x)

and then integrate (sum) to get

0 [0 < [ fe0dx <6 [ 1) ds
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Now consider the quantity, as a function of ¢,

b b
9()=g() [ 10) dx = [ f(x)g(x) dx
At the point where
g(f) =g,then (N <0
g(?) = G, then ¢(1) >0
Hence, since ¢(t) is continuous, there is a value t = 0 such that

$0)=0

or
b b
[[ 109 dx = 9(@) [ 1) ax

We use these results as follows: write f(x) in the Taylor-series form where a
is the current guess x; and x is the zero of the function.

S =0 = f) + (6 =5 (x) + [ (= 5}/ (5) ds

The next guess x; . is given by Newton’s formula

0 =/(x) + (Ker1 = %" (%)

Subtracting, we get
x
(= %) () + [ (x =" () ds =0
Xk

Using the second theorem, since x — s is of constant sign,

(&= % @) 10 [ (=5 ds =0

(= 5 ) + 7O <0
But
X = Xg4q1 = &4+1 = Next error
X —Xx;, =¢& = currenterror
hence
=f'0) ,

€ = §
k+1 2f (xk) k
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is an exact formula for the new error in terms of the current error; we square
the error each step (almost). This is often described by the remark that with
Newton’s method you double the number of correct digits each step (assuming
that f”(0)/[2f"(x,)] is around 1 in size).

But let us not be deceived by this result. Normally it is not the final rate of
convergence that controls the number of iterations; it is the initial rate of conver-
gence. Here the bisection method shines—it starts out well in comparison with
many other methods.

PROBLEMS

Apply Newton’s method, using the starting value given to:

471 y=xe"—1 x=1/2

4.7.2 y=arctanx —1 x=1

473 y=Inx-—3 =10

4.7.4 Using y =x"— 1, show how for some values of x, the local convergence of
Newton’s method can be very slow.

4.8 INVARIANT ALGORITHMS

The idea of an invariant algorithm is simple but important. The importance
arises from being one of the few ideas that provide some unity in the field of al-
gorithms with its many varied methods and tricks.

The idea is easily illustrated by applying it to Newton’s method. We in-
stinctively feel that it is the same problem whether we find the zeros of y = f(x) or
of y =¢f(x). A moment’s examination of Newton’s method shows that at the
step where we compute f(x)/f’(x) the multiplicative factor c is automatically re-
moved. Wealso feel that if in place of x we were to use ¢, x as the argument of the
function, then we still have essentially the same problem. Ifwe scale the starting
value by the corresponding amount, then we again see that the successive values
of the estimates x, also scale properly; the iteration equation is homogeneous in
¢;.  Due to the nature of the floating-point number system a translation of the
origin does not leave the problem unchanged.

What about the stopping rule? Should it not also be invariant under these
two classes of transformations? The use of the change in the estimate x; . ; — X,
relative to the estimate x; clearly scales properly. The use of the step size, the use
of the size of the function, and many other possible stopping rules do not scale
properly and are not appropriate for an invariant algorithm.
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In general, an algorithm is invariant with respect to some class of transfor-
mations. The class is found by considering the source of the problem, the mathe-
matical structure of the problem, and the use that is going to be made of the results.

The class usually forms a group, provided the finite limitations of the machine
are recognized. The importance of invariance with respect to a group of trans-
formations has long been recognized in mathematics. That which is invariant is
usually recognized as being more fundamental than the chance form of the par-
ticular representation of the problem; in Euclidean geometry only things invariant
with respect to translation and rotation are regarded as geometric entities. Simi-
larly, analgorithm which transforms properly with respect to a class of transforma-
tions is more basic than one that does not. In a sense the invariant algorithm at-
tacks the problem and not the particular representation used (though clearly it
uses a particular representation in the computation done). The slight differences
inroundoffthat can occur are not basic to theidea, but come from the nature of the
finite structure of the number system used. On the other hand, the roundoff dif-
ferences from different representations will usually not be large, except for ill-
posed problems.

Invariance is something like dimensional analysis. We realize instinctively
that invariance should apply to proper equations and proper algorithms, and if it
does not, then this is a warning sign to look a good deal closer before going on.
And like dimensional analysis, invariance in an algorithm can point to forms that
are suitable and ones that are not, and often delimit the acceptable forms so as to
practically give the proper one (see, for example, the stopping rule for Newton’s
method). But invariance may include transformations that are more than mere
linear scaling, and so the idea of invariant algorithms includes more than dimen-
sional analysis.

The larger the class of transformations under which the algorithm is to be
invariant, the more restricted the algorithm and (like much of mathematics) the
more simple and powerful the result when finally found. In the search for an
algorithm the invariance requirement will block off many fruitless paths.

It is easy to see that two classes of transformations, multiplying the function
by a constant and stretching the x axis, are reasonable to be used on the problem of
finding zeros of functions. Applying this invariance to the bisection method, we
see that if the initial interval is properly scaled, then it is a matter of scaling the
stoppingrule; and if the stopping rule is not so scaled, then there is probably some-
thing wrong.

Similarly the false-position and modified false-position methods are in-
variant providedthe stoppingrules are picked properly. Inparticular, the method
of iterating the bisection method a fixed number of times, as well as the interval
length relative to the size of the zero being found, is invariant. Stopping rules,
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like the size of the function or the length of the interval, do not scale properly and
should be avoided in practice.

In the future we will use this idea of invariance as a tool for finding and
examining algorithms, and we will find that some of the classic methods are not
invariant.

49 REMARKS ON COMPARING ALGORITHMS

Having given a number of algorithms for finding real zeros, how are we to compare
them and others yet to be discovered so that we can pick one in a reasonable fashion
when necessary to do a particular problem?

Evidently the bisection method is powerful, but slow in the final steps when
compared to Newton’s method. Butitis quite likely that the bisection method is
much faster in the early stages. And in practice it is usually the initial rates of
convergence, not the final ones, that matter because we rarely want high accuracy
in the zeros we find—in mathematical problems yes, but in engineering and science
usually we don’t know the other parts sufficiently well to justify a many-digit
answer.

The modified false position is so much better than the simple false position
that it is the second choice to consider. When and in what respects does it com-
pare favorably with the bisection method? Evidently it is likely to be faster on
reasonable functions, but it can be slower on some functions. Nothing is really
known at this time about the distribution of functions that occur in practice whose
zeros we want to find, and so little can be said.

Newton’s method is the classic one for finding zeros. It requires finding
and coding the derivative. Some methods of rating algorithms count the effort
to evaluate the derivative the same as to evaluate the function—thus counting one
step as the equal of two in other methods—but this is not reasonable. For most
functions, once the parts of the function have been found, there are very few new
parts that are expensive to compute when the derivative is found. No new
radicals, logs, or exponentials can arise ; at worst a sine can go into a cosine (or the
reverse), and the special functions are the time-consuming parts of most function
evaluations. All the straight arithmetic is usually small in time when compared
to the special-function-evaluation routines..

Two methods which are sometimes discussed, but which we have so far
ignored, should be mentioned. The secant method resembles the false-position
method, except that it uses the plausible argument that the last two values, rather
than a pair that lies one on each side, should be kept. The danger in the method
is especially clear when roundoffis considered, since by chance a locally horizontal
tangent can cause great trouble.
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The other method is called successive substitutions. Given one or more
equations, they are each solved explicitly for a different variable, even if it also
appears on the other side, and the old values are substituted into one side to find
updated new values of the unknowns. This method is powerful when done
by hand, but it is hard to use on machines in situations that have not been
preanalyzed. Evidently its success depends on arranging matters so that large
errors in an unknown tend to produce smaller ones in the next cycle of iteration.
This technique is related to the idea of stability which will be discussed in more
detail in later chapters.

EXAMPLE 4.4 Consider again the example in Sec. 4.2 of finding the zeros of

2 —x2=0
this time using a = 1.
‘We have the two curves (Fig. 4.9.1)
y=x
y= ex/2
Solving the second equation for x, we have
y=x
x=2Iny
y
y= ex/?

y=x?

FIGURE 4.9.1
Rough Sketch., x
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If we start with x = 5, we get in turn (using two decimals)
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x=28.5

(whichis a poor answer), and we approach the upper zero from below.  If we were
to reverse the substitution loop, we would approach the lower zero from above.

i

It is easy to draw sketches to show what will happen in particular cases, but
this is exactly the kind of thing that machines have a lot of trouble doing. Thus
the successive-substitution method is suitable only for carefully analyzed situa-
tions (of which there are many), but the details are easily worked out in any par-
ticular situation, and nothing more need be said here.

PROBLEMS

4.9.1 Make sketches showing the dangers of the secant method.
4.9.2 Show that the proposed modification of Newton’s method is invariant.

4.10 TRACKING ZEROS

The problem is often not just to find the real zeros of a function, but rather to find
the zeros as a function of some parameter in the equation. In this situation it is
clearly foolish to solve each parameter value asif it were a new problem. Instead,
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from the values of the zeros for the previous parameter value(s) we can form a
good guess at where those for the current parameter value probably lie. Methods
for tracking the zeros as functions of the parameter can be developed from the
predictor-corrector methods discussed in Chap. 23. It is a complex, difficult task
to design a foolproof method of tracking zeros since sooner or later almost every
possible trouble will occur.

In tracking zeros one should use a local coordinate system (like the moving
trihedral in differential geometry) to avoid artifacts of the problem’s coordinate
system such as vertical and horizontal tangents. This remark applies to almost
all graphical work.

For this chapter probably the best, easily available references are Ralston
[49] and Traub [59] (see References in the back of this book).
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COMPLEX ZEROS

5.1 INTRODUCTION

The problem of finding the complex zeros of a function in some region occurs
frequently in practice, though not as frequently as finding real zeros. It is
curious that the real-zero problem has been extensively investigated while the
complex-zero problem has generally beenignored. Evidently it s a field ripe for
further research. We shall give only two simple methods which are based to a
great extent on the bisection method.

The functions we shall consider are called “ analytic in the region of investi-
gation,” meaning that at every point in the region the function has a convergent
Taylor series. For convenience only, we shall assume the region is a rectangle in
the complex plane.

While finding real zeros, we used the notation y = f(x); in the complex
plane it is customary to use the notation z = x + iy as the independent variable
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and w(z) = u(x, y) + iv(x, ) as the dependent variable. Thus the single condi-
tion that w(z) = 0 is equivalent to the two simultaneous conditions

u(x,y)=0
t(x,y)=0
where u(x, y) is called the real part and v(x, ) is called the imaginary part of w(z).
Very frequently the function we are examining has only real values for w(z)
when z takes on real values; that is, w(x + i0) has only real values. In this
important case we have the well-known result that if x + iy is a zero of w(z), then
x — iyis also a zero.
The theorem is important because it means that in this very common case we
need to examine only the upper (or lower) half of the complex plane for zeros.
As an exercise in dealing with complex numbers we shall prove this theorem.
The letter i can occur in the function definition as well as in the argument z = x +
iy; for example,
1z e—'iz
—
and we need to distinguish these two appearances. Givenw = f(z), we shall usea
long bar over both the function and the argument to mean the conjugate values,
that is, when i is replaced by —i. A short bar over the function means that only
thei’sin the function are changed, while the bar over the argument means that only
in the argument are the i’s changed to —i’s. The assumption that the function
takes on real values for real arguments means that, as in the above case of sin x,

w(z) =sinz =

w=w(x) = w(x)
The statement that x + iy is a zero means that
wix +iy)=0
We need to show also that w(x — iy) =0. We havein turn
W(x + i) = 0 = w(x + ) = W(x — iy) = w(x — 1Y)

and we have proved the theorem.

PROBLEMS

For practice in handling complex functions, find u and v
511 Ifw=2z®

512 Ifw=tanz

513 Ifw=Inz

514 Xw=Vz
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5.2 THE CRUDE METHOD

The bisection method for finding real zeros is both very easy to understand and
very robust, and it is natural to try to extend the method to finding complex zeros.
This extension depends on finding the right way of looking at the bisection method
in order to generalize it to complex zeros (keeping in mind the invariance prin-
ciple).

One approach is to regard the search method for locating the zero as
recording plus or minus at each point along the real axis according to the sign of
the function at the point. In the complex plane for each point x + iy we record

b b = = = = 4

the quadrant number in which the function value falls. Thus at each point, we
record 1,2, 3, or 4, and we record a 0 whenever either u(x, y) =0 or v(x, y) =0
or both. This produces a picture of a region with numbers attached to each
mesh point (see Fig. 5.2.1).

We can now take colored pencils and color in each quadrant. We will find
that typically four quadrants meet at a point, each having an angle of about 90° at
the point. At this point there is evidently a zero, since it corresponds to a point
in the w plane where both u(x, y) and t(x, y) are zero.

The u(x, y) = 0 curves divide quadrants 1 and 2, and 3 and 4, while the
v(x, y) = 0 curves divide quadrants 1 and 4, and 2 and 3.

As we shall later show (Sec. 5.4), where four quadrants meet at a point, it is
asimple zero; where eight quadrants meet (each having an angle of about 45°), itis
a double zero; etc.

Having located the general region of the zero, we may clearly enlarge the
region as much as we please by plotting our mesh points at finer and finer spacing
to get further accuracy until we run into either roundoff or the granularity of the
number system.

This crude method is easy to understand, reliable, and accurate, but its
fault is that it requires unnecessary computing (and also implies human interven-
tion in the process of finding the zeros). Wewill later refine the method, but even
in the crude form it is very useful and effective.

PROBLEMS

5.2.1 Prove that for functions such that w = w, the x axis of the plot is a line of zeros
corresponding to v = 0.
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w
»

14

FIGURE 5.2.1

5.3 AN EXAMPLE USING THE CRUDE METHOD

As an example of how the crude method works, consider the problem of finding the
complex zeros of the function
w=w(z)=e —z2°
which lie near the origin.  For this function we have w(x) = w(x), and so we need
only explore the upper half-plane. We try the rectangular region
-n<x<2n
0<y<2m
The quadrant numbers are easily computed on a machine and are plotted in

Fig. 5.3.1. The x axis is a line of 0s, as it should be (there is one other number
which is almost zero which we have marked asa0). Indrawingthecurvesu =0
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11 1 1 11 l2"4 4 4 4 4 4 4 4 4 4 4 4
1 1 1 11 114 4 44 4 4 44 4 4 4 4 4
1 1 1 11 114 4 44 4 4 4 4 4 u=0
1 1 1 1 1 114 4 44 4 4 4 3 3
1 1111 1\ 444 4 3 3 3 3
u=0 11 1111 4 4 4 33 33
1 1111 4 4 4 3 3 v=0
2 2\0 ! 11 4 4 2 22 2 22
2 2 111 4 222 2222
2 2 2 11 4 2 221 2 22
2 2 2 2\ 1 11 1 1 11 1111 u=0
2.2 22 1 11 11111111
-"ir 6—0—0 /GI © —0—0—0\0—0—0—0—0—0—F© 2"; >Xx
Real zero Complex zero
FIGURE 5.3.1

and v = 0, we remember that the curves in the lower half-plane are the mirror
images (in the x axis) of those in the upper half, but that the quadrant designations
interchange 1 and 4 as well as 2 and 3.

Does this picture seem to be reasonable? The real zero on the negative real
axis seems to be about right because we know that as x goes from 0 through
negative values, e* decreases from 1 toward 0, whereas z* goes from 0 to large
positive values. Thus, e* and z2 must be equal at some place (and we easily see
that this happens before we reach —1).

The complex zero we found is likely to be one of a family of zeros with the
next one appearing in the band

2n<y<4n

An examination of the picture shows that it is a reasonably convincing
display of the approximate location of the complex zero. We could easily refine
the particular region if we wished by simply placing our points in a closer mesh.

54 THE CURVES u=0 AND v=0 AT A ZERO

At any point z = z, (Fig. 5.4.1) the Taylor expansion of a function has the form

— 2z.)? .3
£2) = f(20) + f/(20) To20 o gz EZEL 4 pray B2

2! 3!

z—zq
1!
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a, 0
Ay ;
0
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x x

FIGURE 54.1

or
f@) =ao+a,(z — 20) + a2(z — 20)* + a3z — 2o)* + **
For each k we set
ay = Aye'* A, real
and we also set
z =z = pe'
Therefore, the Taylor expansion has the form
f(2) = Ao + A pe'@+0 4 4, p2i#2+20) 4 ...

Atasimple zero f(z,) = 0, then 4, = 0, and for small p the immediate neighbor-
hood of z, () “looks like”

Al p ei(éﬁ-o)
or
f(2) = A,plcos(¢y + 6) + isin(¢; + 0)]
The u = 0 curves (Fig. 5.4.2) are approximately given by
A;pcos(p; +6)=0
or

=—¢,+g+kn k=0,1

and the v = 0 curves are approximately given by
Apsin(¢, +6)=0
or
=—¢,+kn k=01
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FIGURE 5.4.2 X

We see that the ¥ = 0 and v = 0 curves intersect at right angles, and hence the
quadrants we plan to color each have an angle of approximately 90° at the zero.
The picture we color is therefore easy to interpret at a simple zero. Note that
this happened at both zeros of the example in Sec. 5.3.

At a double zero both f(z,) and f'(z,) are 0, so that the Taylor series looks
like

f(Z) = Az pzei(¢1+20) + A3 pBei(¢3+30) Foeee
We have for small p

u = A, p? cos(¢, + 26)
v~ A, p? sin(p, + 20)

_ _ ¢2 n  kn
u=0 0= > + 3 + 2
_ ¢y km
v=0 0= 2 + 2
and the angles of the colored quadrants are approximately 45° (see Fig. 5.4.3). It
is easy to see that for a triple zero the colored quadrant angles will be approxi-
mately 30° and in general for a multiplicity of m, we shall have the # =0 and
v = 0 curves meeting at approximately n/(2m) radians (or 90°/m).
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iy

FIGURE 54.3 x

As an example of a double zero, consider Example 4.1 in Sec. 4.2 where we
asked for a double zero of

w(z) = e — 22

and found that a =2/e. What does the picture of this look like? We should
havetheuand vcurves crossing at 45° angles for this transcendental function. We
have plotted the quadrant numbers only where quadrant changes occur, which is
all that is needed. (See Fig. 5.4.4.)

iy
v=0
20 1\4
15) 1
1.6 4
1.7 \4
u=0 1.0 1\a
8 1
N 6 1
2 \2 4 1
2\ 2 1 |
-1.0 02 06 10 *
04 08

FIGURE 544
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PROBLEMS

5.4.1 Sketch the u =0and v = 0 curves for w = z2 — x + } using the lattice points

x = k=0,1,2,3,4

ENE IR

m=0,1,2,3,4

<

and check by using the quadratic equation formula.
5.4.2 Prove that for a zero of order m, the quadrant angles are w/(2m) radians.

5.5 A PAIR OF EXAMPLES OF u=0 AND »=0 CURVES

The following pair of simple polynomials illustrate how the ¥ =0 and v =0
curves behave at zeros and elsewhere in the plane.

The first example is a simple cubic with zeros at —1,0, and 1. The poly-
nomial is

w=w@)=@C+1)zz-1)=23-2
=x+i)d-(x+1iy)
= =3xp? —x) +i(3x% = y* - y)
The real curves are defined by
u=x>=3xp?—-x=0
or
x(x*=3y2=1)=0
This is equivalent to two equations
x=0
x2 =32 -1=0

The latter is a hyperbola whose asymptotes are

<

I

|_|.
Sil=

The imaginary curves are defined by
v=3xy—3)=y=0
This again is equivalent to two equations
y=0
-y =1
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The latter is again a hyperbola, but this time with asymptotes

y=%3x

The figure we have drawn (Fig. 5.5.1) looks reasonable. In the first place,
at each simple zero the real and imaginary curves cross at right angles as they
should according to theory. Secondly, far out, that is, going around a circle of
large radius, the curves look as if they were from a triple zero; and the farther out
we go ,the more the local effects of the exact location of the zeros tend to fade out.

iy

FIGURE 5.5.1

For the second example, we move the zero from z = —1 to z = 0, which
makes a double zero at z = 0. The polynomial is

w=2z-1)=2 =22
=(x+H) - (x +i)
=x3 = 3xp? — x® + ¥ +i(3x%y — y* — 2xp)
The real curve is

u=x3=3xp>-x*+y*=0



88 5 COMPLEX ZEROS

Solving for 2, we have

which is easily plotted as it has a pole at x = 1, zeros at 0 and 1, and symmetry
about the x axis. As we expect, the asymptotes are parallel to

y=1t

P

The imaginary curve is
v=3x%y -y’ —2xy=0

which is
y(3x2 —y* —=2x)=0
or
y=0
iy
v=0
u=0
v=0
u=0
3
2
1 v=0
X
3 1 4
4 3
1 2
I
[}

FIGURE 5.5.2
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and

3x—4)?—p*=1
The last curve has asymptotes

y=1/3x-%

which is what we expect.

Sketching these curves (Fig. 5.5.2), we see that far out in the complex plane
they are the same as in the previous example. At the double zero there are two
real curves and two imaginary curves alternating and crossing at 45° angles. The
rest of the curves look as if the real and imaginary lines were being forced together
by the movement of the zerofromz = —1to z = 0,and asif they tend to repel each
other strongly.

Note that in the example in Sec. 5.3 the infinite sequence of zeros must be
considered in judging the reasonableness of the shapes of the curves.

5.6 GENERAL RULES FOR THE
u=0 AND v=0 CURVES

We cite without proof the principle of the argument which comes from complex-
variable theory. This principle states that as you go around any contour, rec-
tangular or not, in a counterclockwise direction, you will get a progression of
quadrant numbers like

1,1,1,2,2,2,3,3,4,4,1, ...

with as many complete cycles 1, 2, 3, 4 as there are zeros inside (we are assuming
that there are no poles in the region in which we are searching). There may at
times be retrogressions in the sequence of quadrant numbers such as

1,1,1,2,2,3,3,2,3,3,4,4,4,1, ...

for some suitably shaped contour, but the total number of cycles completed is
exactly the number of zeros inside.

We have glossed over the instances of jumping over a quadrant number (say
altoa3),and we will take that up later. We have assumed that the Os that may
occur are simply neglected, as they do not influence the total number of complete
cycles.

To understand this principle of the argument, the reader can try drawing
various closed contours in the previous examples. No matter how involved he
draws them, he will find that he will have the correct number of zeros inside when
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he counts either + 1 if he circles the zero in the counterclockwise direction or —1
if he circles the zero in the clockwise direction. Double zeros count twice, of
course.

In the general analytic function, the # = 0 and v = 0 curves can be tilted at
anangletothecoordinatesystem. Theycan besomewhat distortedandinvolved,
but they must obey the three following restraints:

1 At a zero the curves must cross alternately and be spaced according to
the multiplicity of the zero.

2 Far away from any zeros, the local placement of the zeros must tend to
fade out and present the pattern of an isolated multiple zero having the
number of all the zeros inside (with their multiplicities).

3 The number of cycles of 1, 2, 3, 4 going counterclockwise along any
closed contour must equal the number of zeros inside that contour
(when counted properly).

These three conditions so restrict the behavior of the curves we are follow-
ing that many pathological situations are eliminated and the problem is thus made
tractable.

PROBLEMS

5.6.1 Sketch the curves for the polynomial having zeros at

5.6.2 Sketch the curves for

5.6.3 Sketch the curves for

5.7 THE PLAN FOR AN IMPROVED SEARCH METHOD

One of the main faults of the crude method is that it wastes a great deal of machine
time in calculating the function values (and corresponding quadrant numbers) at
points which lie far from the ¥ = 0 and v = 0 curves and hence give relatively little
information.

Instead of filling in the whole area of points as we did, we propose to
trace out only the u = 0 curves and to mark where they cross the v = 0 curves
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which gives, of course, the desired zeros. See the example at the end of Sec. 5.3
for how this might appear if we track both the u = 0 and the v = 0 curves.

The basic search pattern is to go counterclockwise around the area we are
examining and look for a u = 0 curve, which will be indicated by a change from
quadrant number 1 to 2 (or 2 to 1) or else from 3 to 4 (or 4 to 3). SeeFigs.5.7.1
and 5.7.2.

When we find such a curve, we will track it until we meet a v = 0 curve,
which is indicated by the appearance of a new quadrant number other than the
two we were using to track the u = 0 curve.

u=0
by 2 1
v=0
3 4
x
FIGURE 5.7.1 FIGURE 5.7.2

Having fourid the general location of a zero, we will pause to refine it, but
we will need to pass over the zero finally to continue tracking our u = 0 curve
until it goes outside the area where we are searching for zeros.

We need to know if this plan will probably locate all the zeros (“ probably ”
depending on the step size we are using and not on the basic theory behind the
plan). By the principle of the argument, the number of cycles we find is the
number of zeros inside the region. Thus, the u =0 and » =0 curves we care
about must cross the boundary of the region—they cannot be confined within the
region—and our search along the boundary will indeed locate all the curves we
are looking for (unless the step size of the search is too large) (Fig. 5.7.3).

iy

FIGURE 5.7.3 Impossible



92 5 COMPLEX ZEROS

It may happen that occasionally there is a jump in the quadrant numbers,
say from 1to 3. Wecan easily see that we have in one step crossed botha u =0
and a v =0 curve. Just where these two curves cross is, of course, not known,
though probably it is near the edge (Fig. 5.7.4). If we want to find this zero, then
we assume thatitisa 1, 2, 3; whereas, if we wish to ignore it, we assume thatitis a
1,4,3. Wehave to modify our search plan accordingly, but this is a small detail
that is not worth going into at this point.

Outside Inside
Find zero

FIGURE 5.74

5.8 TRACKING A =0 CURVE

How shall wetrackau = Ocurve? Forconvenience westartatthelower left-hand
corner of the rectangular region we are examining for zeros and go counterclock-
wise, step by step, looking for a change in quadrant numbers that will indicate
that we have crossed a u = 0 curve (Fig. 5.8.1). 'When we find such a change, we
construct a square! inside our region, using the search interval as one side.

The u = 0 curve must exit from the square so that a second side of the square
will have the same change in quadrant numbers. We continue in this manner,

u=0

-

/

/ 2 2
¢ )

1 I 2
FIGURE 5.8.1 Start

Py

! Squares only if x and y are comparable in size or importance (or both); otherwise, suit-
ably shaped rectangles to maintain relative accuracy.
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each time erecting a square on the side that has the quadrant number change,
until we find that a different quadrant number appears.

When this occurs, we know that we have crossed a v = 0 curve (Fig. 5.8.2)
and that we are therefore near a complex zero of the function we are examining.

By eye it is easy to make the new square, but it is more difficulty to write
the details of a program that properly chooses the two points of the next square to
be examined. It is also necessary at each stage to check whether the curve we
are tracking has led us out of the region we are searching, and if so, we must mark
the exit (Fig. 5.8.3) so that when we come to it at a later time (while we are going
around the contour), we do not track this same u = 0 curve again, this time in
the reverse direction of course.

u=0
PR A
\%
— =
1 2 v=0 Mark
/ N/ s
1 / u=0
2 2 A
‘/ 3 2/ Mark
7/ 2 u=0 v=0
FIGURE 5.8.2 FIGURE 5.8.3

PROBLEMS

5.8.1 Inthe example of Sec. 5.3, apply the tracking method to the complex zero in the
first quadrant.

5.8.2 Find the complex zeros as in the example in Sec. 5.3, except in the region 0 < x <
2, 2n <y <4m.

5.9 THE REFINEMENT PROCESS

Having located a square during our tracking of a u# =0 curve which has three
distinct quadrant numbers, we have the clue that we are near a zero. We need,
therefore, to refine our search pattern and locate the zero more accurately. The
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simplest way to do this is to bis=ct the starting side of the square that first produced
the three different quadrant numbers.

If we use this smaller size, the u = 0 curve crosses one of the two halves, and
selecting this half, we erect a square (of the new size). We may or may not find
a third quadrant number. If we do not, then we continue the search with the
new step size.

Usually within three steps (Fig. 5.9.1) we again have a square with three
distinct quadrant numbers. We again halve and repeat the process, continuing
until we have as small a square as we please (or run into either roundoff or the
quantum size of the machine’s number system).

Bisect

again \
Q4
\ Ste]:\ \

VAANE

Q‘ / QZ
Step l/ Step 2

& / Bisect @
FIGURE 5.9.1

Evidently when we stop, we know that the zero is either in the square we have
isolated or, at worst, in an adjacent square (again assuming that our step sizes
are so small that the curves we are dealing with are reasonably smooth and well
behaved).

What to do when you meet a zero value while tracking one of the curvesis a
small coding nuisance and is not a basic difficulty.

PROBLEMS

5.9.1 Discuss how to handle a zero value in the refinement process.
5.9.2 Discuss the use of other methods than bisection for the refinement process.
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5.10 MULTIPLE ZEROS IN TRACKING

So far we have tacitly assumed that while we were tracking a v = 0 curve, we
would come to a simple, isolated zero. But what happens when there is a
double (or two very close—close for the step size we are using at the moment) or
higher-order zero?

At a double zero we may find that the two quadrant numbers on the far side
from the initial side of the square have the same quadrant numbers but are
reversed (see Fig. 5.10.1). Thus we need, in fact, not only to check whether we
have found a new quadrant number but also to check at each step that the same
numbers are not in diagonally opposite corners, indicating two zeros or a double
zero.

4 3
3 4
FIGURE 5.10.1

Once we sense that we are near a multiple zero, we are reasonably well off,
because we can then afford relatively elaborate computing to clarify the matter.
In principle it is only necessary to go around the suspected location with a
sufficiently fine mesh of points to find the change in the argument and hence the

Fine mesh
of points

FIGURE 5102 ° 4
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number of zeros inside (Fig. 5.10.2). Once we know this, we can proceed as the
situation suggests. One way is to regard it as a new problem with a much finer
search size and make an *“ enlargement ”’ of the region.

Another method, which somewhat simplifies the problem of multiple zeros,
is not to search one curve at a time but to go across the bottom side and find all the
intervals that contain a u = 0 curve (Fig. 5.10.3). Then we push the calculations

FIGURE 5.10.3 . \ 4

up one square, regardless of how many squares sidewise they go (and watch the
sides for new u = 0 curves).

Itis only when two or more u = 0 curves meet that we need to worry about a
multiple zero. Thus, unless the second u = 0 curve is parallel to the bottom side
of the rectangle, or so nearly so as to come as a total surprise, we have a very
simple clue as to when to suspect a multiple zero. It may be that the two are
meeting head on and are the ends of a single curve, which is not hard to detect;
otherwise, we are reasonably well off in making an estimate of the number of
u = 0 curves that are coming into the local region and hence of the multiplicity
of the zero.

This method of pushing up one row at a time has the added advantage that
it eliminates a lot of testing to see if the curve we are pursuing is leading us out of
the region we are searching.

But let us be clear about one thing: We are vulnerable to being fooled by
having chosen too large a search step, just as in the bisection method, and so the
method cannot be made absolutely foolproof. What we want is a reasonably
economical and safe method. All we need is a warning that there is a compli-
cated situation at or near the location, and then we can simply apply our micro-
scope via the enlarging process to isolate what is going on; we can repeat this
enlargement process until we run into the granularity of the number system of the
computing machine.
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5.11 FUNCTIONS OF TWO VARIABLES
The problem of finding the real simultaneous solutions of

g(x,y)=0
h(x,y)=0

can be partially mapped onto the problem of finding the complex zeros of
f(x + iy) = 0 by assigning the quadrant numbers in the obvious way:

If Quadrant
g>0,h>0 1
g>0,i<0 2
g<0,hi<0 3

g<0,hi>0 4

The crude method will work, though we are not sure that the zero curves will
meet at right angles at a simple zero. If we try the tracking method, we are not
sure (since the principle of the argument need not apply) that we shall find all the
curves as we trace the boundary. Still, the method will sometimes give useful
results. Fig. 5.7.3 is now possible.

PROBLEM

5.11.1 Discuss the motion of the zeros of w=e*--x2=0 as functions of the
parameter a.



6

*ZEROS OF POLYNOMIALS

6.1 WHY STUDY THIS SPECIAL CASE?

We have just discussed the location of both real and complex zeros of a function,
and it is natural to ask why we should examine the special case of polynomials,

w=P@)=ayz" +ay-z"" ' + - +aq
This can be answered in a number of different ways.

1 Theproblem occurs frequently, and special methods can save a great deal
of machine time and trouble.

2 For polynomials we can apply the invariance principle very effectively
because we have a large class of transformations that leave the problem
essentially unchanged.

3 A polynomial of degree N has exactly N zeros, and we therefore know
when we have found all the zeros.

4 The factor theorem shows that in the polynomial case, zeros and factors
are equivalent, and we can use the divisibility as a tool in finding the
Zeros.
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5 When we find a zero, we can *““ deflate ” the polynomial by dividing out
this factor and thus obtain a simpler problem to solve.

6 Inapplicationsit is often of crucial importance to identify multiple zeros
as multiple zeros and not as close ones.

7 Inapplicationsitis often true that the zeros are known to be real and/or
pure imaginary and those that fall off the two axes were moved by
roundoff. Therefore, the polynomial routine can *“nudge " such zeros
back onto their respective axes provided the difference is attributable to
roundoff effects.

8 In applications it appears that often the user is more interested in the
zeros as a self-consistent set rather than as a set of individually accurate,
but unrelated, zeros.

9 From the factors we find, we can reconstruct the polynomial (approxi-
mately) and compare these coefficients with the original to form some
measure of the loss of information around the whole loop. Since the
reconstruction is fairly direct, presumably most of the loss occurs while
finding the factors. (Compare Sec. 3.2 where we discussed quadratics.)

The point about multiple zeros needs elaboration. If a double zero is
reported as a pair of close zeros, then when they are used it is highly likely that
there will be great trouble with roundoff. We have adopted the attitude that we
prefer to avoid roundoff rather than bound it by an elaborate rule, and this means
that we must make special efforts to identify multiple zeros so that later the round-
off will not cause trouble.

As an example of the effect of a double zero being reported as a pair of
close ones, consider the problem of solving the simple linear differential equation

V+2y'+y=0 y0)=1 and y'(0)=0
The characteristic equation is
m+2m+1=0
m+12*=0
m= -1, —1
The solution is, therefore,
y=eC; +C;x)
=e (1 +x)

But if due to roundoff the roots were given as

1

—1+e¢

my=—1-—¢ ¢ small

m
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then the general solution would be
y= Cle-(l—z)x + C2 e—(l+c)x
Applying the initial conditions we get
Cl + Cz = l
-'(l - G)Cl b (l + 8)C2 =

=_1_ [(1 + _l_)e-(l-z)x - (l — l)e-(l-n)x]
2 € €

Note the roundoff trouble, especially near x = 0.

As a second example of this important effect consider the integration of
rational functions. If the zeros of the denominator were multiple but were
reported as close, then instead of

n/2 2 /2
fw — dx 5 2=f/ -—isec: dz=-13J/ cosztdt=i3
o (a®+x%) o a‘sec*t a’Jo 4a

we would have the integral (with b close to a)

and

[ dx _1j°°(1_1)dx
0(x2+a2)(x2+b2)_b2_a2 0 x2+a2 x2 + b?

]

. (1 arctan = 1 arctan x)
T b —-a*\a a b b

_r_1 (l l)

T2b*—a*\a b
This expression can be reworked, using the methods of Chap. 3, to avoid the
obvious heavy cancellation. In this simple example the trouble is obvious and

typical of the general case of integration of rational functions when a multiple
zero occurs in the denominator.

0

PROBLEMS

6.1.1 Devise another example to demonstrate the effect of close zeros on subsequent
computations.
6.1.2 Discuss the case

“L_i a>0
J’o(d-i‘x)s_&zz

Hint: use —a, —(a— &), —(a + ¢) as zeros.
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6.2 INVARIANCE PRINCIPLE

Polynomials provide a good example of the use of the invariance principle
because we have three different transformations that leave the polynomial
essentially unchanged:

1 The transformation of P(z) into cP(z)
2 The transformation of P(z) into P(cz)

1
3 The transformation of P(z) into z"P(;)

The special case under (2), where ¢ = —1, reverses the direction of the x axis and
can be used, if we wish, to confine the search to finding positive zeros only.

The reciprocal transformation (3) has the effect of reversing the coefficients
of the polynomial. This is mirrored in the synthetic division process. We have
written the polynomial (a linear combination of successive powers of z) as if
|z] > 1and have put the highest power of z first, much as we would when writing
numbers. Butif we think of z as being less than 1 in size, then we would naturally
write it as

a+az+az2 4 ayzt
and in the division process divide by (for a quadratic factor)
1-pz—gq'2®
The remainder would be
P2V 4y 2
If in the usual process the divisor were a factor of the polynomial, then the remain-
ders r; and r, would both be zero; in the second case it would be ry _; and ry that
would be zero. A little thought shows that these two are equivalent and that the
two quotients must be the same. Thus we have two alternate ways of using the
third transformation: either we can reverse the coefficients of the polynomial
(which carries the region 1 < |z| < oo into 1 > |z| > 0) or else equivalently we
can do our synthetic division in the reverse way, from constant to higher powers
rather than the more conventional order of higher to constant powers.

We shall check regularly that the methods we propose to use obey the

invariance principle with respect to these three transformations.

PROBLEMS

6.2.1 The product of a number of factors (x — ¢,)(x — ¢2) -+ (x — c) leads to a poly-
nomial whose coefficients are the elementary symmetric functions

El=zcl; Ez=ZC|L‘/,..., Exy=cic2* " cn
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Thus for
xNtayx¥ 14t ao
with zeros ¢y, €2, ..., Cn,
ay-r=(— D*E,
Discuss the roundoff errors in constructing this polynomial.

6.2.2 Devise a measure of closeness of two polynomials using only the coefficients.
Defend your choice.

6.3 THE PLAN

One of the consequences of the complex zeros of a real function occurring in pairs
is that by the fundamental theorem of algebra a polynomial with real coefficients
can be written as a product of real linear and real quadratic factors. This
approach has the advantage, as shown in Sec. 3.9, of working only with real
numbers and of avoiding special programming for complex numbers (also saving
machine time). The approach to the problem of finding the factors has the
further advantages of ease of thought and of finding what is most often needed in
the next step, namely, the factors rather than the actual zeros.

Therefore, after examining the given coefficients to see what kind of poly-
nomial we have and making the obvious possible simplifications, we will first
find all the real linear factors, watching carefully for multiple factors, and deflate
the polynomial each time we find one. Then we will search for the real quadratic
factors, again watching for multiple factors and deflating each time we find a
factor. Further, each time we find a quadratic factor, we will check to see if the
zeros of the factor might have been on one of the axes and had been moved off
due to roundoff.

The methods we use will be guided by the requirements of the invariance
principle.

6.4 PREPROCESSING THE POLYNOMIAL

Often the polynomial which we are given is said to be of degree N, butis not. For
example, the leading coefficient ay may be zero (perhaps for a particular value of a
parameter in the equation), which means that the polynomial has a zero at infinity.
Further it may be that the last coefficient a, is zero, which means that there is a
zero at the origin. In both cases these zeros should be removed before starting.
To do this we can test for

ayay =0
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and if the relation holds, we must find out which of the factorsis zero and remove
the corresponding zero from the polynomial. This test applied recursively will
remove all these trivial zeros.

Next we need to find out if it is a polynomial in some power of z, say z2 or
23, and if it is, we should make the proper substitution to reduce the effective
degree of the polynomial. For example, the polynomial

x12 — 6x% 4+ 4x* + 1= (x*)® — 6(x*H)? +4(x¥) +1

is actually a cubic in x* and should be treated as a cubic and not as a polynomial
of twelfth degree.

The factor k that we want is the common factor of all the exponents of
terms with nonzero coefficients. To find this factor we start with the constant
term a, # 0 and look for the next higher term with a nonzero coefficient. If it
is a,, we are done—k = 1; but if it is some higher power, we find the factors of the
exponent which are also factors of the degree N. Each factor that divides Nis a
potential candidate for further search to see if all terms in the polynomial have
exponents that are multiples of it. In this way we can find the highest common
factor of the exponents those terms present in the polynomial.

Suppose we have found such a number k > 1. Making the obvious

substitution,

=2z

wehave a polynomial in z’ of much lower degree to solve, one having no common

factors of the exponents of the terms present.
This transformation must, of course, be undone when we finally produce

the answers. For the real linear factors

N
I
Q
I
N

Write a in the polar form

0 fora>0

0 = =
a=pe where p=|lal 0“7; fora<0

¢ = pel®+2mm) =01, , k-1

Taking the kth root, we have the k zeros

6+2 . 0+2
zm=p1/kei[(0+2nm)/k]=pl/k(c°s +k7l.'m_|_ism +k1tm)

m=0,1,...,k—1



104 6 ZEROS OF POLYNOMIALS

For a quadratic factor

(@) —pzr —q=2"*—p*—q ¢<0

write it in the form
(2% = pe’®)(z* — pe™ ) = z%* — (2p cos 8)z* + p?

so that
pP=—q p=v-1

or »
2pcos0=p 0 = arccos Z

We therefore have the k real quadratic factors

(Z _ pilkei[(0+2nm)/k])(z _ pllke—i[(0+2mx)/k])

0+ 2
=22 - 2p'* cos(#)z+pz”‘ m=0,1,...,k—1
or

Pu=2p"" cos 1 21
m=0,1,..., k-1

Im = — p2/k

6.5 THE REAL ZEROS

We first remove the real zeros. For this purpose we can use either the bisection
or the modified false-position method. In both cases we make an initial search
for intervals with a sign change. When we find a sign change, we can refine the
interval as much as we wish, and then we deflate the polynomial.

Now the product of all the zeros is

so that the geometric mean of all the zeros

ay

provides a natural unit of length. The invariance principle tells us that since the
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reciprocal transformation and the reversal of the negative and positive axes leave
the polynomial unchanged, we must treat the four ranges

0<z<r

02z>~r

0< l < 1 where z is a real number
z7r

11
02-<--
z r

in essentially the same way. As a matter of engineering judgement we will
search each range, using 2N equally sized steps, and take one step in each range
before going to the next step. We start searching at zero because we prefer the
risk of an underflow to an overflow and because we instinctively feel that the
roundoff propagation will be less. Thus, except for trivial details the process of
searching is invariant under the three transformations,' since the refinement
method was invariant under the first two and the third is covered by breaking the
problem into four ranges.

We need, of course, to watch for multiple zeros. What do we mean by a
zero of multiplicity k? Since a polynomial of degree N can be factored into N
factors (not necessarily distinct), it is conventional (because the remainder
theorem of Sec. 3.7 connects the zeros and factors of a polynomial) to identify
each factor with a zero and to say that a polynomial of degree N has exactly N
zeros. This is apparently how the idea of multiple zeros arose.

The Taylor-series expansion of a function gives a second approach. The
number of successive coefficients (of the now possibly infinite sequence of coeffi-
cients) that vanish at a point is the multiplicity of the zero. In this fashion the
idea of multiplicity, defined originally for polynomials, is extended to analytic
functions. At this point we do not need the further extension to functions such
as the very common

y=Ja = x
which could be said to have a real zero of order } at x = +a.

The repeated synthetic division process in Sec. 3.7 identified k! times the
successive remainders with the kth derivative. While we are searching for a zero
by either the bisection or modified false position, we will evaluate the successive
derivatives together with the estimates of the roundoff noise to find which is the
highest-order derivative that can be regarded as vanishing. Using the next
remainder in the sequence (which is therefore not zero), we make the preceding

! It is easy to devise an algorithm which uniquely tells in which order the four ranges are
to be searched, but it does not appear worth using in practice.
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one as small as we can (we could use Newton’s method here if we pleased). For
a possible double zero, we are finding the place where the derivative is zero, for a
triple zero, the local inflection point, etc., which seems to be quite a reasonable
way to place the multiple zero. We need, of course, to check that the original
zero is still within roundoff, and if it is not, we then have guessed at too high a
multiplicity and must go back and try again.

In our search process we watch not only for sign changes in the function
values, but also to be safe we watch for sign changes in the first derivative.
Together these isolate both the odd- and even-order zeros (probably).

X‘XXX...XXX

XX...XXX

xlxxx...xx|x~0

XX...XX
xlxxx... xlx~0
XX...X
X X X ...|x¢0>

Use this

to make this zero.

PROBLEMS

6.5.1 Prove that even in the presence of roundoff when we end the search process, we
will have a polynomial of even degree.

6.5.2 Devise a reasonable algorithm to carry out the remark in footnote 1 in Sec. 6.5.

6.5.3 Show that

1 _cosf—isinb
plcos 6+ isin 6) P
or
1 x—iy
x+iy x4y

enables us to undo the reciprocal transformation.

6.6 PLAN FOR FINDING COMPLEX ZEROS

Having (probably) removed all the real zeros, we will have left a polynomial of
even degree
W) = Poy(2) = apy 2™ + a3 127 42 4 g

Searching for real quadratic factors instead of complex zeros means that we are
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not searching the complex x, iy plane but the pq plane of the coefficients of the
quadratic factor (see Fig. 6.6.1). These two planes are connected by

Q@) =2"-pz—q=0
This means that for both a point in the upper half of the complex plane and its

conjugate point there is one point in the pg plane. The line of the x-axis goes
into the curve of multiple zeros, namely when the radical is zero

VP +4g=0
or more conveniently,
=4

Inside this parabola the zeros of the quadratic factor are complex, along the curve
they are multiple, and above the curve they are a pair of real distinct zeros (which

iy
(x, iy)

(x -iy)

. @)

p’=4q

FIGURE 6.6.1
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we have removed from the polynomial). Since we have deliberately searched for
multiple zeros and have removed all the real zeros, we are definitely inside the
parabola and not ““near” it.

We next examine the basic Bairstow method that we will use in finding the
real quadratic factors.

6.7 BAIRSTOW’S METHOD
When we divide a polynomial of even degree P,,,(z) by a quadratic factor Q(z) =
2% — pz — ¢, we get a quotient and a remainder

"z +r 0

Asin Sec. 3.7, repeated divisions of the quotient by Q(z) produce an expansion in
powers of Q(z), namely,

Pau(z) = a5 Q¥(2)
+ (ras-12 + Pap-2) QY 71@) + o + (132 +12)Q(2) + (rz + o)
We know that Q(z) is a factor if and only if r; =ry =0.
Since the remainders
ry=ry(p, q)
ro=ro(p, q)
are analytic functions in p and ¢, we may expand them in a Taylor series about the

current point (p,q). The value at any nearby point (p*, ¢*) in the pq plane is
given by

or or
r(p*, q*) =r1(p,q)+7p‘- Ap+5;11Aq+
or or
ro(p*, ¢*) =ro(p,9) + 5}? Ap + a—; Mg+
where
Ap=p*-p
Aq = q* -— q

As a first approximation we drop all the terms beyond the linear ones.
Next we pick (p*, ¢*) so that

rl(P*: q*) =0
ro(p*,¢*) =0
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will improve our guesses at p and q. Note that this is essentially Newton’s
method in two variables.

To get the required partial derivatives, we observe that P,y(z) does not
depend on p and ¢, and we differentiate

={10() +(rsz + "2)

6P1M Q arl org
T = (0@ + (az ) g ity

These equations are identities in z, hence are true for all values of z and in par-
ticular for those which make Q(z) = 0. Using one of these values, we have

org

(rsz +r))(— Z)+—p-' +-a’-—0
ory ory

rz+r l+__.. +__.._0
sz (=D + 524 5

But since z2 = pz + ¢ and we are operating formally, we regard z as a complex
number and set the linear terms and (separately) the constant terms equal to zero.!
Thus we get the four equations

ory
r3p+r2=$
or

’3q=5§
_6r,

3_6q

aro

r2=—a:1~

Using these, the Newton approximations (the truncated Taylor-series expansions)
become the usual Bairstow equations

(rsp+r)Ap+rsAg=—r
(r3s@)Ap+r;Ag= —ry
The determinant of these equations is

D=r+rrp—r’q

2
=r2|("2 fa _
s [(’3) +p"3 q]

' Weare using the fact thatif az + b = 0, with aand b rcal and z complex, thena = b = 0.
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From the last form (valid only if r; # 0), we see that the ratio r,/r; is a zero of
22 + pz — g = 0 (note the plus sign on the z term), and if the original quadratic
0(2) = z* — pz — q has complex zeros, then D #0. Ifr, =r; =0, then we are
*“near ” a possible multiple zero which we will investigate later. The possibility
that ¢ =0 and r, = 0 is also unlikely [though we shall start with ¢ = 0 as our
starting approximation for Q(z)] since we have removed all zeros at the origin,
which implies ¢ # 0.

The modification of Newton’s method (Sec. 4.6) uses a metric [P(z)|. We
shall at this point use the equivalent, but more convenient, metric

|P(z)|
evaluated at the point where Q(z) = 22 — pz —q =0. Thus
[P@)|? = (ryz + ro)(r Z + 1o)
=r(=q) + rrop + 1o’

Experience shows that using this modification of Newton’s method, Bairstow’s
method will converge even for multiple factors and cannot wander or fail to
converge.

‘When we find a quadratic factor, we need to check that its zeros are not near
the imaginary axis (we have in the removal of the real zeros effectively checked
that they are not near the real axis.) If p? is very much less than —4gq (which is a
positive number), then we need to consider whether or not the quadratic factor
22 — g would be acceptable within roundoff, and if it is, then we prefer it.

6.8 CONVERGENCE OF BAIRSTOW’S METHOD

The unmodified Bairstow method is famous for not converging, but the simple
modification of Newton’s method removes most of this trouble. It is worth
examining further to see why we do not get into trouble in this application of
Newton’s method in two variables—in particular why a Jocal minimum does not
trap us.

In the theory of functions of a complex variable there is a minimum modulus
theorem (much like the maximum modulus theorem) which says that if at a point
z, in the z plane the function f(z) # 0 (and f(2) is not a constant), then there are
values of f(z) in the immediate neighborhood of z, such that

/@) < /@]

We are, of course, not in the z plane, but as discussed in Sec. 6.6, we are operating
in the pq plane inside the parabola and not “ near ” the edge. Therefore there is
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a local one-to-one mapping of points in one plane onto points in the other, and
there are points in the pq plane where the function is lower—in this problem there
can be no local minima other than zero.

When we solve the Bairstow equations for the next step (except in the fan-
tastically unlikely case of exact cancellation of roundoff effects), we will find that
there are terms in the polynomial that will produce a step, possibly small, that
takes us away from any local saddle points (the two-dimensional equivalent of a
local minimum trouble in one variable), and we will not get stuck, unabletogotoa
lower point. It was partly for this reason that we reduced the polynomial to one
which had no common factor of the exponents of the nonzero terms.

6.9 MULTIPLE ZEROS

We have developed the theory for the linear and quadratic factors so that they
parallel each other. Thus there is little more to be said about finding multiple
quadratic factors except to say we do the analogous steps.

We should not become too excited about how accurate in fact are various
multiple or close zeros. Consider, for example, the two functions
fi=(z+1)=2%4+827+285° + 562 4 704 + 567 +287 +8z+1

L=+ D+ ()P =2+ + 1+ (H)°

iy

A x
FIGURE 69.1 T

To eight decimal places they are the same; yet the first has an eightfold zero at
z = —1, while the other has its zeros on a circle of radius 1/10 about z = —1.
Evidently near multiple zeros it is difficult to know what is really happening—but
often in practice it does not matter. If it does, then probably the problem was
posed wrong! But for computing purposes we must report them as multiple
zeros if we are to avoid subsequent roundoff troubles, and the multiple zero can
be located reasonably accurately.
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LINEAR EQUATIONS AND MATRIX INVERSION

7.1 INTRODUCTION

The problems of simultaneous linear equations and matrix inversion have been
exhaustively studied, and yet our knowledge is not all that we wish it were.
Indeed, the very volume of papers indicates the difficulties of the two problems.
We shall begin by presenting the simpler, rather widely accepted views of the
matter and gradually point out the deficiencies in our theories that arise in some
circumstances. In spite of the many objections that we shall raise for which
there are at present only a few partial answers, the present methods often provide
satisfactory results. Many of the points we wish to make will be illustrated by
simple examples (it does not take a big machine to study and do research in
numerical analysis), but very little is known as to how typical the examples are in
practice.
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7.2 GAUSSIAN! ELIMINATION—SIMPLIFIED VERSION

The solution of a set of simultaneous linear equations by the successive elimina-
tion of the unknowns is taught in beginning algebra courses and is known as

Gaussian elimination. 'We consider first a simple concrete example:

Ix—dy+z=1
2x+y+2z=3
x+2p—z=5

First divide the top equation by 3:

4 1, _1
X—3y+32=3

(7.2.1)

and then subtract 2 times Eq. (7.2.1) from the second and also subtract Eq. (7.2.1)

from the third, thus eliminating x from the last two equations.

x—$y+iz=%
LHy+4z=3%
D
Next divide the second equation by 4
+ 4 z= 7
YTHETI
and subtract 10/3 of this from the third equation to get
84 e 84
33 33
Thus
z= -1
Substitute z = —1 in Eq. (7.2.3) to get
_r1_4 z=1
Y“nnu’"

and substitute the values of y and z in Eq. (7.2.2) to get

x=}+iy-jz=trgri=2

(7.2.2)

(7.2.3)

Let us generalize this familiar process. Given N equations in N unknowns

X1s X2y 009 XN
ay, 1% + @y, 2% +ay 3%+ a yxy=b,
ay,1%1 +Gy,2% + a3, 3%+ +ay yXy =D,

...............................................

Ay, 1%y +ay, 2%, +ay,3%3 + 0 +ay, yxy=by

! (Johann) Carl Friedrich Gauss (1777-1855).
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we divide the first equation by a; ; and then subtract a, , times this first result
from the second equation, a3, ; times the initial result from the third, etc., until we
have N — 1 equationsinthe N — 1 variables x,, x3,..., Xxy. UsingtheseN — 1
equations, we eliminate x, in the same way, leaving N — 2 equationsinxs, ..., xy.
Repeating this process a total of N — 1 times, we finally come down to one equa-
tion in the variable xy.

In the back solution we solve the last equation for xy, put this in the next-to-
last equation to get xy 4, put these two into the third from the last equation to get
Xpy-25 ..., untilwe have all the unknowns (determined in the order xy, xy_1,
xy).

We now have our solution. The amount of arithmetic is roughly*

_N(N+1)2N +1
T2 3

additions and the same number of multiplications—a total of approximately
2N 3/3 operations in the forward part of the solution. The back solution has
of the order of N2 operations, and for large N this is not significant.

Sometimes the value of the determinant of the system of equations is needed.
When we divide an equation by its leading coefficient, we alter the value of the
determinant by this amount. But when we multiply an equation by a constant
andaddittoanother equation, we do not alter the value of the determinant. Thus
the value of the determinant is the product of the N divisors we use.

NI+ N=1?+(N=-2+(N=3*+-+1

PROBLEMS

Solve and find the determinant value:
7.2.1 3x+6y+9z=139

2x+5y—2z=3
xX+3y—z=2

7.2.2 x+y+z=6
2x+3y+z=1
x—y+z=3

7.2.3 x—y+z=1
2x+2y—2z=3
Ix—3y+z=1

7.24 ax+by=e
ex+dy=f

1 See Sec. 11.3 for the summation formula.
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7.3 PIVOTING

If the solution of simultaneous linear equations is this simple, then why give all
thisattentiontothe problem? Thereason is simply that in the above description
we have overlooked many important details.

In the first place we ignored the possibility that one of the N coefficients that
we were dividing by might have been zero. The answer is, of course, to pick
another nonzero coefficient, but which one? The customary description says to
pick as our pivot (as it is called) the largest in the column of the unknown you are
eliminating. This is called partial pivoting.

This in turn raises the question of in which order the unknowns should be
eliminated. Why the order x,, x,,..., xy ? If instead of looking only in the
next column we look at the array of all the coefficients a;, ; and pick the largest as
the pivot, then this is called complete pivoting. 1t is generally agreed that while
complete pivoting is not worth the very large effort necessary to find the largest
of all those left at each stage, partial pivoting is worth the effort.

Partial pivoting can be regarded as a reordering of the equations, though
this should not be done in the machine since it is apt to confuse the user of the
results if he ever wants to see how the elimination went in his problem. Complete
pivoting can be regarded as reordering both the equations and the subscripts of
the unknowns.

The conventional argument for using the largest element as the pivot goes
as follows. Selecting the largest element means that at each stage when it is
combined with another equation, the pivoting equation will be multiplied by a
number less than 1 in size, suggesting that the roundoff will therefore be less. But
thisis not true in a very real sense. Let L, be the ith equation and ¢ be the multi-
plier. If we eliminate one way, we get (symbolically)

cL; + L; = Lj = the new equation
while if we eliminate using the same two equations but in the reverse way, we get

1 1
L+ ZL = ZL} = the new equation

It should be obvious that these two equations have the same relative floating-point
errors but different fixed-point errors. Thus the widely used argument that we
should use large pivots because they reduce the roundoff is not sound for floating-
point computation.
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PROBLEMS

Solve, using pivoting:

731 x+y+z=6
2x—y+z=3
Ix+2y—z=4

7.3.2 Prob.7.2.3

74 GAUSS-JORDAN ELIMINATION

If instead of the back solution we use the last equation to eliminate xy in the top
N —1equations and then use xy_, in the next-to-last equation to eliminate all the
Xn-1's, etc., we will come to a diagonal system of equations (Fig. 7.4.1) with

X X X X X
x X ... X x X

X ... x X

X x X

FIGURE 74.1

the solution explicitly given. This is known as the Gauss-Jordan method of
solution. It is not recommended in practice, but we shall need the idea a little
later. Sometimes the Gauss-Jordan method is described as eliminating each
unknown from the earlier equations just after the unknown is eliminated from the
equations below it. This, clearly, requires more arithmetic and is not recom-
mended.

7.5 SCALING

The method of pivoting used words like * pick the largest element,” but if instead
of writing down an equation we wrote down ¢ times the equation, we would
quite possibly get a different pivot. Clearly the algorithm is not invariant as it
stands; what we do will depend in many problems on the haphazard way the
equations were written down. This suggests that some initial scaling is necessary
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before we begin the solution process. Scaling can be regarded as trying to make
the algorithm invariant.

We can clearly multiply the ith equation by any nonzero constant r; we
please and mathematically still have the same set of equations, and we can replace
the jth variable by c; x;, which effectively multiplies the jth column by ¢;. And
we could, if we pleased, multiply the right-hand sides b; by a constant, as well as
multiply all the numbers in the problem by a constant M. These give the trans-
formations that we intuitively feel leave the system of equations the same and for
which we wish our algorithm to be invariant.

If we were to pick the same pivots each time (as judged by the subscripts
i, /), then the algorithm would be invariant under all transformations of the same
problem, though it will take a little thought on the reader’s part to follow the
elimination process and the back solution processes through to convince himself
of this. The r; merely affect the multipliers used to do the elimination, the ¢;
change all the numbers in the jth column by the same factor, the right-hand sides
similarly are merely scaled by a multiplication constant, and the multiplier M has
no real effect.

We face, therefore, the problem of making some sense of the words * pick
the largest element in the next column as the next pivot.”” It is conventional to
say that the transformations should be used to scale the rows so that the maximum
in each row is around 1 in size and then we scale the columns similarly (or else
scale the columns and then the rows). Sometimes it is observed that we should
not actually perform the scaling, as this will cause unnecessary roundoff, but
merely store away the scaling factors and use them when we come to *“pick the
largest....”

As we shall later show, scaling by rows and then columns, or scaling by
columns and then rows, does not lead to the same result;indeed, one way may lead
to disaster while the other does not. Thus the usual advice about scaling is both
superficial and misleading.

If this is so, then what about the whole method of Gaussian elimination?
Before we panic, it should be observed that many times the problem comes in a
form where the equations have been ‘‘ naturally scaled” by the way they came
about, especially in equations that arise in mathematical problems. But there
are times when the equations do indeed need some preliminary scaling before
starting the elimination process. Section 7.6 discusses one possible approach to
scaling that produces a unique result and has the property that any time you alter
the system by any of the transformations:

Interchange of rows
Multiplication of a row by a nonzero constant r;
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Interchange of columns

Multiplication of a column (including the right-hand side) by a nonzero
constant ¢;

Multiplication of everything by a constant M

the scaling method will, within roundoff, remove the transformation effects, thus
producing the basis for an invariant algorithm.

7.6 INVARIANT SCALING—ANALYSIS OF VARIANCE

The method of analysis of variance in statistics provides a natural tool for the
invariant scaling of a set of simultaneous linear equations.
We suppose, first, that all the a;, ; # 0 and set

la;, ;] =2%

We imagine multiplying eachrow by 2" (i = 1, 2, ..., N), each column (including
the right-hand side) by 2% (j=1,2,..., N + 1), and everything by 2. The
exponent in position i, j is now

dij+ri+c+M

If we now minimize the sum of the squares of all the exponents, we will find values

such that, in the least-squares sense, the exponents will be as close to zero as they

can be made to be; that is, the variance of the exponents is minimized.
Therefore we minimize

N+1 N
m=Yy Y (d,;+r+c+M)>?
ji=1i=1

Differentiating with respect to each of the unknowns r; and c;, we get

om N M)=0 1,2,...,N
— = Fr+c+M)= i=1,2...,
ar, jz,l( it it )
om N s
""=2z(d‘1+r1+Cj+M)=0 ]=1,2,..-,N+1
oc; =17

‘We have more than enough parameters, and so we arbitrarily set

-1 N+1 N

M=8v+D A i;d"’
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The solution to these equations is

—1 N+1 N
MR 5 G M hence 3 ri=0

—1 N N1
¢;j=— Y (d,;+M) hence ) ¢;=0
N & =1
as can be seen by substituting these into the derivative equations
N+1
Yldi;—(d;+M)+0+M]=0
=1
N
YIdij+0—(d,; + M)+ M]=0
=1

Thus r; and ¢; are the appropriate negative averages of
d,;+M

and M is the negative of the average over all the d; ;.

This approach minimizes the variance of the scaled exponents, which seems
like a good thing to do. However, we are unable to connect this property
directly with the subsequent elimination process, or at present with any other
method of solution, so that the method is merely suggestive and plausible.

If any of the coefficients of the original system of equations were zero, then
the corresponding value of d;, ; would be minus infinity, and we exclude them as
“missing data.” With data missing the solution of the system is harder to find.
We refer the reader who wishes to pursue this unconventional scaling method to
the standard books on the topic of analysis of variance. We note, however, that
we are merely looking for a reasonable solution to these equations to get some way
of reasonably scaling the original system. Note that we do not need to get
integral solutions to minimize the roundoff due to scaling, because we intend not
to actually scale the equations but only to use these numbers to pick the pivots in
the original system of equations

7.7 RANK

During Gaussian elimination on a system of linear equations it may happen that
atsome point all the rest of the coefficients in a column are zero.  This means that
the rank of the matrix of coefficients is not N but lower. Indeed, in principle we
may find at several stages that we are blocked by a column of zeros. Equally
likely we may find a row, or rows, of zeros blocking us.
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In the case of finding a row of zeros this clearly means that the linear com-
bination of the earlier rows used is equal to the row of all zeros; it means that there
is a linear dependence and that the rank is not N.

Most of the time the proposer of the problem believed that the system of
equations was of full rank and that it would determine a unique solution. The
fact that the system is not of full rank does not end the problem, since the proposer
needs to know what the dependence is in order to go back and reformulate his
problem. How can we find the dependence? We could follow the elimination
process to find the lincar combination that produced it. Alternatively, we can
drop one of the earlier rows and try again; if at the same point we again find all
zeros, then we know that the dropped row is not part of the dependence. But if
we do not find all zeros, then it is part of the dependence. Dropping onerow ata
time, we can find the minimal linearly dependent set. Then it is a matter of
finding the actual coefficients of these equations, which can be done by keeping
track of the coefficients used in the elimination process.

It is a central theorem of linear algebra that the row and column ranks are
the same, which means that if we find a row dependence, then there must be a
corresponding column dependence, and vice versa. Evidently we can operate on
the columns as we did the rows to find a column dependence.

Mathematics often does not make distinctions that some applications re-
quire. For example, Euclidean geometry does not distinguish between left-
handed and right-handed triangles: given three sides of one triangle equal to three
sides of another triangle, the triangles are congruent (see Fig. 7.7.1). But for
many applications (such as wearing gloves, studying some chemical compounds,
etc.) it is necessary to distinguish between the two different orientations. For
these applications Euclidean geometry must be altered a bit.

Similarly for simultaneous equations: though in principle the row and
column ranks are the same, in practice the meaning to be attributed to one may be
different from the other. In practice a simple row dependence, say two rows are
the same, is quite different from two columns being the same.

Row dependence Column dependence
2x+4y+62= 10 2x +4y+6z= 10
x+2y+3z= 5 x+2y—z = 4
pvot. X —Yy—z=—=1 pvot X FT2p+Tz= 6
x+2p+3z=§ x+2y+3z= 5
Oy+0z= 0 Oy —4z= -1

=3y —4z=-12 Oy +4z= 1

row of zeros column of zeros
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FIGURE 7.7.1 /\ /\

This difference means that in partial pivoting when we find a zero element,
we should at that point check to see if the whole row is zeros (we will automatically
find the column of zeros if that is the case). When we find a dependence, we
should isolate it as best we can and exhibit it to the user. We should, probably,
continue to search for further dependencies before stopping.

Sometimes it is necessary to carry out the solution of a system of linear
equations when the rank is less than N. We cite without proof the main result
forthis. 1ftherank ofthesystemisr <N, thensomeN — r of the variables may
be transferred to the right-hand side and the system solved in terms of them as if
they were parameters. If the rank of the augmented matrix is the same as the
rank of the matrix, then there is an (N — r)-parameter solution; otherwise the
equations are inconsistent.

PROBLEMS

7.7.1 Find the rank and linear dependence.
x+y+ z=2
2x+4y—6z2=38
2x+3y—2z=6
7.7.2 Solve the system
X+ y=a
2x+2y=2a
7.7.3 Find the linear dependence, both row and column, of:
xX+3y— z=5
2x— y—2z=17
4x 45y —4z=17

7.8 ILL-CONDITIONED SYSTEMS

Allthe above has been carried outin terms of exact numbers. The floating-point
numbers we use will generally not produce rows or columns of exact zeros, and we
will have trouble determining the rank. Indeed, it may well be that the row and
column ranks are not the same as judged by our tests for rank. How to resolve
this kind of trouble is not very well understood at present.
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Given the system

x+iy=1
2x +4y=2

The rank is 1.
Put the system in a computer:

Note coefficients

0.100 x 10'x + 0.333 x 10%|=10.100 x 10*

0.200 x 10'x 4 0.667 x 10°y = 0.200 x 10*
Now the rank is 2, and we can solve the system uniquely!

0.100 x 10~2y =0

y=0
x=1

Our trouble with determining the rank plus our trouble with initial scaling to
give pivoting some meaning indicate that we need to find something to replace
these two ideas. This needed idea is “ill-conditioning,” and as used in the
literature it is ill-defined. Ill-conditioned means, vaguely, that small changes in
the given numbers will produce large changes in the results.

The ill-conditioning may arise from three distinct sources. First, it may
be the original problem itself. Thus a pencil balanced on its point (Fig. 7.8.1)
presents us with a situation in which small changes in the initial position will
result in large changes in the subsequent position in a short time. This is usually
referred to as an unstable system.

FIGURE 7.8.1
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Second, the trouble may be not in the problem but in the representation
used. For example, if we solve the differential equation

d2
Zi=y YO=1 O=-1

by using the hyperbolic functions as our basis for representation, then the solution
is
y = cosh x — sinh x

and we will indeed see that small changes give rise to large differences later (Fig.
7.8.2). But if we choose the exponential functions (which are mathematically
completely equivalent) as a basis, we get

x

y=e"
For large values of x there is no trouble with this representation.

FIGURE 7.8.2
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Third, the source of the ill-conditioning may be in the method of solution.
Consider, for example, the following symmetric system of equations which appear
to be reasonably scaled.

3x+ 2+ z=3+3¢
2x + 2ey + 26z = 6¢ ¢ small
pivot X +2y— ez=2¢
x+%+ iz= 1+
—$4+2)y+(—%+2)z==-2+4
(—3+2)y+(—1- e)z=-1+¢

For small ¢ these are ill-conditioned and are almost linearly dependent. Butif we
first eliminate x between the original second and third equations, we get

ey —2ez=—¢
In floating-point arithmetic this is equivalent to
y—2z=-1
and we can now solve, using the first two equations with this equation to get
y=z=1

Put these in the first equation and we will have roundoff trouble, but in either of
the other two we get accurately

X=8

The fact that the system may be well conditioned and apparently reasonably
scaled and that still the method of Gaussian elimination appears ill-conditioned is
apparently not widely known nor its importance appreciated.

The conventional ““scale by rows and then by columns, or vice versa,” may
cause ill-conditioning. Given the matrix of coefficients

; 11

£ &
1 2 ¢
2 ¢ ¢

where ¢ is small and due to roundoff effects we equate
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Scale by rows first Scale by columns first
pivot
3 1 1 31 1
1 2¢ ¢ 1 2% ¢
2 ¢ ¢ 2 g gl
pivot/
/pivat
0 1 1 3 1 1
3¢ £ 1 1
A° 7 2 0 -3 3
e e 2 2
3 3 0 -3 3
0 1 1 and the rank is 2
) 0 0 —&
e e
s 3
and the back

substitution is easy

PROBLEMS

7.8.1 Devise another example of apparently scaled systems which are ill-conditioned by
straight Gaussian elimination but are in fact not ill-conditioned when solved
properly.

7.8.2 Scale the “‘row and column scaling”” example by the method of Sec. 7.6.

7.9 THE RIGHT-HAND SIDES CAN
CAUSE ILL-CONDITIONING

It is widely believed that ill-conditioning depends only on the coefficients of the
unknowns, but this is false as the following example shows. Take the same
symmetric system as in Sec. 7.8 and change the right-hand sides to form the
system

3x+ 2y+ z=6

2x +2ey +2ez2=2 + 4¢

x+2y— ez=1+ ¢
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The solution is x = y = z = 1, and the system is indeed ill-conditioned because
we are unable to solve the system so that the factor ¢ can be divided out as we did
before without depending on the exact cancellation of the integer parts on the
right-hand side (which, of course, will produce a large shift in the floating point
addition) and hence depend on the rounded-off parts of the e terms. As a result
the answers are sensitive to relatively small changes in the coefficients of x.

PROBLEMS

7.9.1 Explain“why” the above example works. Devise another example showing this
effect.

7.9.2 1Itisoftenthought that it is the angle between the lines that makes ill-conditioning.
For N = 2 show that this statement is false.

7.10 A DISCUSSION OF GAUSSIAN ELIMINATION

Gaussian elimination is the main tool for solving simultaneous linear equations.
Inspite of all the faults and misconceptions about the method itis often reasonably
effective. Howcanthisbe? Aswe observed earlier, many systems are naturally
scaled by the source from which they come.

Consider pivoting next. Once the system is scaled, the value of the deter-
minantisfixed,and thelarger theearly pivots are, the smaller the later ones must be.
It is not correct that big pivots are good and small pivots are automatically bad;
rather, large numbers become large only through multiplication by large numbes,
while small numbers can be small because of multiplications by small numbers or
else by heavy cancellation. Thus a large number is comparatively safe, while a
small one is suspect. By picking the large numbers as pivots we tend to avoid
the numbers that were formed by heavy cancellation.

But we may doubt the wisdom of the basic method. Given a system of
equations and the general processes used in eliminating one variable, if we ask how
to produce the maximum amount of linear dependence in the next stage, then we
would be tempted to use one equation to eliminate from all the others so that at
the next stage everywhere we look we would see this same one equation—that is,
we would do somethinglike pivoting. Itis possible instead to eliminate a variable
using adjacent equations thus avoiding the same equation in every derived equa-
tion. We can clearly see a mechanism that produces ill-conditioning in Gaussian
elimination if we imagine a system of equations scaled and with the pivot in the
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top equation, but also with the largest numbers in two other columns being in the
top equation (Fig. 7.10.1). When we use the pivot equation, these largest two
numbers tend to dominate all the derived equations, thus producing a linear
(column) dependence. Indeed, looking at some of the earlier examples, we can
see this is the mechanism behind why the examples ““ worked ”* (i.e., failed).

Relatively large in
Pivot their columns

FIGURE 7.10.1

The user should be wary of the use of bounds as a measure of the quality of
the results and especially as the basis for a comparison of two methods. Bounds
tell only part of the story. The answer may be very much better than the careful
bounds indicate. Backward analysis which pushes the errors committed back
onto the original coefficients and states that the numbers obtained are a solution
to a nearby system of equations is of little use unless the zero coefficients are kept as
zero in the nearby system. (We should use the floating-point concept of relative
error and not the fixed-point idea of additive error—a point that is rarely noticed
in backward analysis.)

In many places in the literature the condition of a sytem of equations is
givenin terms of the singular values of the coefficient matrix. The singular values
of a matrix A are the eigenvalues of A7A4 (see Chap. 45). Of course if 4 is sym-
metric, then the singular values are just the squares of the eigenvalues. But Sec.
7.9 shows that this cannot be the whole story.

If the coefficient matrix is symmetric, then it can be written as the sum of its
principal idempotents (projections), each multiplied by an eigenvalue. The
accuracy of the solution can then be related to this expression, as is well summa-
rized by Richard Rosanoff!:

1 Rosanoff and Nishimoto, Zeus on the Leus, Space Division, North American Rock-
well Corp.
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Idempotents summed are the
Array baby,
When truncated they create
Dismay baby,
You cannot invert them
Any way baby,
Gauss can’t give you anything
But love.

7.11 MATRIX INVERSION 1

The problem of finding the inverse of a square matrix A = (a;, ;) is very common.
Since matrices are notin general commutative, there is the idea of a left inverse and
aright inverse

A MA=1

AAg™' =1
It is an important mathematical result that these two inverses are the same. The
proof follows easily from the associativity.

(AL-I)(AAR—I) = (AL-II) = (AL—I)

-1 -1 _
AL AAR = {(AL—IA)(AR'l) = (IAR—I) = (AR_I)

However, this may be very far from true for some computed matrices. An in-
verse may be close when multiplied on one side (in the sense that the off-diagonal
elements are small) but very far when multiplied on the otherside. For example,

let
1.00 1.00 ~89 100
A“(l.oo 0.99) C“( 90 —100)

then
10 0.0 110
AC=(O.1 1.0) CA:(—]O —9)

Given the coefficients of a square matrix 4 = (g;, ;), if we were to solve the
systems with the right-hand sides

first ;,0,0,...,0

second 0,1,0,...,0

third 0,0,1,...,0
etc.
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and arrange the solutions in a matrix form with the solutions as columns, then we
would have the inverse. To see why this is so consider what you would do if you
had these special fundamental solutions and were asked to solve the same system
with the right-hand sides b,, b,, b3, ..., by. You would multiply these funda-
mental solutions in turn by b, b, , ..., by and add the results.

Thus, given

Ax=b
we have
x=A"'b

which is what you did to get the answer—you multiplied the (;) by a matrix.

PROBLEMS

7.11.1 Find an example when A4~! and A~!4 are very different.
7.11.2 Find the inverse of

7.11.3 Find the inverse of

7.12 MATRIX INVERSION 2

A completely equivalent method of finding the inverse is to write the 2N x N
matrix

ag1dy,2 't a4 N 1 0 0
az'laz’z M az’N 0 1 0
aN,laN,Z cee aN,N 0 0 cee 1

and to use the steps of the Gauss-Jordan elimination to transform the first N
columns into the identity matrix. We will find that the last N columns are the
inverse of the first N columns. To see this we must first recognize that each step
we used can be written as multiplication on the left by some matrix. When we
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are done, we can, by the associative law of multiplication, gather all the matrices
we used into one single matrix, say C. We have
CA=1
hence
C=A4""!

But the matrix C also operated on the last N columns (the identity matrix), so
when we are done, we have A~ in the last N columns.

EXAMPLE 7.1 Given the matrix

—_——
|
T
I
—O
l H»
D
—

form
1 1 4 1 0 0
-1 0 1 0 1 0
I -1 -5 0 0 1
1 1 4 1 0 0
0 1 5 1 1 0
0 -2 -9 -1 0 1
1 1 4 1 0 0
0 1 5 1 1 0
0 0 1 1 2 1
1 1 0 -3 -8 -4
0 1 0 -4 -9 -5
0o o0 1 1 2 1
1 0O o0 1 1 1
0 1 0 -4 -9 -5
0 0 1 1 2 1

The inverse is

—
I

—
|

N O —
|

—_— O —

——

1

PROBLEMS

Using the method of Sec. 7.12, find the inverse of the following matrices and check the
results.

7.12.1 (a b\)
c d
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7124 (2 3 5
7 11 -13
17 —-19 23
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Noble [46).
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*RANDOM NUMBERS

8.1 WHY RANDOM NUMBERS?

Randomness is traditionally looked upon as something to be avoided if possible.
The idea that randomness may be used constructively strikes many people as
strange. However, many parts of modern computing practice use random
numbers, and we shall give a few examples in this chapter.

In spite of formal axioms, probability is an intuitive idea, just asin Euclidean
geometry the ideas of point, line, and plane are intuitive. Randomness is
closely connected with probability. As an example of how the modern, complex
idea of a random process can arise, consider the simple act of ““tossing a well-
balanced coin.” If we record a | for a head and a 0 for a tail, we have a simple
random variable. If next we consider not a single toss but a sequence of tosses,
then we have a sequence of Os and 1s, which we may regard as a binary number.
Thus we are led by easy stages into gradually considering an indefinite number of
tossesand thentoregarding the resulting sequence of Os and s as the binary repre-
sentation of a number between 0 and 1. As a result we have for each of the
nondenumerable numbers in 0 < x < | a corresponding sequence of tosses of a
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simple coin. This is the idea of a random, or stochastic, process; corresponding
to some index A we have a family of functions

i)
where the variable ¢ is often regarded as time, either continuous or at discrete
intervals.

With our finite machine we cannot hope to actually carry out the mathe-
matician’s random process; instead we will approximate it by some finite sequence
of finite numbers. Furthermore, as we shall show, in most cases we will not deal
with what is intuitively random numbers, but rather we will generate a perfectly
definite sequence thatiscompletely predictable. This approach violates the view
of random that is usually equated with nonpredictable. However, in practice
we do not care if the numbers are theoretically predictable. We care only that
with regard to their use they are random.

The idea of a definite random process is almost a contradiction, and so we
must approach the matter slowly. First we examine a couple of very simple
examples to see how random numbers might be used in many applications and
why we are not alarmed at their actual structure in these cases. Evidently we
would not use a predictable sequence of random numbers in such applications as
lottery selections and other processes that interact directly with humans; we use
them only with machines and then only with care.

After looking at the simple uses, we will look both at possible sources of
uniformly distributed random numbers and at why we prefer a predictable source.
Only then will we look at how to generate them and prove that they have certain
properties. Since it is a difficult topic, we will give a few moments’ consideration
to the complex matter of testing random numbers.

We then look at various distributions other than the flat one and at ways of
using various tricks from statistics to aid in saving machine time. As is so often
the case, what we cover in one short chapter can be, and has been, expanded into
a whole book.

82 SOME USES OF RANDOM NUMBERS

The most obvious use of random numbers is in the simulation of random proces-
ses such as nuclear disintegrations, people coming at random for a particular
service, telephone traffic studies, and making random choices in some decision
process, say playing a game.

Less obvious are the so-called “Monte Carlo™ applications in which a
definite process is replaced by a random process that arrives at the same result.
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The most famous example is probably the Buffon' needle. In 1773 Buffon
observed that if a needle of length L < 1 were tossed at random onto a horizontal
surface ruled with equally spaced lines, say at unit spacing, then the probability
of the needle crossing a line is

Probability = %

He reasoned, therefore, that he could experimentally determine the value of z by
making repeated trials.

Let us derive this result (see Fig. 8.2.1). The position of the needle’s center
is within 1/2 unit of some line, and the words * tossed at random > mean that the
probability is uniform in the interval 0 < x < 3. The angle 6 that the needle

FIGURE 8.2.1

makes with the direction of the lines varies in the interval 0 < 8 < &, and again
the words *“ tossed at random ” are taken to mean that the probability distribution
is uniform in the interval. A crossing will occur if and only if
L
x<=sinf
=3

From Fig. 8.2.2 we see that this probability is the ratio of the shaded area to the

area of the whole rectangle
e J3(L[2)sin@de 2L
Probability =—————— = —
robability By -

If the value of m were inaccurately known, then this would be a good method
for finding that it is around 3. With some care in drawing the lines, measuring
the needle and the crossings, and tossing at random, we could get perhaps 3.1 with
some reliability; but to get 3.14 would tax our abilities and patience.

Many generalizations of this famous needle problem have been used. One,

! Georges Louis Leclerc, Comte de Buffon (1707-1788).
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=

—2L—sin 0

m

FIGURE 8.2.2

for example, estimates the amount of “ grain boundary ” in microphotographs of
magnetic materials.

A similar Monte Carlo method,' this time estimating e, is based on the
observation that if 2k numbers x; are drawn in sequence from a random equilikely
source, then the probability that they are all in ascending order x,, x, x3 *** X,; is

1
(26)!

This probability is easily found from the observation that the 2k numbers x; can
have (2k)! possible orderings and that only one ordering will be in ascending
order. The probability that a sequence of trials yielding an increasing sequence
of x;’s will fail on the odd trial 2k + 1 is the difference

1 1
QK @k + 1)

Thus thetotal probability that a sequence of drawings of random numbers froman
equilikely source will produce a rising sequence that ends with an even number of
numbers is

i 1 1 _ 2 1 1 1
1 [(:'z'k—)" T Qk+ 1)!] % [(7& Tk + 1)!] T
An experiment using 252 runs gave 1/e = 0.381 (a 3.5 percent error).

In both of these examples the experiment is a test more of the source of the
random numbers used than of the result. Indeed, in the second case it provided
a nice, simple check on the derivation of the formula—the test would have caught
the elusive factor of 2, the slip in the minus sign, and many other typical human
errors in mathematics. It is a common research practice to “experimentally

! Due to Roger Pinkham, (1929——-).
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verify some result”” by some simple numerical tests before building further on the
result, and Monte Carlo techniques are one more tool for doing this.

Another use of random numbers, which are most often random decimal
digits (base 10) or random bits (base 2), is in game playing on a machine. When
things are equally favorable, then often it is desirable to make a random choice—
this, for example, will tend to defeat the opponent who tries to play the same
opening repeatedly until he finds a weakness in the formulas used by the machine.

The uncritical use of randomness to solve complicated problems should be
tempered with a dose of reality. It may well be true that by using random trials
one can expect to find the solution, but the size of the task may be like the famous
case of the monkeys and the typewriters. In this story a number of monkeys are
set down at typewriters, and we wait until they type out in sequence all the books
in the British Museum in the card-catalog order. There is a finite chance that the
first letter will be typed correctly, and indeed, in the infinitude of time this will
happen infinitely often. Among this infinite number of cases there is a positive
probability that the second correct letter will by typed next, and among all these
infinitely many cases of two letters . . . Often grandiose proposals to use a
random search are this situation in some disguise! A random search should not
be started unless some careful estimates of the running time are made—otherwise
you are apt to get a very large computing bill and waste a lot of time in the prep-
aration of the program with little hope of getting a result.

PROBLEMS

8.2.] Using the integral — [§e~*In x dx =1y, set e~* =t and estimate ¥, using 10
random points.

8.3 SOURCES OF RANDOM NUMBERS

The first source of random numbers likely to come to mind is some natural, phys-
ical phenomena such as cosmic rays, nuclear disintegrations, or perhaps samp-
ling at random an alternating frequency. Such devices have been built in the
past, and they do have their uses. Their main defect is that if they are used and
something interesting happens in a computation, then it is practically impossible
to repeat the run to find out how the effect came about. This foolishness is
repeatedly done; a clever programmer may realize that by consulting the clock
time at widely separated intervals and using the last digit of the time, he has what is
probably a source of random digits, but he will fail to realize the consequences for
the research because he thereby removes the repeatability of the computation.
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Tables of random digits have been published, the most famous being the
Rand Table of One Million Random Digits and One Hundred Thousand Normal
Deviates.! In principle such tables could be stored on a tape and read into a
machine as needed, but this is rarely done because of the slowness of the input and
because in large problems with random numbers 1 million digits is hardly enough.
It is possible to use a table to create a new table, for example by adding adjacent
numbers and dropping the carry, but this does not seem to be popular, although
this device was used by Rand to make their numbers more random.

The third source is mathematical formulas. Many sources have been
proposed, such as the old ““in a k-digit machine, square the last random number
and keep the middle & digits of the product as the new random number,” but few
are kept in use for long. The ones most often used are still multiplicative con-
gruence generators of the form

Xn+1 = np(mOd 2,‘)
where we take the last k digits of the fixed-point product (on a k-digit binary

machine). In words, *“x,,, is congruent to x, modulo 2>’ means the difference
between x, ., and x, is divisible by 2.

Asanillustration of this kind of a random-number generator consider using
000 001 as x, and 100 101 as the multiplier on a six-bit machine. We get Table
8.3 of products. As we can easily see, all the numbers are of the form 4k + 1.

! Free Press, Chicago, 1955.

Table 8.3

Binary Decimal Drop last
number equivalent two digits
000 001 1 0

100 101 37 9

011 001 25 6

011 101 29 7

110 001 49 12

010 101 21 5

001 001 9 2

001 101 13 3

100 001 33 8

000 101 5 1

111 001 57 14

111 101 61 15

010 001 17 4

110 101 53 13

101 001 41 10

101 101 45 11

000 001 1 0
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The last binary digit is hardly random, nor is the next to the last, but dropping
both of them, we have the decimal representations of the numbers0, 1,..., 15in
what looks like a random order. However, each number occurs only once in the
cycle of 16 numbers, and that is definitely suspicious.

As we will prove in Sec. 8.4, using any (k > 3)-bit machine will have the
same effects. All the numbers, once the last two digits are dropped, are repre-
sented exactly once, but otherwise the numbers seem to beina chaoticorder. The
periodicity is for the typical 35-bit machine

2%=2 =233 58,59 x 10°

and seems to be adequately long for most simple applications.

PROBLEMS

8.3.1 Make a random-number generator using a 5-bit word length with p =13 and
Xo = 1.
8.3.2 Find the period of a 6-bit random-number generator using p = 33 and xo = 1.
8.3.3 Using the generator in the text,remove the last 3 bits and study the probability of
one number being followed by another, i.e., the correlation of adjacent numbers.
8.3.4 Repeat the random-number generator in the text except start with xo = 3. Com-
pare the two runs.

8.4 THE RANDOM-NUMBER GENERATOR
We now study random-number generators of the form
X, = px,_;(mod 2¥)

where mod 2 means “keep the remainder after dividing the product by 2%
and this, in a binary machine, is simply the last & digits of the product, the lower
part of the accumulator. Howdo we pick the multiplier p and the starting value,
and what can we expect for the resulting sequence of random numbers?

If 2 divides x4, then all the products will have at least one 0 at the end, and
we are wasting one bit of the machine capacity. Hence we take x, as an odd
number.

Similarly, if p is even, then the products will gradually accumulate Os on the
right-hand end until

X4y = p**1xo = O(mod 2)

and all numbers past this point will be zero.
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Therefore p is taken as an odd number.
Now all odd numbers can be written in one of the forms

8t+3 8t+1 8t -1 8t—3

for some integer . How shall we pick ¢, and which of the four forms should we
use?

Theorem 8.4.1 1If p = 8¢ + 3, then the period of the sequence is 2¢~2,
PROOF If the period is to be 2¢~2, then the theorem states that

p¥ ™’ # 1(mod 2
%% = 1(mod 2%
which is equivalent to saying 2* divides (p***
(¥ =),
We begin by observing that using

a—-1l=@+1)a-1

— 1) but does not divide

repeatedly we can write
E* T =D=E" T+ DE* T D) (o + (- 1)
For each factor (i > 1)
pP¥+1=1+3=x8)*
21
=1+3%+ Y (£1)*C2, k)(B1)k32'*
k=1
But
143 =14+@=-1D"=1+01-4*
21
=141+ Y (-49C2, k)
k=1
so that
20 .
P +1=2+ Y CQLII(£1) *32F kg% 4 (—4)]
k=1

and 2 divides p*' + 1, but 4 does not.
Returning to the factored form, we use this in each of the first
2%=3 terms and conclude that

26=3 divides (p®* 7 + D* T + 1) - (2 + 1)

but 2¥~2 does not divide it.
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We have left the two factors
P+Dp-D=p"-1=@Bt£3)>-1
=641 £ 48t +9 —1
=882 + 6t + 1)
and 23 divides it, but 2* does not. Thus we have
k=3 .93 _ ok
divides the original

k-2
7

but no higher power does.
Rearranged, we have

p¥7 — 1 £0(mod 2%
p¥ 1 — 1 =0(mod 2% 11
Theorem 8.4.2. If p = 8¢ — 3, then the sequence xg, Xy, ...y Xax-2_
generated by the formula is some permutation of
1,59,...,2=3 if x,=1(mod4)
3,7, 11,...,2=1 if  xo=3(mod 4)
PROOF Consider the numbers
P n=0,1,...,22]

The difference between consecutive terms

n+1

=X p"=Xop"(p— 1)
=X p"(81 — 4)

Xop

is divisible by 4. We know that the period is 2¢~2; hence we have
2%=2 distinct numbers whose differences are all divisible by 4, and the
theorem follows from this. i

How shall we pick the value of t? For example, if t = 1, then p =5 and
whenever a small x; occurs then for some time the succeeding x; will increase—
definite structure in the supposedly random sequence. Similarly for p near
1.0.... Itis customary to pick a f so that p is near 1/2, say p =0.10. ...

If in the sequence x; of random numbers we drop the last two bits, then
we will have all possible (2¥~2)-bit numbers in some order. In practice it is
customary to avoid more than the last two bits but to recognize that dropping
many more does not help very much.
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PROBLEMS

8.4.1 Examine the periods for p =8¢+ 1and p = 8r + 3.

8.4.2 Discuss the cycles that all the 2* numbers fall into.

8.4.3 In picking a multiplier note that borh ends need to be considered. A multiplier
ending in ...01 will reproduce exactly the last two digits, and one in ...11 will
cause the last digit to alternate. Extend this analysis to numbers endingin...001
and others.

8.5 TESTING A RANDOM-NUMBER GENERATOR

Now that we know what we are going to use as a source of random numbers it is
necessary to consider how well it meets our intuitive notions of what a random
sequence of numbers should be.

In the first place we have implied that the numbers should be equilikely,
that is, we were talking about a uniform distribution in an interval, which is
conventionally taken as 0 < x < 1 by putting a binary point in front of the first
digit. It is easy to see from Theorem 8.4.2 that until we get close to the granu-
larity of the number system, we have an exactly uniform distribution in the full
period. This bothers us a bit since it is too uniform. We are sampling without
replacing until we exhaust the whole set of numbers we are going to use, and
random intuitively means that there is a chance, small though it may be, that the
same number can come up twice in succession. Indeed there is a reasonable
probability that in the long sequence there would be one such case. But this
defect is not serious for most applications, and if we drop more digits on the
right, we can get sequences in which such numbers occur a fixed number of times.
Again this is too uniform and is not compatible with our intuitive feelings.

Taking the numbers two at a time, we can study the pattern of number pairs,
which we again expect to be uniform. It is possible to show theoretically that the
number pairs are not bad, but carried far enough by studying triples, etc., we will
be in trouble. In practice the effect is seldom serious.

There are almost an infinite number of tests one can apply to a random-
number sequence, run tests, poker-hand draws, power spectral tests, etc., and a
large computer could be run full-time testing various generators. Randomness
is essentially a negative property and cannot be proved in a mathematical sense by
any finite amount of testing of a finite length of data. Every finite string of
random numbers will be found to have some peculiar property (even if it is only
that it does not have a peculiar property!). The topic of testing fascinates some
people, and if they wish, they can follow the topic further in the references at the
end of the chapter.



142 8 RANDOM NUMBERS

Experience, which is not an infallible guide, indicates that with care con-
gruential generators give useful results, but carelessness regularly trips up the
unwary. The use of an additional operation of adding a constant to the product
before taking the last k digits has not been proved worth the time and trouble.

In the final analysis, randomness, like beauty, is in the eye of the beholder,
and how the numbers are to be used determines their randomness.

8.6 OTHER DISTRIBUTIONS

We now have a source of random numbers with a flat distribution. In many
applications other distributions are needed. In principle the following device
works. We equate the cumulative distribution F(y) of the distribution f(y) that
we want to the cumulative distribution x of the flat distribution and solve for the
new one

X y
[tax=x=[ 10)dy=F0)
0 0
Applying the inverse operation F~!, we have

FTYF(y)}=y=F'(x)
For example, suppose we want the exponential distribution e™. Then

Sy =e?
y
F(y) =J. e Vdy=1-e7?
0
eV=1-x
y=—In(l —x)
and using the sequence of random numbers x; from a flat distribution, we get
yi=—In(l —x))
or equally good,
Vi= —In Xy

This has been used many times with excellent success.
If this method of inverting the cumulative function is used on the normal
distribution

e

J2n
then the inverse function has to be approximated somehow—perhaps with the aid
of auxiliary tables.




8.7 RANDOM MANTISSAS 143

An alternate method for getting a normal distribution is to appeal to the
central-limit theorem and simply add several random numbers from a flat (or any
other) distribution. Since the numbers in the source are independent and have a
variance,

S RSN Gk )l I N
The sum of 12 of them will have a variance of 1. Thus the common rule
is to “add 12 numbers from our generator and subtract the constant 6 from the
sum to get a normal distribution with mean zero and unit variance.”

How good is this distribution? Clearly it is exactly zero outside of the
interval + 65. The probability of a value being outside is approximately
2 x 1072 and hardly has a serious effect.

This brings up a philosophical point. Do we really want genuine random
numbers, or dowe want a set of homogenized, guaranteed, and certified numbers
whose effect is random but at the same time we do not run the risk of the
fluctuations of a truly random source? When we look at how we are using the
numbers, we usually find that we want to get the security of a large sample by taking
as small a sample as we can. We do not want to run the risk of wild fluctuations.
Thus our too-flat random generator and the normal distribution which eliminates
the tails far out are closer to what we often want than the real thing is!

Many other distributions can be found by various methods described in the
two references at the end of the chapter.

87 RANDOM MANTISSAS

One of the many uses of random numbers is in the simulation of random compu-
tations, or as a source of random data to test a routine.  As we showed in Sec.
2.8, the distribution of mantissas is not flat but rather has the reciprocal distribu-
tion
p(x) = Yind

This distribution also applies to random physical data or random data for testing
a mathematical library routine for average running time, etc. Thus we need a
source of random mantissas.

One of the results proved in Sec. 2.8 is that a continued product of numbers
from any reasonable distribution has a mantissa that rapidly approaches the
reciprocal distribution. We gave a short table showing the rapidity of approach
for numbers from our flat distribution.
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A specific algorithm based on this observation uses the x; from the random-
number generator and forms

Y,=Y,_(x, (shifted)

where shifted means that after the multiplication the possible leading zeros are
shifted off to form a legitimate floating-point mantissa.

How well does this method work? Experimental verification is given by
8,192 trials. Counting the number of mantissas falling in each of N categories,
we get the results shown in Table 8.7. The last two columns give the number of
sign changes in the residuals between the observed and theoretical distributions.
The expected number of sign changes might be thought to be (N — 1)/2, but since
for N =2 it is clear that one sign change must occur (because the mean of the
residuals is zero), we have used N/2 as the expected number. A comparison of
these twc columns shows that there are no systematic errors in some regions. The
chi-square test in the second column shows that the size of the deviations is
approximately right, neither too small nor too large. Thus the generator
appears to be safe to use.

Itis interesting to note that probably this generator has a significantly longer
period than the period of the source x;.

PROBLEMS

8.7.1 Apply this generator to the 6-bit random numbers of Sec. 8.3.

Table 8.7 DISTRIBUTION OF 8,192 RANDOM MANTISSAS

Residuals
N x? lt?l':ilg::nor ?:;ga‘:iges Expected
64 61.392 63 30 32
32 22.804 31 14 16
16 11.150 15 8 8
8 7.724 7 5 4
4 3.261 3 2 2

2 1.467 1 1 1
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8.8 SWINDLES

Problems using random numbers are often both tricky and inclined to be expen-
sive in machine time ; therefore it is wise to have a competent practicing statistician
handy to discuss the computation before you begin.

A number of methods have been devised to make Monte Carlo computations
and other computations using random numbers much more efficient, sometimes
by factors of 1,000 or more. These are known by the colorful name of swindles
to go along with the name Monte Carlo. One of the methods is called  antithetic
variables,” meaning that when one case occurs, then it is negatively correlated in
a known way with another case. For example, in the Buffon needle case a cross
is used, instead of a needle, so that if one arm is likely to cross a line, then the
other is not.

Many other statisticians’ tricks can be used, such as stratified sampling.
Again, perhaps an analytical solution can be found for the bulk of the cases and
the random sampling used only for the small difference. There are no systematic
methods in the field as yet; the low cunning of trickery seems to be necessary for
success, and this art lies outside the scope of a general textbook.

89 NOISE SIMULATION

Probably the greatest use of random n mbers is in the simulation of noise.
Rarely (beyond simple roundoff) does the noise resemble the flat distribution of
our generator. For independent samples the transformation to other distribu-
tions is easy in principle, and since it does not need to be extremely accurate in
most cases, it is fairly easy in practice. But most simulations of noise require that
the samples be dependent from step to step and that they have various internal
correlations. This topic is much too difficult to take up here, and often the
proper choices depend on knowledge of the field of application. The proposer of
a problem may not realize that he does not have independent samples of noise at
the step size to be used in the computation, and care is necessary to avoid elegantly
solving the wrong problem.

REFERENCES

The three best references are Jansson [22), Knuth [28], and Shreider [51], with Knuth
being the more complete and latest one.
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THE DIFFERENCE CALCULUS

9.1 INTRODUCTION

We have examined some algorithms for solving a few of the more common prob-
lems of numerical computations. Before examining the next major group of
problems, we need to develop a few mathematical tools. The main tool needed is
the finite difference calculus, which corresponds to the usual infinitesimal calculus
except that we do not go the the limit but instead stop at a definite, finite step size.
One reason for the importance of the finite difference calculus is that most of the
time we have data (samples) of our functions at a sequence of equally spaced
points x, (k =0, 1, ..., N),

f(a),f(a+h),f(a+2h),...,f(a+ Nh)

An example is the sequence of partial sums of a series

sm=Ya n=012...,N
k=0
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Asecondreasonisthat when the difference is divided by the step size A, it provides
an estimate for the derivative (which is a limit process and cannot be carried out by
a finite machine).

If there is difficulty in understanding the finite difference calculus, then it is
probable that the corresponding part of the infinitesimal calculus is not well
understood and should be reviewed.

Because we are dealing with a finite number of steps and a finite number of
operations, we do not get into the area of existence theorems or other difficult
questions in mathematics; it is usually clear that we can carry out the proposed
operations and that a number will result. Its relation to what is wanted may be
obscure, but that is not the point at the moment. Because of the finite nature of
our computations we can operate formally without regard to the usual questions
of rigor.

It is worth recalling that differential equations, for example, are usually
derived from some physical situation by first finding a finite approximation and
then taking the limit. If the reverse step cannot be taken (when small steps are
used), then there is some doubt about the validity of the differential equation.
Thus it is reasonable to assume that the finite difference approximations we make
are likely to be fairly accurate. Later we will examine the errors of such approxi-
mations. In this chapter and the next four, we will be dealing with finite, equally
spaced data in a formal manner.

If the data are at the points

x=a,a+ha+2h,...
we can reduce the situation to a standard form by the substitution

Xy —a

= =k k=0,1,2,...
Much of the time we will assume that this has been done. It is often convenient
to write

SO =/,
MOESA

..........

Sk) = fi
In using these results we will have to either reduce the problem to the stand-
ard form or transform our formulas to the spacing of the original problem. Often
it is a matter of indifference which we do, though once in a while it does make a
significant difference in the amount of arithmetic that must be done. We can, as
in analytic geometry, regard the transformation as an ‘alias” which keeps the
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points fixed and moves the coordinate system, thus giving the points new names;
or we can regard the transformation as an “alibi” which keeps the coordinate
system fixed and regard the problem as having been moved. For example, the
transformation

X'=x-a
y=y-b
can be regarded as either shifting the coordinates of the circle
(x—a) +(y-b)?=r
so that it is now labeled
X%+ y? =y

or else as moving the circle to the origin. Whichever way we view it, we must
keep that view to avoid unnecessary confusion.

PROBLEMS
9.1.1 1If x takes the values 11,9, 7, ..., — 11, find the transformation that reduces this to
the standard form O, 1, ..., 11. Ans. t=(11—-x)/2
9.1.2 Reduce 3.0, 3.5, 4.0, 4.5, ..., 10 to standard form. Ans. t=2(x—23)
9.1.3 Reduce to standard form: x=a,a—h,a—2h,...,a— (n— 1)h.
Ans. t = ?

9.1.4 Transform Simpson’s formula
[ 76 dx =471 + 47 + )]

to the interval a < x < b.

6 2

9.1.5 Transform the interval a < x < b to the interval ¢ <t <d, assuming a, b, ¢, d
finite.

Ans. j *fx) dx =222 [/(a) + 4f(“ + ”) +f(b)]

Ans. 1= (¢ — d)x + ad — be
a—b
9.1.6 Transform the interval 0 < x < « to the interval —1 <t < 1.
x—1
x +

—

or X——+—I'
1t

Ans. t=

—
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9.2 THE DIFFERENCE OPERATOR

The basic operation of the finite difference calculus is the difference operator A
defined by

Af(x) =f(x + 1) — f(x)

This operation is familiar from the calculus where it is used in the process of finding
a derivative.

We can imagine the operator A as separated from the function on which it
operates, just as we imagine the derivative operator d/dx operating on a function
S(x) or the integration operator | ... dx acting on a function f(x).

The difference operator is linear, as are differentiation and integration.
By this we mean that if @ and b are constants, then

A (af (x) + bg(x)) = a Af(x) + b Ag(x)

This property of being linear is very important and makes the operator A very
convenient to use. Finding zeros of a function is not a linear operation.

As an example of the linearity and application of the A operator, consider
applying it to the quadratic

y=ax*+bx+c
We get, using the linearity of A and simple algebra,
Ay = Alax? + bx + ¢) = a A(x?) + b Ax + ¢ A(1)

=a[(x + ) = x*1+bl(x + h) — x] + ¢[1 — 1]
= 2axh + ah® + bh

The difference operator applied to a product gives

Alf(x)g(x)] = f(x + g(x + h) - f(x)g(x)
=f(x + Mg(x + h) — f(x + kg(x) + f(x + h)(gx) — f(x)g(x)
=f(x + h) Ag(x) + g(x) Af (x)

Since f(x) and g(x) are interchangeable, this is equivalent to the alternate form

Alf(x)g(x)] = f(x) Ag(x) + g(x + h) Af(x)

Note that the x + / appears in only one argument in either case. Also note how
closely the formula resembles that of the calculus

d d d
LA = £ () - [900]+ 9() - LFC0]
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Similarly for the quotient we get

A[L(ﬁ] =f(x + h) _M
g(x)]  gx+h) gx)
_ Sx + hg(x) — g(x + h)f(x)
g(x)g(x + h)
_ Sx + Bg(x) = f(x)g(x) +f(x)g(x) —g(x + h)f(x)
- 9®g(x + )
_g(x) Af(x) = f(x) Ag(x)
- g(x)g(x + k)
which again has one argument at x + & and closely resembles the corresponding
formula from the calculus

0) 2 U1~ /() 2 (6]

g (x)
Calculus books usually give a long list of formulas for derivatives, both for
the direct use and for later inversion to get a table of integrals. Similarly, in the

difference calculus we need a list both for present use and for the later inversion
into a summation table. We will, however, give only a short list.

d
LU=

A sin(ax + b) = 2 sin %’ cos[a(x + g) + b]

A cos(ax + b) = —2sin % sin [a(x + g) + b]
A tan(ax + b) = sin ah sec(ax + b)sec[a(x + h) + b]

ah
1 + [a(x + k) + b)(ax + b)

A arctan(ax + b) =
Ad*=a"@"-1)

h
Alnx=ln(l +—)
x
In some respects the role of the number e in the calculus is played by the
number 2 in the finite difference calculus. For example, if a* = 2, then
Ad*=a*
In the common case of unit spacing (5 = 1) we have a = 2 and

A2 =2
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PROBLEMS

9.2.1 Verify the above list of results.
9.2.2 Show that

( 1\ —hCx+h)
T+x2] — (1+x3)[ + (x+ k)]
9.2.3 Show that
B 1)(pX L o= X+
Asinh x = (_‘__IKEZ"';_)
9.24 Find
A(x sin x)
9.2.5 Find
Alsec}(ax + b)]

9.2.6 Show that

1 —h
A(\/i) T VaVx+h(Vxt Vit h
9.2.7 Show that

@ A(x*) = A(x* - x?)
®) A(x") = A(x"! - x)
9.2.8 Show that
(a) Asin(ax + b) = 2 sin ak sin(ax + b+ h + z-r)
2 2 2
(b) A cos(ax + b) = 2 sin ‘12,1 cos(ax +b+ g + -g)
9.2.9 Find
s(&5)
9.2.10 Find
A(2* sin x)

9.3 REPEATED DIFFERENCES

Since A f(x) is a function of x, we can apply the A operator again to obtain the
second difference

A [Af(x)] = A%f(x)
This notation corresponds to the notation for the second derivative in the ordinary
calculus

d {d[f(x)]

d2
el e B 1)

T dx?
Repeated use of the A operation gives

AN ()] = ATf(x)
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In the example of the quadratic (Sec. 9.2)
y(x) =ax® + bx + ¢
we got
Ay = 2ahx + ah® + bh
The second difference is
A%y = 2ah(x + ) — 2ahx = 2ah?
while the third difference is, clearly,
Aly=0

It is not an accident that the third difference is zero; rather it is the conse-

quence of the following important theorem.

The fundamental theorem of the difference calculus The Nth differ-

ence of a polynomial of degree N

y(x) = ayx¥ +ay_x" 1+t ag

is a constant ay N'i", and the (N + 1)st difference is zero. The proof is
very much like that found in the calculus for the corresponding result. We

first prove the lemma.

LEMMA Ify(x)is a polynomial of degree N, then Ay(x) is a polynomial

of exactly degree N — 1.

PROOFOFLEMMA  For the special function y(x) = x" we find, using the

binomial theorem,
N
Ay=(x+hY¥—x"= Y C(N, k)x"*n* — x¥
k=0

N(Nz_ 1) hxN-2

=Nhx""! + +e+ BN

Thus, when the A operator is applied, the term xV becomes a poly-
nomial of exactly degree N — 1 with leading coefficient Ni. Using
the linearity property of the operator decreases each term of a poly-
nomial by one degree, and the term in x¥~! cannot cancel out.
Thus the lemma is proved. i

PROOF We simply use the lemma N times and find that only the term
from x" remains and that it has the coefficient N'i¥. The next
difference makes this constant cancel, and the theorem is proved.

I
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This theorem is basic to much of the classical parts of numerical analysis; in

one way or another an appeal is regularly made to it.

PROBLEMS

9.3.1
9.3.2

9.3.3
9.3.4

9.3.5

9.3.6

Prove the theorem by mathematical induction.

Using 4 = 1, compute the second and fourth differences of y = x* — 4x?® + 6x* —
4x + 1. Ans. A%y =12(x— 1)}, A*x =24
Using & = 1, find all the differences of x(x — 1)(x — 2)(x — 3).

Find

1
@ ()

(b) A¥(ln x)
Find
AX[sin (a + bx)]
A*[cos(a + bx)]
Hint: Prob.9.2.8
Find A*(a®).

9.4 THE DIFFERENCE TABLE

When using higher differences, it is useful to imagine that the numbers are
arranged in the form of a difference table (Table 9.4.1), although the differences
are probably not stored in a machine in this way.

Table 9.4.1 DIFFERENCE TABLE
x yx)  Ayx) A%Wx) A%

0 »0)

A¥(0)
1 )
2y

Ay(2) A%y(1)
3 03 A%y(2)

Ay(3) A%(2)
4 y@ AZy(3)

Ay4)

5 ¥
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As an example of a difference table consider the values of the sine-integral
function as shown in Table 9.4.2 (we have used the common convention and
have written the differences as if the decimal point were at the right-hand end
of the numbers). Higher differences are usually carried until the numbers
either tend to oscillate or are mainly zero.

It is easy to check a difference table for accuracy (when computed by hand).
If we sum any column of differences and add the sum to the top number in the
preceding column, we must get the bottom number in the preceding column. For
example, in Table 9.4.2 the sum of the A®is —26. Thisadded to the —2 of A%(0)
gives —2 — 26 = —28, the bottom value of the A% column, namely A%(0.8).

Most tables are given in fixed-point notation, at least locally, though over
various ranges differing numbers of figures may be printed. This means that it is
often possible to reconstruct the table from the top diagonal line of differences
plus the last column of differences. In a sense the differences contain the same
information that the function does. The only exception to this is when the
function, or some column of differences, changes sign and the difference (which is
now a sum of two numbers) in the next column requires a shift and possible loss of
information due to the carry beyond the extreme left.

Table 9.4.2 DIFFERENCE TABLE OF

e
Si(x)=J. sinf .
o ¢

x Si(x) A A2 A3 A4

0.0 0.0000
999

0.1  0.0999 -2
997 —6

0.2 0.1996 -8 5
989 -1

0.3 0.2985 -9 —4
980 -5

0.4 0.3965 —14 3
966 -2

0.5 0.4931 —16 -1
950 -3

0.6 0.5881 -19 0
931 -3

0.7 0.6812 —-22 0
909 -3

0.8 0.7721 -25 0
884 -3

0.9 0.8605 -28
856

1.0 0.9461
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Although we have used the tables as if they started at zero, it is frequently
useful to imagine that the table extends indefinitely in both directions and we have
only a sample of the entire function. At other times it is useful to shift the origin
to the place in which we are currently interested. Thus we will be quite vague
about the actual origin of a table and occasionally shift without mentioning it
specifically.

PROBLEMS

9.4.1 Make a difference table for the sine function at 10° spacing, using a 5-place table
(0 < x <90°. Check your arithmetic by the above mentioned method.

9.4.2 Make a difference table for y = x*.

9.4.3 Describe a difference table for the function y = a*.

9.4.4 Describe a difference table for the function y = sin(mx/3).

9.5 TABULATING A POLYNOMIAL
AT A REGULAR SPACING

As observed in Sec. 3.10, we frequently wish to evaluate a function at a sequence of
equally spaced points. This is especially true in evaluating polynomials. For
example, it is customary in processing data to first remove a polynomial trend.
This means that the polynomial must be evaluated at every point so that it can be
subtracted from the data.

The difference table gives a powerful way of constructing the left-hand
column from the top line of differences plus one column of high-order differences.
For a polynomial we know from the fundamental theorem that the Nth differences
are a constant, and so the top line of differences alone will enable us to reconstruct
the whole table. The process is as follows and is based on the obvious relation:
From

Af(k) = f(k + 1) — f(k)
we get
Sk +1) =f(k) + Af(k)
Consider the specific example of
yx)=3x*—6x+9 y0)=9
Ay(x) = 6x—3 Ay(0)=-3
Ay(x)=6 A*y(0)=6
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Table 9.5 shows the method of construction from the differences.

Even when a function is not exactly a polynomial, this still provides a
powerful method of constructing many values, before making a small adjustment
due to the fact that the differences are not exactly a constant.

However, roundoff is a problem, as always. In the case of a polynomial if
the calculation of the differencesis exact, then the rest of the arithmetic can usually
be kept under reasonable control. But if there is a small roundoff error in the
differences, this error will be greatly magnified in the function. For example,
consider the table with all zeros to be true, but suppose that the kth differences are
in error by a small fixed amount ¢ at each location. What does the function
become?

The preceding column becomes ne, the next [n(n — 1)/2]e, ..., etc. Roughly
the function looks like

S
x

fa|
™

which in time becomes very large. Thus it is customary, when using this method
of computing a function, to periodically correct the accumulated errors.

Table 9.5 y(x)=3x*—6x+9
x y Ay Ay

0 9
e

6

>3 -

2 9 6
9

3 18 6
15

4 33 6
21

5 54 6
27

6 81 6
33

7 114 6
39

8 153 6
45

9 198 6
51

10 249

Check: y(10) = 300 — 60 + 9 =249
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9.6 THE FACTORIAL NOTATION
In the calculus x" plays an important role. For example, in the Taylor series

f(x)=a0+a1x+a2x2+..,= a X

k

s

an arbitrary function is expanded in powers of x. The main reason that x" plays
this leading role is that

d
ax":nx"“ nx>1

Thus the coefficients of the Taylor series are determined by differentiating and
evaluating the derivatives at the origin

S(0) =a,

() =a, +2a,x +3a;x* + -+
S 0)=a,

S7(x) =2a; + 6ayx + -
S7(0) = 2a,

and in general
fO0) = kla,

When differences are used instead of derivatives, the functions correspond-
ing to x" are

gX)=x(x -1 (x-n+1)

where there are n factors.
We have

Ag(x)=(x+Dx(x—1D-(x—n+2)—x(x=1-(x—n+1)
=[x+D)—-(x—-—n+Dlx(x=1)-(x—n+2)
=nx(x—1)(x—n+2)

For convenience we will write
g =xM=x(x-Dx—-2)(x—-n+1) n=12,..
and we have just shown that
Ax™ = px(*=V

We need to extend the range of definition to all integers (much as were the powers
of x in algebra). As a basis we use the identity

™ = x™M(x — )™ p>m>1
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If we formally set m = 0, we get
XM = (03 (m
which suggests that we define
x9=1

much as we made 0! = 1.
For negative exponents we use the same identity and setn =0

1 =x©) = x(m)(x - m)(-M)

or

1
(-m) _
(x_m) m _x("')

Set x — m = y and we have the more convenient form

1 1
(-m) _ =
YT Em® T Grmytm=—D - (y+1)

Note that
x(»t)x(-m} # x© m#0

Corresponding to the Taylor-series expansion in powers of x, we have a
formal expansion in factorials

0
fG)=bg+bxV 4+ by xP oo =Y b x®
k=0

The coefficients are determined in exactly the same way, this time by differencing
and evaluating at zero

f(0) =bo

Af(0) = b,
A%f(0) = 2b,
AY(0) = kb,

Hence we have the Newton expansion
= A¥(0
=5 -5 roce b

where C(x, k) is the usual binomial coefficient.
The conversion of a polynomial expressed in powers of x to a sum of
factorials is straightforward and is based on the same idea used to convert: a
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number of a given base (Sec. 2.7); a polynomial to a sum of powers of x — a
(Sec. 3.7); or a polynomial to powers of a quadratic (Sec. 6.7). We divide the
polynomial by x, the quotient by x — 1, that quotient by x — 2, etc. The succes-
sive remainders are the coefficients of the factorial representation. For example,
consider the polynomial

P(x)=2x*-3x3+x2 -1

0] 2 -3 1 0 -l
0 0 O 0

_ﬂ 2 -3 1 0 tl
2 -1 0

_ﬂ 2 -1 0 &
4 6

3 2 3 |6

‘ 6

2 ]9

then
Py(x) = 2x + 9x® + 6x2) + 0xV — 1

The first factor by zero need not be done, of course, but was included for logical
presentation.

PROBLEMS

9.6.1 Using Newton’s formula, find a polynomial which takes on the following values
of P(n).
n |0|1|2|3|4|5
Py | 41 | 43 | 41| 53| e | T

Ans. P(n) = n® 4 n+ 41 [for n < 41 note that P(n) = prime number]
9.6.2 Show that

1
T (m+ 1!

(=m)
9.6.3 Show that

9.6.4 Compute x™x‘~™ where x = m. Ans.

9.6.5 Simplify 1/x¢=™,
9.6.6 Describe the difference table of x*.
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*9.7 STIRLING NUMBERS OF THE FIRST KIND

Although we have already shown how to go from a polynomial in powers of x to its
factorial representation, the central role of powers of x in the continuous case and
of factorials in the discrete case requires that we look more closely at the topic.

To express x™ in powers of x we write
™= Yt kxk  (9.7.1)
k=0

and set out to find the numbers s(n, k). These numbers are called Stirling' num-
bers of the first kind. Forn = 1 we have

x = x =s(1,0) + s(1, D)x
whence
s(1,00=0 s(1,1)=1
For n = 2 we have

x(x = 1) =x? — x =5(2,0) + 52, Dx + 52, 2)x*
whence
5(2,0)=0 s2,1)= -1 52,2)=1

It is easy to see that for all n > 1, s(n, 0) = 0, but s(0, 0) = 1.
Rather than continuing one power at a time we write

XD = (x — m)x™

and use Eq. (9.7.1) on both sides to get

n+1 n
Yosn+ 1, k)xk = (x —n) ¥ s(n, k)x*
k=1 k=1

1M

s(n, kK)x Y — 'y s(n, k)x*
1 k=1

k

M:

[s(n, k — 1) — ns(n, k)]x* + s(n, n)x"+!
1

k

Table 9.7
k
n 1 2 3 4 5
1 1
2 -1 1
3 2 -3 1
4 -6 11 —6 1
5 24 —-50 35 -10 1

! James Stirling (1692-1770).
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Equating the highest power of x, we get

sm+1l,n+D)=s(mn)=---=5(1,1)=1=s0,0)
For x* we get

s(n+1,k) =s(n, k — 1) — ns(n, k) k=1,2,...,n

There is no simple formula for the Stirling numbers of the first kind. Table 9.7
gives a few of the numbers.

PROBLEMS

9.7.1 Extend Table 9.7 one line to n= 6.
9.7.2 Using Table 9.7, show that x® + 2x® 4+ x — 1 = (x? + 1)(x — 1).
9.7.3 Using Table 9.7, write x' + 10x‘*’ as a polynomial.

*9.8 STIRLING NUMBERS OF THE SECOND KIND
The Stirling numbers of the second kind express x" in terms of factorials:
x'=Y S(n, k)x®
k=0

Asin Sec. 9.7, we first compute a few cases and then find the general relation. For

n=1
x = S(1,0) + S(1, Dx

so that
S(1,00=0 S, )=1
Forn=2
x? = 8(2,0) + S2, Dx + S2, 2)x(x — 1)
so that

52,00=0 S, 1=1 52,2 =1

Table 9.8
k
n 1 2 3 4 5
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
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Again it is clear that
S(n,0=0 n>0

and
S0,0)=1
The recurrence relation follows from
n+1

xX"Th=x-x"

n=1 n n n
Y S(n+1,k)x®=xY S(n, k)x™ =Y S(n, k)(x — k)x™ + Y kS(n, k)x®
K=o k=0 o

o
=Y S(n, )x**V + ¥ kS(n, k)x®
K=o k=0

[S(n, k — 1) + kS(n, I)}x® + S(n, k)x™+V

v

k

Equate like factorials
Stn+1,k)=Snk — 1) + kS(n, k) k=12,...,n
Sa+1L,n+1)=Snn=---=81,1)=1=50,0)

Some of the numbers are given in Table 9.8.

PROBLEMS

9.8.1 Extend Table 9.8 to n = 6.
9.8.2 Write x* in factorial form using Table 9.8. Check by synthetic division.
9.8.3 Write x® 4+ 7x? — 9x + 3 in factorial form.

9.9 ALTERNATE NOTATIONS

The choice of the notation for the first difference

Af(x) =f(x + D) — f(x)
was arbitrary and unfortunately not symmetric. We might just as well have
chosen the backward differences

V) =f(x) - f(x = h)
What would have happened if we had? We would have found that the ascending
factorials

Mx = x(x + h)(x + 2h) -+« [x + (n — 1A]
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would give the relation we need for handling things, and we would have found a
backward Newton formula. Similarly we would have found different Stirling
numbers Z(n, k)and o(n, k). These are related to the old ones by

Y(n, k) = (=1)y"**s(n, k) = |s(n, k)|
a(n, k) = (—1)"**S(n, k)

Thus, there is a completely analogous theory for the backward differences. The
resulting formulas are occasionally useful, but in a first course they are a luxury.

Similarly central differences and mean differences are sometimes used.
Again they are merely a change in notation and a convenience in some situations
but not worth the trouble in an introductory course.

Many books make use of elaborate symbolic methods, for which the alter-
nate notations are quite useful. We have used only the operator A in a few
simple, finite cases and have so far avoided the more dubious symbolic operators.
For example, the Taylor series can be written

fla+h)=f(a)+ If'(a) + hzf"(a) + e
» h*D*
= kz,o T [f(a)]

= ¢/ (a)

Therefore

Af(a) = (" = 1)f(a)

or symbolically

A=e?—1
P =1+A
A A3 A%
D =In(l +A) = A~ + = -+
1 A? A3
=z(A‘7+?-“)

We will, however, occasionally do some formal manipulation with what
amounts to symbolic methods, because the methods lead easily and rapidly to
useful results. The history of mathematics is full of processes that were once
condemned and are now considered legitimate—but also of ones that lead to false
results. It is an art to be safe but not rigid.



164 9 THE DIFFERENCE CALCULUS

9.10 AN EXAMPLE OF AN INTEGRAL EQUATION

With even this little bit of theory it is time to give an example of how it can be used
to solve useful problems. The illustration is one that occurred in solid-state
physics. The problem is to calculate

_dp e
g(}’)—ﬁfo xdx 0<y<i

Jr-
when the data for f(x) is given at x = 0, 0.1, 0.2, ..., 1.0.

Examining the problem, we immediately see that at the upper limit, when
x =y, the integrand becomes infinite. Furthermore, the result of the integration
is going to be differentiated with respect to y, and when we differentiate under the
integral sign with respect to y, we will get an integral that diverges. Thus the
problem requires some care.

To start our thinking, for what functions f(x) could we solve the problem?
It is natural to try x"

d (v x"dx
9() = —
Y=o J y—-x
This suggests the usual substitution
x=ysin® 0

dx =2y sin 6 cos 0 dd

d 2 n+ 1 n/2 n
90 == (y—) fo sin?+1 940 = FEW Y,

dy\ /y Jy

where W,, ., is the Wallis! integral

and

/12 24+ (2n)
2n+1
Wz"“‘fo s 08 = S s )
2n
—_2"+1W2n-1 W =1

Thus we can handle all the cases of x". Since the operator

_d_I’ SO
dyJdo Jy—x

is linear, if we can write
10
fx)=ao+ax+-+a,x°= Y ax*
k=0

! John Wallis (1616-1703).
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we will have as the solution

1 10
gy = \ﬁ’ 20(2" + DWapi 10, )"

To find the representation of f(x) we use Newton’s formula (with a spacing
of i)

109 =10 + 10 a0 + 22X =D wp(0)

+ o+ (10x)19 A'F(0)

The Stirling numbers of the first kind will get us from the factorial expansion to the
polynomial we want, and we are done.

As we will later see, it is often dangerous to use a polynomial of degree as
high as 10, but in the case that inspired the example, where the data were crude and
the answer was not expected to be much better, the results were satisfactory as
judged by these facts:

1 The graph of the approximating polynomial we found from Newton’s
formula looked reasonable.

2 The results were compatible with other parts of the physical theory.

3 The results stimulated further laboratory measurements of the same
effect.

As a final step in the problem, why did we succeed? What other kinds of
problems can we handle the same way? Evidently if we can analytically integrate
for some family of functions and can represent our function as a linear combina-
tion of the family, then we have a solution.
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ROUNDOFF ESTIMATION

10.1 WHY ROUNDOFF AGAIN?

By now the reader has begun to suspect that numerical methods are much too
concerned with roundoff.  After all it is a small effect and should not bother the
practical man who needs three or four figures at most. If single precision is not
enough, then double precision surely will do the trick, and modern machines often
have double precision built in so that it is hardly slower than single precision.

But consider the following situation. You are using the zeros of a poly-
nomial, and the output from the library routine (unlike the one proposed in
Chap. 6) produces, due to roundoft, a pair of close zeros instead of a double zero.
As we discussed in Sec. 6.1, this will probably lead to severe cancellation in the
subsequent computing. When the problem is repeated with double precision,
the zeros reported by the polynomial routine are, of course, just that much closer,
and the subsequent computation again loses almost all the accuracy there is.
Double precision did not get you out of the trouble as it should have; it merely
moved it around a bit and made it look a bit different.

It is often true, as many people say, that double precision is the answer to
roundoff troubles. At least most of the time this is true provided you know that



10.2 RANGE ARITHMETIC (INTERVAL ARITHMETIC) 167

roundoff has caused the trouble. But among other questions that naturally arise
is, how are you to know after a computation is done that roundoff has caused
inaccuracies? By looking at the printed answers? Just how are you going to do
this and make any reasonable estimate of the roundoff present? One of the
goals of this chapter is to answer this question when the results are in the form of a
table of numbers at equal spacing of some variable or parameter.

Itis also reasonable to ask for an estimate of the roundoff before a computa-
tion is begun. Of course this estimate will be less accurate than one made after
the computation is done, but it also may be more valuable in saving machine and
human time. We have maintained that it is better to avoid serious roundoff by
using forethought than to bound it after it happens. It is further reasonable to
ask how the machine can help us with the problem of roundoff during the compu-
tation.

Looking at the problem another way, there are (1) estimates of bounds, (2)
guaranteed bounds, (3) statistical estimates of roundoff and its variance, and (4)
even backward analysis (mentioned in Secs. 3.8 and 7.10), which gives answers to
roundoff in the form  The answer you obtained is the exact answer to a problem
that is within so much of the original problem.”

This whole chapter is devoted to a few aspects of roundoff. We will treat
roundoff again from an entirely different point of view in Part 1II—a viewpoint
which in many respects is more fundamental than this first careful look at
a difficult, important topic. Unfortunately for the user, all too little is
known about roundoff. When he faces his first large decision based on extensive
numerical computation, the user will begin to see why he wishes he knew more
about it.

10.2 RANGE ARITHMETIC (INTERVAL ARITHMETIC!)

The basic idea of range, or interval, arithmetic is very simple. In place of each
numberwe carry two numbers, the largest (maximum)and the least (minimum) that
it could be. At the start of a computation these ranges are assigned, perhaps of
zero length. Each arithmetic operation is replaced by a pair of operations, one
that finds the largest and rounds this up and the other that finds the smallest and
rounds this down. Thus, the result of each arithmetic operation is a pair of
numbers marking the range in which it is certain that the result lies.

Range arithmetic is usually simulated by an interpretive system on a
machine, though in principle it could be wired into a machine. The details of the
simulation are messy but not fundamentally difficult.

1 See Moore [43].
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In a short computation the resulting range is usually reasonable in size, but
in a long computation the range may be so great that it is useless. It may be
thought that the true answer lies near the middle of the range, but this is clearly
false since if the range of x were in the interval 0 < x < 1 and the same were true
for y, then the assumption that both lie near the middle leads to the product lying
near the 1/4 mark in the range, which is not the middle of its range.

Range arithmetic has another fault. It is the essence of good, iterative
computation that the iterations improve the result, but that the improvement
takes place at no one stepin the loop. Forexample, in the trivial case of applying
Newton’s method for finding the square root of a number N, we are led to

y=x*-N
V=2
I X" —N
n+1 = An 2x"

el

T2\ x,

In words, the new guess is the average of the current estimate x, and the quotient
N/x,. Ifone number is too large, then the other is automatically too small, and
the average is a very good estimate. How is range arithmetic to sense that this
simple loop has init this internal correlation between the two numbers? Yet this
is the essence of good computing.

All that range arithmetic can do is provide some bounds, probably very
much too wide, within which the result must lie. Sometimes this is good enough
and the above objections are irrelevant, but sometimes they are very appropriate.
Thus range arithmetic is a valuable (at times expensive) tool, but it is not the
complete answer to roundoff.

PROBLEMS

10.2.1 Draw a flow diagram for the operation of multiplication in simulating range
arithmetic. (Note a range may cover 0.)
10.2.2 Do the same as in Prob. 10.2.1 but for division.

10.2.3 Discuss the characteristics of a loop in which the range will correctly contract
as the iterations progress.
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10.3 ERROR PROPAGATION IN A DIFFERENCE TABLE

The difference table, Table 9.4.1, is one of the basic tools of roundoff estimation.
Suppose we have a table of equally spaced values of a function and there is one
error and this is at the ith entry, y,(1 +¢;)). What happens in the difference table ?
The difference operator is linear, and so the resulting difference table can be
regarded as the sum of the correct values plus the difference table of the single
error y;¢;. This latter table is of the form shown in Table 10.3 (where we have
suppressed the multiplicative factor y,¢; from all the numbers).

The numbers in the table are the binomial coefficients. To prove this we
merely write the operator equation, where E is the displacement operator,
Ef(x) =f(x + k). Since

A =f(x + k) —f(x)
A=E-1

we have

and
A¥=(E—- Dk

= Y (= 1)"C(k, m)E*"™

Table 10.3
x y Ay Ay? A3y A%y Ay ASy

-3 0 SPtias
0 7
-2 0 o _.--7 -
o _--""1
-1 0 __.--71 -4
=71 -3 10
0.1 -2 6 -20
R | 3 —-10
1 0o ~~~__1 —4 15
0 Tee -1 5
2 0 0 RETUR | -6
0 0 T~~._ -1
3 0 0 0 e~ 1
0 0 0 " ~al_
4 0 0 0 ~~
0 0
5 0 0
0
6 0
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Suppose next that there is a small error y, ¢ in each entry of the table of
function values. The result will be the correct difference table plus a sum of
difference tables like the one with a single error. Thus the error will be the sum
of the errors in the individual tables. To find this expression we apply the above
formula to get

k
Error in {A"yo} = Z ("' ])mc(k, ’n)yk—m Ex—m

m=0

If the | yx_ ., &x~m| are bounded by ¢, then the error is bounded by
k
| Y Clk,m)|e=(1+1)e=2%
m=0
This bound can be attained if all the errors are the same size but with alternating
sign, that is, if

yk—msk—m(_' l)m =&

Most of the time the bound will not be attained and is very pessimistic.

104 THE STATISTICS OF ROUNDOFF

Since absolute bounds on the roundoff are apt to be very pessimistic, it is often
necessary to resort to more realistic, but admittedly more dangerous, statistical
est:mates.

The roundoff of a single number y; is distributed equilikely in the interval
—1/2 < x < 1/2 of the last digit kept. In a continuing product we will have

»1(1+ &)yl +e) - yull + )
and neglecting the product of two or more ¢;, we find that this is
Viya oyl + (e &0 6]

By the central-limit theorem a sum of # independent random numbers approaches
the normal distribution as » approaches infinity,

1 _.
—_
\/ 2n
A similar effect applies for divisions except that we use
1
=1-
1+ &; &

and the corresponding ¢; appear with minus signs.
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For addition and subtraction there is a shift before the mantissas are com-
bined. It is more difficult to say exactly what happens, but the general effect is
much the same. While the individual roundoffs are from a flat distribution, the
roundoff effect of many arithmetic operations tends toward a normal distribution.
This is readily verified experimentally.

In a difference table the bound we obtained was again very pessimistic.
What is reasonable to expect?

To apply statistics in this case we need first to form a model of the situation
we are estimating. The roundoff in a single table is perfectly definite, but we
imagine that it is one table drawn from an ensemble of similar tables but with
varying roundoffs. It is natural to suppose that negative and positive roundoffs
are equilikely and that the roundoffs at different places in the table are indepen-
dent. In mathematical notation these assumptions mean that

Avie} =0
Avie;e;} =0 i#j
The assumption of independence of the roundoff at successive positions is
sometimes dangerous, especially in recursive calculations where the computation
for one value depends upon that of the previous value or values.

When we apply our statistical averages, we average the ¢; over the ensemble
of tables, not over the index i, in the following formulas. We have

Aviyiet = yiAv{e} =0
Variance{y;¢;} = Var{y;¢;}
= Av{ye’} = o*
where ¢ is some number which we will later examine more closely and which is

assumed to be independent of i.
For the kth differences in a table we have correspondingly

k
AV{Akyi 8.-} = Av{mgo(_ l)mc(k» m)yk—m sh—m}

k
= z ('_' 1)mc(k’ m)yk—mAv{sk—m} =0

m=0

k 2
Var(Aty, e} = Av{mzo(— 1k, m)yk-msk-m}

td

1=

=2 o(—1)""’C(k, )C(k, $)Yir Yi-s AV{Ek—r 8k-5}

r
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Only when r = s is the average not zero, hence

k
Var{A'y; e} = _Zocz(k, 1) AV{yi-, &}

=Y C¥k, r)a®
which defines o2 as the original “noise.” Using the identity of Prob. 10.4.1,
!
Var{A*y;e,} = C(2k, k)o? = % o?

The result we have is that the variance in the kth difference column is C(2k, k)
times the variance in the original table values—differencing amplifies the noise in
a table by a factor (2k)!/(k!)2. (See Table 10.4.)

Therefore, in order to estimate the variance (noise) in a table, we estimate
the noise by finding the noise in the kth difference column and dividing this by
C(2k, k).

Sections 10.5 and 10.6 will show which value of k to use.

Table 104 ROUNDOFF AMPLIFICATION FACTORS

Order of Variance Root-mean-square Maximum noise

difference C(2k, k)  noise V C(2k, k) 2
1 2 1.414 2
2 6 2.449 4
3 20 4472 8
4 70 8.367 16
5 252 15.875 32
6 924 30.397 64

PROBLEMS

10.4.1 Expand both sides of (1 + ¢)?*® = (1 + 1)1 + ¢)® and equate like powers of ¢
to get
Cla+b,r)= 'z°C(a, Cb, r—5)
10.4.2 InProb. 10.4.1 seta=b=rto get
c@rr) = }':oc 2, 5)

10.4.3 InProb. 104.1,seta=b=nandr=n+ 1to get
CQn,n+ 1)=3 C(n,s)C(n, s — 1)
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10.5 CORRELATION IN THE kTH DIFFERENCES

The consecutive values in a column of kth differences of a difference table use
many of the same numbers, but an examination of how they enter shows that they
have opposite signs in the consecutive differences—they are negatively correlated.
We need to compute this correlation

{ S (=1)Ck, P)ye-, 8-, KE! (—l)r-lc(k, r— ‘))'k—rsh-r}

Av —_ . —_—
=0 JC@k. k) = JC(2k, k)

1 & )

- ., )C(k, r — 1)a?

C(zk,k),;oc("")c( r—1)o

_C@kk+D) ,_ <k

C(2k, k) k+1

where we have used the result from Prob. 10.4.3.

As we expected, the coefficient of correlation of the noise from successive
entries in the kth column of a difference table is large and negative, —k/(k + 1).
Thisis well known in the folklore of computing, but it is rarely estimated by theo-
retical considerations.

If the roundoff values are drawn from a normal Guassian distribution, then
these correlation coefficients imply a probability of a sign change indicated in
Table 10.5.

This alternation of sign will give us a way of estimating when the difference
table column is noise rather than signal.

Thisis a theoretical result in the sense that we have averaged over the imag-
ined ensemble of similar tables, and in practice all we haveisthesingletable. The

Table 10.5*
Probability,
k —klk 41 percentage
0 0= 0 .500
1 —-1/2 =-0.500 668
2 —-2/3 = —-0.667 733
3 —-3/4 = -0.750 770
4 —4/5 = —0.800 .796
5 —5/6 = —0.834 814
6 —6/7 = —0.857 .828
7 —7/8 =-0.875 .839
8 —8/9 = —0.890 .850
9 —9/10 = —0.900 857
10 —10/11 = —0.910 .864
20 —20/21 = —0.952 902

* From Roger Pinkham.
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solution to this dilemma is the standard one in such situations; we appeal to the
ergodic hypothesis which states that (for suitable situations) * the average over the
ensemble is the same as the average over the function.” A simple illustration of
this is the very common habit of looking at, say, a table of 100,000 deaths and
applying this to a single life. Or again, looking at the distribution of salaries paid
(as of the current year) as a function of age and seeing the individual progress
along the chart as he ages.

The ergodic hypothesis can be applied when the statistics are stationary (not
changing in time or from place to place). In practice we rarely have perfectly
stationary situations, and we must make judgments as to how much the results
could be altered by the changes. In the two examples above, we sense that the
health of the general population is not changing so rapidly that the table of
100,000 deaths is totally irrelevant, and the effect of the slow changes can be
mentally added on. In the salary curve example, however, inflation and the
changing status of jobs and job titles all make the curves dangerous to use as a
basis for applying the ergodic hypothesis. Similarly, in tables and other com-
putations we do not expect to find that all the results have the same level of
roundoff noise. We can apply the hypothesis only to runs where the statistics do
not seem to be changing too rapidly. In particular, the interval we use of the
difference column should have numbers about the same size and about the same
density as the sign changes.

10.6 ESTIMATION OF ROUNDOFF IN A TABLE

We have now examined all the parts needed in a theory of the estimation of round-
off in a table of results computed for equally spaced values of a variable or a
parameter. The importance of being able to make an estimate of the random
error in a table of results from the results alone should be recognized; it is not a
perfect answer, but it is better than nothing.

First we have shown that the (N + 1)st differences of a polynomial are
zero, and from experience we know that many functions are locally very like a
polynomial. Thus we expect that the differences of many functions will approach
zero as more and more differences are taken.

If the differences do not become small fairly rapidly as k becomes large, then
it is likely that the spacing of the values is too large. It is easy to see that if the
spacing ishalved, then the first differences are about half as large as they were, the
second differences one-quarter as large, the third, one-eighth, and in general the
kth differences will be about 1/2 times as large as they were. Thus it is generally
true that, except near a singularity, for a smooth function the differences approach
zero as k gets large.
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On the other hand, we have just seen that random noise in a table rapidly
approaches infinity and that the successive values in a particular column tend
strongly to alternate in sign. Given a table of computed results, we expect a
mixture of the two effects, the true differences approaching zero and the noise
rapidly growing and alternating in sign.

In most reasonably planned computations the fourth or fifth differences
begin to show the oscillation we identify with the noise. Very smooth compu-
tations, such as orbits of the planets in space, may have reasonably smooth dif-
ferences up to at least the tenth order, and very rough computations may have the
second or third difference showing alternating signs; but typically, as we said,
it is at about the fourth or fifth difference that oscillation occurs. We will,
for the sake of simplicity, suppose that we are interested in the fourth or fifth
difference.

We need a specific test for a machine to make. Just what we use depends on
how certain we wish to be, but as a general rule if we find two out of three or, safer,
three out of four sign changes in consecutive values of a difference column, then
we will call that the noise.

To estimate the noise we compute the average of squares (the variance) of
this difference column, using all the values appearing to have somewhat the same
oscillation rate and size. Using the ergodic hypothesis, we equate this number
to the average over the imagined ensemble of tables. To get from the noise in the
kth differences back to the noise in the table we divide by C(2k, k) = (2k)!/(k!)2.
This gives the square of the average noise in the original table.

Table 10.6.1

x I'(x) A A2 A3 A*

1.0 1.000
—49

1.1 0.951 +16
—-33 —4

1.2 0918 +12 3
=21 -1

1.3 0.897 +11 -1
—-10 -2

1.4 0.887 +9 +2
-1 0

1.5 0.886 +9 -2
+8 -2

1.6 0.894 +7 +2
+15 0

1.7 0.909 +7 +2
+22 +2

1.8 0.931 +9
+31

1.9 0.962
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As an example consider Table 10.6.1 of the gamma function. The average
of the squares of the fourth differences is
9+1+4+4+4+4 26 13
Var{A*} = ===
ar{a’) 6 6 3
We divide this by C(8, 4) = 70 to get 0.062 = o2 which is an estimate of the noise
in the table.
The table supposedly has only random roundoff in the last digit, and the
corresponding model for the flat distribution is

1/2

6, = x?dx = {1 = 0.0833.
-1/2
Thus we have the three values
oy = 0.25
g, =0.29
g3 = 0.32
Table 10.6.2
x I A A% A% A4 A%
2 1.64493
—0.44287
3 1.20206 0.32313
—0.11974 —0.24878
4 1.08232 7435 0.20023
—0.04539 —4855 —0.16688
5 1.03693 2580 3335
—0.01959 —1520 —2403
6 1.01734 1060 932
—0.00899 —588 —596
7 1.00835 472 336
—0.00427 —252 —-199
8 1.00408 220 137
—0.00207 —115 -5
9 1.00201 105 62
—0.00102 —53 -35
10 1.00099 52 27
—0.00050 —26 —16
11 1.00049 26 11
—0.00024 —-15 -0
12 1.00025 11 11
—0.00013 -4 -11
13 1.00012 7 0
—0.00006 -4 +3
14 1.00006 3 3
—0.00003 -1 —4
15 1.00003 2 -1
—0.00001 -2
16  1.00002 0
—0.00001

17 1.00001
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where g, is from a careful, exact computation of the roundoffs (knowing the
correct values from a much more accurate table). In view of the smallness of our
sample the estimate is fairly good.

We observed that the theory need not apply near a singularity. The zeta
function

(=% 1

k=lk—

clearly is infinite at x = 1 and has a singularity there. Table 10.6.2 shows how
the differences go.
We see signs of roundoff noise at the bottom of the fifth difference column, but at
the top we see the effect of the singularity.

On the other hand, a table of a function like the error integral shows that the
effects we have claimed usually happen (see Table 10.6.3)

Table 10.6.3
t 0 A A AS A+ A
0.00 0.0000

987
0.25 0.0987 —59

928 —50
0.50 0.1915 —109 +19

819 -3 +4
0.75 0.2734 —140 +23

679 -8 —10
1.00 0.3413 —148 +13

531 +5 +4
1.25 0.3944 ~143 +17

388 +22 11
1.50 0.4332 —-121 +6

267 +28 —10
175 0.4599 —93 -4

174 +24 +4
2,00 04773 ~—69 0

105 +24 -7
2.25 0.4878 —45 -7

60 +17 +3
2.50 0.4938 —28 ~4

32 +13 -4
2.75 0.4970 —15 -8

17 +5 +10
3.00 0.4987 ~10 +2

7 +7 -9
325 0.499%4 -3 -7

4 0 +9
3.50 0.4998 -3 +2

1 +2
375 0.4999 -1

4.00 0.5000
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PROBLEMS

10.6.1 Estimate the noise in Table 10.6.3.

10.6.2 Carry out the differences in Table 10.6.2 to order 7 and use the last few values
to make a *‘ desperate > estimate of the noise.

10.6.3 Discuss using the ergodic hypothesis to estimate the total high school population
from the fraction of one’s life that is spent in high school. Discuss the effects of
nonstationarity in the population.

10.6.4 Discuss the roundoff in Table 10.5 of correlation coefficient probabilities.

10.7 ISOLATED ERRORS

It was very common in hand calculation to have an isolated error in a table; it is
less common but by no means impossible in modern machine computation. The
isolated error may well be due to the fact that for that particular value an indeter-
minate form arose and led to large roundoff errors.

It is very easy to locate the error by looking at the difference table. We
know from Table 10.3 that this leads to a series of terms of the error times the
binomial coefficients with alternating signs. For example, in reviewing Table
10.7, the author found an error by this simple device of looking at the difference
table.

The pattern suggested placing the fourth differences opposite the value of 35°.
Using the middle three values

41 = —4e+C
-59= 6e6+C
37=-4+C
we solve the equations approximately. They suggeste = —10. Ifwechangethe
value at 35° to 6,421, we will have the corrections to the difference table
—4
8
—50 1
—468 9
6,421 —41 1
—509 10
=31 -3
7
0

and this looks much better (and the error represents a typical typographical error).
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Occasionally it is necessary to supply a missing value in a table of equally
spaced values. For this we go back to the differences written out in terms of the

original function values, Sec. 10.3.

If we pick an even-order difference, say 6, and

suppose that this order of differences is zero, then we have, assuming for con-
venience that the error is at zero,

Y-3—6y_,+15y_1 — 20y, + 15y, — 6y, + y; =0

or

Yo =75l(rs + y_3) = 6(y2 +y_2) + 15(y; + y-y)]

Table 10.7
Theoretical
fourth
difference
Degree C,(2) A A2 A3 A% due to error ¢
0 8,346
—44
5 8,302 —87
—131 4
10 8,171 —83 3
—-214 7
15 7,957 -76 -1
—290 6
20 7,667 -70 6
—360 12
25 7,307 —58 —14  +¢
—418 -2
30 6,889 —60 41 —4e
—478 39
35 6,411 —-21 —59  +46¢
—499 —20
40 5912 —41 37 —4¢
—540 17
45 5,372 —24 —-10 +e
—564 7
50 4,808 —-17 -2
—581 5
55 4,227 —-12 0
—593 5
60 3,634 -7 -2
—600 3
65 3,034 —4 -2
—604 1
70 2,430 -3 2
—607 3
75 1,823 -0 —4
—607 -1
80 1,216 -1 2
—608 1
85 608 0
—608

90

0
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PROBLEMS

10.7.1 Estimate the noise in the corrected table in this section.

10.7.2 Correct Table 10.7 by regarding the values of 35° as missing.

10.7.3 Discuss the dangers of trying to correct a bad value because the formula at that
point was indeterminate.

10.8 SYSTEMATIC ERRORS

We have provided a method of estimating the random errors in a table. The
method does nothing about systematic errors. One way to check an important
table is to compute, by some independent method, several key values scattered
acrosstherange of values. This is easy to say (and hard to do in many cases) but
without some redundant, independent calculations there can be no realistic
checking of the results. The fact that the theoretician accepts the results is no
measure of their correctness because, in a very real sense, a good theoretician can
account for any new phenomenon he meets—it is his business to create new
theories to fit new data!

The situation is the same asin experimental work. Itis possible to estimate,
from the measurements alone, the random component of the error, but the cal-
culation of the systematic errors is another thing entirely and requires other
methods.! The fact that it is hard is no reason for ignoring the problem. Any
numerical analyst must, if he is a responsible scientist and not a hack technician,
assume responsibility for the accuracy of his results and some of the burden for
the correctness of the original formulation, as well as for the interpretation of the
results. The job of a numerical analyst neither begins with the given equations
nor ends with the output sheet. Realistic estimates of the total error in the
answer are partly his responsibility, not exclusively that of the problem’s proposer.

1 W. J. Youden, Enduring Values, Technometrics, vol. 14, no. 1, February 1972,
pp. 1-11.
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*THE SUMMATION CALCULUS

11.1 INTRODUCTION

The difference and integral calculi are related to each other by two formulas
d
f@ =1 [ () dx
x df
SO =@ =] -dx
Similarly, the difference and summation calculi are related by
n n+1 n
S+ D)=AY f(k)= 3 f(k)— } f(k)
k=0 k=0 k=0

S+ D=0 = 38109 = 3 [k +1) = (0]
where we have used the common summation notation

n a a-=-1
LIO=I@+f@+ D+ +f0) 3 f@=f@ Ff@=0
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Because of the arguments n + 1 in the two formulas, Boole [4], Jordan [25], and
others have used the notation for the sum

SI0O=f@+f@+ D+ +f0=1) T SR)=0

However, this differs from the common usage in mathematics, and we shall there-
fore avoid laying that trap for the unwary and instead accept the annoyance of the
n + 1 that occurs in some of the arguments. J. W. Tukey! has suggested the
elegant notation

<b
k;.f(k) =fla)+fla+ 1)+ +fb-1)

as the solution to this dilemma, but we will not use it here.
In the integral calculus a table of derivatives of various functions is inverted
to get the basic table of integrals. For example, from
d
— X" =nx""!
dx

we get
+1

fx"dx: +C

n+1

In asimilar way, from the table of first differences of various functions we get
(using unit spacing in the differences)

m (m + 1)tV

(n) — —_
xzox e n#-—1
m am+1_1

A 1
xzoa — a#

In x =In(m!)
1

s ’n‘l[\']s

_cos[a(m + ) + b] — cos(—a/2 + b)
2 sin(a/2)
_ sin[a(m 4+ 1)/2]sin(am/2 + b)
sin(a/2)
sin[a(m + %) + b] ~ sin(—a/2 + b)
2 sin(af2)
_ sin[a(m + 1)/2]cos(am/2 + b)
sin(a/2)
Many others are easily found, but we do not need them now.

sin(ax + b) =
[+]

x

Y cos(ax + b) =
x=0

! J. W. Tukey (1915-—).
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PROBLEMS

11.1.] Computethesum 1+ 2+ 4+ -+- + 254,
11.1.2 Show that

2N=1 X W-1 gy
XZO cos = 0 xgo sin - =0
11.1.3 Using Prob. 11.1.2, show that
2N-1
Zcosmcasm=N8(m,k) O<m+k<2N

x=0 N N

Wt wkx . omx
Z COSTSln-Tv——O

Xm0

. wkx . mmx
P T sin T =Nb&(m, k) 0O<m+k<2N

11.14 Do the same as in Prob. 11.1.3 except use N — 1 as the upper limit and 27
in place of =.

11.2 SUMMATION BY PARTS

Anexamination of the general processes used in the calculus of analyticintegration
reveals that there are two principal tools:

1 Change of variables
2 Integration by parts

Of these two methods, the first is not available in the summation calculus, which
depends on equally spaced arguments, where usually # = 1. This makes com-
puting a sum in an analytic, closed form much more difficult than computing an
integral.

On the other hand the analog of integration by parts is summation by parts,
andit plays the correspondingroleinits field. Integration by partsin the calculus
is based on the derivative of a product

dur) =udv + v du

From the above equation the formula for integration by parts
fude=ue —fvdu

is found by integration. Similarly, from the formula for the difference of a
product

Au(x)v(x) = u(x) Av(x) + v(x + 1) Au(x)
we obtain by summation

milu Av = u(m)v(m) — u(0)v(0) — Zlv(x + 1) Au(x)
x=0

x=0
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We can choose t(x) so that ¢(0) equals zero (or any other value we please); just as
in the calculus the constant of integration in finding the v can be any number we
please (conventionally it is picked to be zero).

As an example of the use of summation by parts, consider

X

met xa m m=1 ax+l
X= _ .1
"Z°xa a—11lo 20: a—1
xa* a*tl |m a 1
= - = —_ m __ m-— 1
a~-1 (@a-1% (—a)p? [(m—Da"—ma" ' +11 a#l

In general, the use of summation by parts closely resembles that of integration by
parts. For example, summations such as

1 .
Y 7 sin 0x
are accomplished by using summation by parts twice and then combining like

terms. It can also be done by writing it as
eio x e—io x 1
&) -5z
and summing directly.

PROBLEMS

11.2.1 Show that

LA _ 2sin 8 —2-"[2sin 6(1 + 1) — sin 6]
%, 7:5inbx = 1+ 8 sin*(9/2)

x=1

11.2.2 Sum ‘le’ cos X.
11.2.3 Sum _ilx In x.
11.2.4 Sum iox’ < 2%

11.2.5 Sum ioxz X,

11.3 SUMMATION OF POWERS OF x

The special case of summing the powers of the consecutive integers is of enough
importance to justify a special examination. We could, of course, sum them by
converting the power of x via the Stirling numbers of the second kind (Sec. 9.8)
and summing the result by the obvious formula.
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Instead, we shall approach the problem much as Jacob Bernoulli [3] did, and
inthe process we will introduce two valuable by-products: (1) theidea of a generat-
ing function, and (2) the Bernoulli numbers. Both will have further use.

The summation of the first few cases of the powers of x is easily remembered
if written in the form

n n
_vm_(ntDhn
x;lx ;x 2

n (n+ Dn2n +1)
2 _ (2) Wy~ 7= " 7
Zxx Zl:(x + xM)

x= 6

n n 2
Y x3=3 (x +3xP 4 x(V) = [(n_-;_lM]
x=1 1

5 x4 = (n+ Dnn+1)30%+3n -1
x:lx n 6 5

ixs B [(n + 1)n]22n2 +2n-1
x=1 - 2 3

Z": s (n+Dn2n+1)3n* +6n°> —3n+1
=1x - 6 7

x=1 2 6
The summation formula for x™ is also valid for negative exponents
(n# —1). For example,

S1x(x+1) 5= -1
_ 1 _ . m
m+1 m+1

Similarly,

1
x(x + 1)(x + 2)

~M3

=T (- 1) =

RIS 1 ]
‘5[1~2"(m+1)(m+2)
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PROBLEMS

11.3.1 Verify the formulas for x* and x3, using the synthetic-division method.
11.3.2 Using AC(n, k) = C(n+ 1, k) — C(n, k) = C(n, k — 1), show that

i‘C(x,k)= Cm+1,k+1)
11.3.3 Show that

2x—1)=n?

1

@x-1n?

x

n(4n® —1)
-3

»
L]
=

2x—1)3=n*2n2-1)

1

-
u

11.3.4 Compute
L] 1
1 x(x -+ D(x + 2)(x + 3)

11.3.5 Compute
N-1
Zosin"' (/] 0+£0, +7,...
Ans. (1 —sin® 6)/(1 —sin )

11.4 GENERATING FUNCTIONS

The idea of a generating function is simple once it is well understood, but initially
it seems to be baffling. We will therefore begin by a few simple examples.
The binomial coefficients of a given order n

Cin,k) k=0,1,2,...,n)

can be multiplied by the corresponding t* and written as a sum. The binomial
theorem shows that this sum is easily written as

(1 + )" =C(n,0) + C(n, Dt + C(n, )12 + -+ + C(n, n)t*

The expression (1 + t)" is said to be a generating function for the binomial co-
efficients.

The power of generating functions lies in the ease of manipulating them in
certain processes. For example, again using the binomial coefficients, if we
multiply a generating function of order m by a second of order n, we get the generat-
ing function of order m + n; that is,

A+ 0"+ 1) =(1 + 1"
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Thus we have
m n m+n
Y C(m, k)Y, C(n, j)t! = Y. C(m + n, )t
K=o j=o i=0
Equating like powers of ¢, we get, as in Prob. 10.4.1, m + n + 1 identities.
Y Cm, k)C(n,i —k)=C(m+n,i) i=0,1,....,m+n
k=0

Consider next the Stirling numbers of the first kind
x™ =Y s(n, k)x*
k=0

as another example of a generating function for a set of numbers
s(n, k) k=0,1,...,n

with x as the “dummy variable.”

Instead of using only powers of t as the place holders we may use t*/k!if we
please, or any other multiple of t*. That is why we used the words a generating
Sunction for, though usually the generating function means just t*. The use of
t*/k! is often called *“ the exponential generating function.”

PROBLEMS
11.4.1 Show that
3 (—1)C(n, k) =0
k=0
11.4.2 Show that
S Cn, k) =2
k=0

11.4.3 In the generating function for the Stirling numbers of the first kind set the
variable equal to 1 to obtain

kzos(n, k=0 nx=1

11.5 SUMS OF POWERS OF n AGAIN

We propose to find the sums [where S(n, p) is not a Stirling number]

S(n,p)=1’+2’+3’+'--+n”= ka
k=1
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using the method of generating functions. In this method we multiply S(n, p) by
t?/p! and sum over all p to get

0 S(n’ p)tP 2] n thP
L ———=2X Y —r
p=0 p: p=0k=1 P:
_ n 0 gigp= iekl
K=1p=0 P! =1
e(n+1,t el
T -1

Thus we have the exponential generating function for the sums.
To find the coefficient of t?/p!, we write
e(n+l)l _el enl_ 1 tex
e—1 1 -1

The first factor can be written in the form

M1 _kzo(”')k/k!“ 1 & nk+1gk
t t kS0 (k + 1)

The second factor requires more attention. We begin with the expansion
(see Sec. 11.6 for details)

N,
| -
—
I
[Ms

t ® Bt
—_— =1—1¢2 k-
e —1 1-12+ kgz k!
Transposing the ¢/2 term, we have
1 1 B, t*
‘(m‘“z) =1+ X9y

If we replace t by —t on the left-hand side, we get
1[ 1 1]_ tl4+e™ 1e41
T 2e'—1 2é-1
_ + t
T -1 2

e'f—1 2

which is the original expression. Thus, except for B, which equals —1/2, all the
other B2k+l =0 (k = l, 2, . ..).
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From this we see that the second factor
te' t
e—1 ¢

1
+

* =1 (2m)!

t b Bthzm
2 W= (2m)!

-1
t & B2mtzm
2

To find the expansion of the product of the two factors, we multiply the two
series together and pick out the coefficient of 17/p!

nP*! n? n?~'B n?~3B
p![ 2 4 + ]

it teomatpoma

wrtonop p(p —1)(p — 2)
= — 4+ B Pt LA AYAY Sl p-3
p+l+2+2 2 + 2-3-4 B4n
pp—D(p—=2)p=3)p—4) , 5, ..
+ 2-3.4-5-6 B6n +

which is what Bernoulli obtained [3, p. 97].

PROBLEMS
11.5.1 We can write the generating function as
et __ o=t PLCEa Ly |
-1 - o1 !
ettt ¢
=7 =1 !

and get an expansion for S(n, p) in powers of n 4+ 1. Carry out the details.
11.5.2 Show that the formulasin Sec. 11.3 follow from
By=1 B, =-1/2 B, =1/6 B,=—1/30 By=1/42.

11.6 THE BERNOULLI NUMBERS

The generating function for the Bernoulli numbers is
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We have already found that
Bo=1 B1=—l/2 sz+l=0 k=l,2,...

To investigate these numbers further we write the first equation as

® B

t=(-1)Y
k=0
i - i’i
=1 m k=0
=)

p=1 550 S’(P—S)'

= >\_lt:: »l

=1

For p = 1 we have, equating like powers of ¢,
t=t-By—>B,=1
Forp>1
p-1 B
= Lo
Multiply by p!
p-1 ! p-1
= LGt 5
This formula is easily remembered by the mnemonic of writing it as
B+1)-B=0 p>1
and then writing each B as By.

This type of symbolic manipulation is often called the “ umbral calculus ”” and is
widely used in formal manipulations in combinatorial problems.
To find more of the Bernoulli numbers we setp =2, 3, ...:

p=2 0=CQ2,0)B,+ C(2,1)B, =B, =—1/2

p=3 0=B,+3B +3B,»B,=1/6

p=4 0=B0+4Bl+6B2+4Ba'—>Bs=0

p=5 0=B,+5B, +10B, + 10B; + 5B, —» B, = —1/30
Further calculations give

A table of B,, up to Bgq can be found in Jordan [25].
We will see in the next chapter that the Bernoulli numbers occur in many
places in analysis.



11.6 THE BERNOULLI NUMBERS 191

PROBLEMS

11.6.1 Compute Bs.
11.6.2 From the generating function for the reciprocal factorials

@ t"
Za=e

k=0

derive a relation for the binomial coefficients using
et et =e?
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*INFINITE SERIES

12.1 INTRODUCTION

Most books oninfinite series discuss convergence, divergence, and ““ summability ”
of series at great length, but almost completely neglect the actual computation
(summation) of series. Onereason for this is the paucity of methods for summing
a series in closed form. Of course, if the indefinite summation can be done in
closed form and if the series converges, then the infinite series can also be summed
by letting the upper limit go to infinity. As an example, we had in Sec. 11.1

n 1 1
,‘;x(x+l)_ Thn+l
Hence
@ 1
=1
xgl X(X + 1)
In general,
® 1 1 1
k>2 (12.1.1)

lex(x+l)"'(x+k—1)=k——l(k—l)!
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Frequently a problem in analysis can be reduced to that of evaluating an
infinite series. Many times it is more work to evaluate the series than to do the
original problem, but sometimes the series representation is an advantage. One
of the reasons that the series is preferable is that the error committed, when only a
finite number of terms are used, is more easily controlled than the errors made in
the direct approach. Thus in the problem of evaluating

fxe"' dt

0

for values of x, say less than 1, we can expand the exponential in an infinite series
and integrate term by term to obtain

8

(_ l)kx2k+ 1

x o X © (_l)ktZk
1 —_ — I A
[ena=] % dt= 2 "Gk + Dk!

0 ok=o k! K

If we are interested in values of x less than 1 and want eight figures correct, then
taking 11 terms will suffice. This follows from these facts: the series is alternating
in sign, the terms are monotone, the series is convergent, and the first neglected
term relative to x has a denominator about 9.2 x 108. Were we to try to estimate
the value of the integral by some approximate method of integration taken up later
in the book, then the problem of estimating the error would be more difficult.
Occasionally infinite products occur. For example, consider the following
problem: around a circle of radius 1 draw an equilateral triangle, around the tri-
angle draw a circle, around the circle draw a square, around the square draw a
circle, around the circle draw a regular pentagon, etc. See Fig. 12.1.1. What
will happen to the radius of the circle as the process goes to infinity? For the

FIGURE 12.1.1
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stage of drawinga circle around the N-sided polygon, let that radius be R, .

the picture of one stage we easily see that

Ry_y _

Ry

cos 180°
N
Ry = Ry-1 R,
= o ~— N
cos(180°/N) 1T cos(180°/m)
n=3
1
=
IT cos(180°/n)
n=3
X
/ 180°
N

FIGURE 12.1.2

From

RN-l

From Table 12.1 we easily see that the sequence of partial products converges to a
value not far from 8.7.... In a sense we have experimentally determined the
convergence and limiting value of the radius of the circle as the number of sides

approaches infinity.

Table 12.1
N R N R N R N R
1,000 8.6572

10 5.2467 100 8.2831 10,000 8.6959
20 6.8367 200 8.4885 20,000 8.6981

3 2.0000 30 7.3997 300 8.5583 30,000 8.6993

4 2.8284 40 7.7017 400 8.5935 50,000 8.6996

5 3.4961 50  7.8900 500 8.6146 100,000 8.6996

6 4.0370 60 8.0184 6C0  8.6288 200,000 8.6996

7 4.4807 70 8.1118 700 8.6389

8  4.8499 80 8.1826 800 8.6465

9 5.2467 90 8.2383 900 8.6524
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PROBLEMS

12.1.1 Prove Eq. (12.1.1).
12.1.2 Write the series for
it = | s‘—‘:’ dt

o

How many terms do you need in order to compute Si(27) to eight decimal places ?

122 KUMMER’S! COMPARISON METHOD

A method we shall repeatedly use is the following. Given a problem which we
cannot solve easily, we look for a ““ nearby ” problem which we can solve, and then
we compute or estimate the difference between the two problems. The closer the
nearby problem is to the given one, the smaller the difference we compute; hence
with correspondingly less effort we can find an accurate answer to the given
problem.

If a given series converges rapidly, then there is no serious problem in plan-
ning the computation of its sum. If the series converges slowly, then we look for
a series with a known sum which converges at ‘ about the same rate ” as the given
series. The difference between them will therefore converge more rapidly than
the original series. Thus we mean by the words about the same rate that the
difference approaches zero rapidly; and the more rapidly it reaches zero, the more
itis at about the same rate. This is known as Kummer’s method.

To fix notation, let the given series be

and suppose we know the sum

where C, - Cas x - 0. Then
s & C,
s=z+L£ (-

The term in the parenthesis approaches 0 as x — 00, and so the series to be com-
puted will converge more rapidly than the original series.

! Ernst Eduard Kummer (1810-1893).
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For example, consider the series

® x
=z (x> + 1)
which converges like 1/x3. This suggests using
® 1 1
=Y ————— =
ax=Dx(x+1) 4

asacomparisonseries. Notethat we had tostartat x = 2and omit the first term.
We write

’

S=S+(S-5)

1R x 1
=S+Z+,; [(x 2+1)? (x—l)X(x+1)]

1 1 a2 xt=x—(x*+2x2+1)
_Z+Z+,§‘z x(x* = 1)(x? + 1)?
1 2 x?+1
- Y 039711677
3 szx(xz—l)(x2+l)2 0.39711677

The new series converges like 1/x> (and we could use a similar series for the 3x?
part of the numerator if we wished).

PROBLEMS

12.2.1 Use Z to approximatez 1/x2.

x(x + D
12.2.2 Approximate result of Prob. 12.2.1 by }:

1
I)X(x+ 1)

1+x’ yle x(x+l)

m Continue k steps.

12.2.3 Approximate i 1/x* by i

12.2.4 Approximate Z

12.3 SOME STANDARD SERIES

Evidently Kummer’s comparison method requires an arsenal of known series.
There are numerous tables of series such as the classic table of Jolley [24] and the
modern Russian translation of Gradshteyn and Ryshik [18].

Another source is the series one learns in the normal course of mathematics,
such as the trigonometric and the hyperbolic series. Many of these involve the
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Bernoulli numbers introduced in Sec. 11.6. There we defined Bernoulli numbers

by the generating function
x 2 Bxt

e"-—l k=0 k!

and noted that all B, of odd order were 0 except B, = —1/2. Thus

X x_ i Bkau‘
e — 1 _2 —k=0 (Zk)'
But
x +§_x(e"+l _x(eX? — 72
c—1"2 2\*- 1) ‘E(em +e"‘_/2)
x x & B, x*
= th— = 2k
3= 2 oni
or writing 2x in place of x,
© (20! 1 x x* 2x°
th = 2 B —— T - ——— —— vee
comx .kZO * ot “x T3 B st
If we put x = iz in this, we get
otz =l 7 2 22’+__-
Tz 3 45 945
& 22)2* 7! By,
=25 (=1 k[(____]
kZo( ) (2k)!

Now using the trigonometric identity

2cot2t=cott—tant

in the form
tant =cott — 2cot 2t
we get
tani = § V2O DBy ey
K=o (2k)!
Integrating this, we get
@ ("' 1)k22k(22k - 1)BZk 2k
= t
In cos ¢ I;O T

Again reverting to a trigonometric identity

1 t
—— =cot t 4 tan =
sin t 2
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we get
t o (—l)k-‘(zzk_z)sz 2k
—_— t=
s loeet= X o
2
=1+f_+it4+.3_1t6+...

6 360 15,120

Evidently only ingenuity limits how far we can go in this matter. A similar
set of numbers, the Euler numbers, gives rise to a number of similar series, where
© t*
= E ———
sec t kzo T
12.4 THE RIEMANN ZETA FUNCTION
The Riemann?! zeta function is defined by
@ 1
z) = —
=3z

and a short table of values (Table 10.6.2) was given in Sec. 10.6. It is a very
convenient series for comparison purposes. The values of the zeta function for
z an even integer are known in closed form

==

=5

(© =2

(@® = 9’;—;0

) = E D Ban2)

2(2n)!
where B,, are the Bernoulli numbers.

Note that from definition, {(n) - 1 as n — oo, and this indicates how B,,
grows as n — 0.

From the zeta function it is easy to derive the sums of other series. Using
the observation that

W 11 1, a1
y =rtrtet =L oy

! Bernhard Riemann (1826-1866).
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we have

k=1

11 5 1
( )c(")'” st T L oo

and

111 & (=t
(1 - 1)9(") n+3n_4n+ _k=l k"

Again, for n an even number the sums can be expressed in terms of Bernoulli
numbers.

PROBLEMS

12.4.1 Forthe seriesz': 1/(2k)

show that the series for n=1, 2, 3 are
ks kal ks
24 1,440  64-945
(_ )k 1
an
show that the series forn=1, 2, 3 are

12.4.2 For the series Zl:

w? T4 317s

12 720 30,240

125 ANOTHER INTEGRAL EQUATION

This problem, resembling the one in Sec. 9.10, arose in practice. Given g(T)
defined by

[ (X)x/T)*eT

b i
find f(x).
Again we begin by trying f(x) = x" and set x = Ty
2
y ye

n+2e y

©
Y
— nt+1
= T fo (1 — e—y)z

= Tn+l f yn+2 Z ke—ky dy
0 k=1
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Setting ky = z,
o(T) = Tn+l(~§ ﬁt_z) fwe-zzrﬁz dz
=1 0
=T""'(n+2)!{(n+2)
Thus if
g(T) = Tn+1
then

X

IO =t )

Now, if we can represent
N
9N =Y a, """
n=0

then the solution of the integral equation is

S =3

0= Y T Dim D

Evidently the “convergence” of this finite series is rapid in comparison to the
original series for g(T). We postpone until Chaps. 14, 25, and 28 discussion of
various ways we might find the a, in the representation of g(T).

Consider, now, how this resembles Kummer’s method. We did not try to
represent closely the given function g(T) by a single function T"** whose solution
we knew. Ratherwe tried a linear combination of functions T"*!, each of whose
solutions we knew, and then took the same linear combination of the known solu-
tions. We forced all the approximation into the closeness of representation
of the original function, and then we operated on the approximate function an-
alytically to get the exact answer to the approximate problem.

In Kummer’s method, and throughout much of numerical methods, we try
to replace the given function which we cannot handle analytically by ones which
we can, and as in the above case, we operate on these functions with the infinite
operators of the problem. In Kummer’s method we are concerned with the
representation of the terms far out in the series by suitable approximate terms, and
we then compute approximately the difference in our approximation, using mainly
terms near the beginning of the series. However, it should be clear that instead
of using a single comparison series we could use several simultaneously.

This method of simultaneous approximation in terms of several series
differs somewhat from the earlier process of successive approximations, and pro-
vides an alternate approach, or if you prefer, an extension of the simple Kummer
method.
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For example, consider again the series
b b
S= —
le (x2 + 1)2

We can use
« 1
S=) —---
z2:(x - Dx(x+1)
SII o 1
=

We theiefore write
S=aS"+b58" +S"

where a, b, and S” are to be determined. Ignoring for the moment the first term
x = 1, we have for the general term

x __a + E F(x)
2+ x—-x x* (P +HDGE—x)

x" = x%=a(x" —2x% + x%) + b(x” + x* — x> — x) + F(x)

Equating like powers of x

Thus we will have to compute

i 5x2+3 _5_
(2 + 1232 -1)" x7

12.6 EULER’S METHOD

Another method of summing series numerically is Euler’s method, which can be
viewed in many ways. The author prefers the following approach.
Consider the finite series

n=1
Yad (126.1)
k=0

We apply summation by parts and recall that
b-1 b-

Y u(k) Av(k) = [u(k)e(k)}; — Zlv(k + 1) Au(k)

k=a k=
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We pick u(k) = a, and Av(k) = . Since we may use any additive constant, we
can choose

1 -t
v(k) = Zt"=————;—
Then
n—-1 l—lk n n-1 1 1k+1
k — -—
k;oakt _[akl—t]o o 1-— Aay
—g izt 1 "an+ LS Ag, (12.62)
_nl—t_l—lk=o k 1-1/5% k e
but

n—1
L Aa= (0~ a0) + (@ — @) + - + (@ = a,-)
=a,— ao

and so Eq. (12.6.2) becomes

1—-t" a,—a t 2l
Zakl—a,,l - 1_t°+1_t2t"Aa,‘
a a, "
=1—0t—1—1 1_121"Aa,‘ (12.6.3)

We apply summation by parts to the third term, noting that it is of the same form as
the original series, with a; replaced by Ag, in Eq. (12.6.3).

t Aay, t"Aa,
A - kA )
l—tZ T = 1—:(1—: 1—1t 1—1Z i
Thus, as a result of two applications of summation by parts, we have obtained
=t a tAa 2 ot
k 0 0 k A2
= t*A
D pr e A ML
a,t" 1 Ag,"*!
1—t 1-t 1-1¢

After r applications, the expression (12.6.1) has the form

n-1

Y aptt=— ‘; ( ) Alag + (ﬁ)' "ilt" Aa,

k=0
norol t
"5 (1— ) A'a,
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Since the original series converges, given an ¢ > 0, there exists an n, such that, for
n>ngy, |a,] <e&/2". Hence, by Sec. 10.3 |Ala,| <e. The last term in the
above expression therefore goes to zero as n — 0o, and we have

r=1
S gyt = — ! t (1 d ) A‘a°+( ) Zt"A’ (12.6.4)
k=0 —¢i=0 -

It can be shown that if the given series (12.6.1) converges, then the second
term on the right also approaches zero asr — co. We are then left with the series

kzo z"=-11—§( d )A'ao (12.6.5)

As an example of the above process, given a series Y ;% ty, if s/t
approaches t, we can write

where a, ;,/a, approaches 1, and apply Euler’s method.
The most frequent case of application is when ¢t = —1. Euler’s method
gives, from Eq. (12.6.5),
o 1)
—1a, = =
LV 7 (12.6.6)

Sometimes Euler’s transformation makes the series converge faster, and some-
times it does not. Consider the following examples.

Ala,

o

N =

i

EXAMPLE 12.1

2 (1)
Z, 7
We have
2= 1
”_2"
1 1 -1
Agy = o — 5 = w1
(-1
A'ao—-—z—‘-

and so by Eq. (12.6.6)

which converges more quickly. I
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EXAMPLE 12.2

© (_l)k
k;o 3"
It is easy to see that
=2)¢
Aiao = ( 3})
and so
2 (-1 12 (-1)(-2 1a1
,20 3¢ “2,;, Py '2,;, !
which converges somewhat more slowly. i
EXAMPLE 12.3 Similarly,
2 (=) 1 & (3)‘
kz-_-:o & 2 zZo 8
which converges more slowly. i

The “ break point ” for the application of Euler’s method to such alternating
series is seen to be at ratios of |a;| between 1/2 and 1/3.

In practice, what is usually done is to sum the first few (say 10) terms directly
and then apply Euler’s transformation to the rest.!

PROBLEMS
, © (_ l)k— 1 o ]
12.6.1 Apply Euler’s method to show thatlog2 = —

=1 k K1 k2
12.6.2 Show that

_e (=) e k!
arctan 1= 3 1= 2% 1350k D)

12.6.3 Add the first eight terms of log 2 and apply Euler’s method to the rest.
Ans. 1 —1/24+1/3 — -+ — 1/8 = 0.63452381 ; Euler part gives =( 1/2)(0.11724674)

! See J. B. Rosser, Transformations to Speed and Convergence of Scries, J. Res. Natl.
Bur. Std., vol. 46, 1951, and Bromwich [5].
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1271  IMPROVING THE CONVERGENCE OF SEQUENCES

Acceleration of the convergence of a series is only one example of a general
technique of numerical analysis, the extrapolation of a slowly convergent or even
divergent sequence to its “limit.” Such sequences may be obtained as partial
sums of series, as successive approximations to the zeros of a function by an itera-
tive process, as estimates of an integral or derivative by finite difference methods
using different values of the interval, and in a variety of other ways. In all these
sequences, we may regard the terms of the sequence S, as estimates of the limit S
with an error R,:

S,=S+R, (12.7.1)

If the form of dependence of R, upon n is known, it is frequently possible to esti-
mate the value of S quite accurately from a few values of S, .

If, as frequently happens, R, may be approximated by an expression of the
form

M=

R,= Y a(q) (1272)
i=1

afamily of nonlinear transformations discovered by Shanks? is particularly useful.
The basic transformation applied to the partial sums S, of a series

Sn+lsn—1 — Sn2

T(Sn) N Sn+l - 2Sn + Sn—l

(12.7.3)

is often very useful. If T were lineai, we would have
T(CS,) = CT(S,)
and
T(S, + U,) = T(S,) + T(U,) (12.7.4)
Equation (12.7.4) is not true in general. However, we do have the weaker rule

TS, + C)=T(S,) + C

If we write

1 This section was suggested by H. C. Thacher, Jr.
2 D. Shanks, Nonlinear Transformations of Divergent and Slowly Convergent
Sequences, J. Math. Phys., vol. 34, pp. 1-42.
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then T(S,) can be written

(Sn + an+l)(sn — an) - Sn2
Sn + ey = 2Sn + Sn —ay

T(S,) =

AnQp+1

=5, + (12.7.5)

ay — a4y

The repeated application of this transformation is most practically carried
out by an algorithm due to Wynn.! Let £y(S,) = S, £_,(S,) =0, andforr =1,
2,3,...,let

1
&+1(Sn) = £-4(S,) + Y OMEYYCA)
Then the ,,(S,) are equivalent to the results of applying the kth Shanks transfor-
mation to the sequence S, .
As an example of the power of a single application, consider the Leibnitz
series

n=4—4/3+4/5— 4T+

The convergence is so slow that it is practically valueless, but a single application
gives the results shown in Table 12.7.

1 P. Wynn, On a Device for Computing the e,(S,) Transformation, Math. Tables Aids
Comp., vol. 10, pp. 91-96, 1956.

Table 12.7

n Sn T(S»)

0 4.00000

1 2.66667 3.16667
2 3.46667 3.13333
3 2.89524 3.14524
4 3.33968 3.13968
5 2.97605 3.14271
6 3.28374 3.14088
7 3.01707 3.14207
8 3.25237 3.14125
9 3.04184
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The ¢, transformations are members of a large family of lozenge, or rhombus,
transformations. If the calculations are laid out in the form of a conventional
difference table:

80(51)\
&(Sp)
N
€(S) €2(Sy)
It ) ™ )
/1 2 ~ /3 1 ~
€o(S3), €2(S2) £4(S1)
™, e ™~ Sy
/1 3\ /3 2
80(54)\ /32(53)
£(S4)
£o(Ss)

the values at the verticles of each rhombus are related by the algorithm. Hence,
these transformations are collectively referred to as lozenge algorithms. An-
other important lozenge algorithm is the QD algorithm, which may be used for
converting power series to equivalent continued fractions. A survey of these
algorithms with extensive references was presented by Wynn.!

12.8 INTEGRALS AS APPROXIMATIONS TO SUMS

The definite integral is defined to be the limit of a sum. It should be evident,
therefore, that integrals can be used as approximations to sums. One such actual
formula for doing this appears in Sec. 18.9 and may be written as

fokfit o o= [ f0 dx 41200 +£)
— (8o = i) ¥ 55 (8% + AV, )

19 3 3 3 4 4
=== (Ao = Afa3) + = Ao + A o0) + -

720 160

1 P, Wynn, Acceleration Techniques in Numerical Analysis, with Particular Reference
to Problems in One Independent Variable, Proc. IFIPS, Munich, 1962, pp. 149-156.
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A closely related formula is the Euler-Maclaurin formula [63]

fotfit- j S dx+3 (o +£) - 12(fo 4]

"

720 7200~/ " 30, 240
Bam m— m—
(22)'(f(2 1) f;'(Z l))+...
where, again, the B,,, are the Bernoulli numbers.

In both formulas when dealing with infinite series, the upper limits are in-
finite and half the terms drop out.

129 THE DIGAMMA FUNCTION

For the final topic of this chapter, recall the formula

fxt"dt=

which does not apply when m = —1. Indeed, when m = —1, the integral can be
said to define a new function, log x.
Similarly, the summation formula

x=1 (m+1)
g %
=1 m+1

+C

does not apply when m = —1 and correspondingly can be said to define a new
function, called the digamma function and denoted by F(x):

1
Ax)=3Y =-v
r=17T
where y = Euler’s constant = 0.5772156649 ... and hence F(0) = —y. This for-
mula applies when x is an integer. Another form,

Fx) = ,Z‘, r(r + x)

provides a means of extending the definition of F(x) to noninteger values. We
need to show that this new definition is consistent with the old one. Thisamounts
to showing that F(x) satisfies the equation

-y FO)=-y

A/-'(x) = J_CTI-—I-
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(This is analogous to the process of showing that a function satisfies an integration
formula by showing that the derivative of the function is the integrand.) We have

i x+1 X
AF(x)=’;l [r(r+ x+1) - r(r+x)]
1
=r=1(r+x)(r+x+1)

™Ms M8

1
= [r+x_r+x+1

—

x+1

The following relation exists between the digamma function and the natural
logarithm:

1 1 1
F(x)—llm[log(x+n+1)—m_m ..... x+n]

Another relationship between known functions is

d
o log[I'(1 + x)] = F(x)

If we differentiate again, we get the so-called trigamma function

az 1
Wlog[[‘(l +x)] = zl: T = F'(x)

the tetragamma function

d 2 1
m —5 log[I'(1 + x)] = —221:(’ +x)"‘ = F"(x)
the pentagamma function
d "
T —; log[I'(1 + x)] —62( " )4— F"(x)

etc.

These functions have been tabulated [47] and can be used to sum series whose
general coefficient is a rational function. It should be recognized that much of
systematic integration is based on the integration of rational functions and that
this introduces the new functions In x and arctan x. Similarly the summation of
rational terms leads to the corresponding functions.
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For example, supposing we have
® P,_,(x)
S= _n-2
le Pu(x)
where P,(x)is a polynomial of degree nand P, _ ,(x) is at least two degrees less than
P,(x). Using partial fractions, we can write [where the a; are the zeros of P,(x)]
< [ 4, + A, Ay B, B,
x=1

S =
X —a, x—a2+ +x—a,‘+(x—a1)2+(x—a2)2

+__B_k__+.-.+ Ml + Mz +.--+—A£k——]
(x—a)’ (x—a)"  (x—a)" (x = ap"
We cannot rearrange the first group of terms since individually the series diverge.
However, it is easy to see that ) ¥_; 4; = 0; hence we can write

A A A A A A
254+ -4+ -4
X—a, x X—a, x X—a, X
without changing the value of the term. We now have the series in a form that we
can rearrange easily. As an example, consider [47]
i 1
T (4x + 2)(4x + D)(4x + 3)*
e
)

[ t .1t 3 1 .1 1]
Ix+2 4 4x+1 4 4x+3 2 (4x+3)

1
= 1/4F(1]2) — 1]16F(1/4) — 3/16F(3/4) + 1/32F'(3/4)

S =




13

DIFFERENCE EQUATIONS

13.1 INTRODUCTION

In the finite difference calculus the analogs of differential equations are difference
equations. It might be supposed that corresponding to the differential equation

V+2y=x
there would be the difference equation
Ay +2y=x
It is a curious fact that this is not the analogous form; instead we use
yx+D+yx)=x
which follows from writing
Ay(x) =y(x + 1) = y(x)

Itis easy to pass from one form to the other, and they are equivalent in this sense.
How we would go about solving the two forms, however, would be different.
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One advantage of the form using different arguments, rather than the A
operator, is that it more clearly reveals the nature of the problem. The equation

A’y + 28y +y = f(x)
looks as if it were of second order, but writing it in the function-value form

Y +2) = 2y(x + 1) + y(x) + 2[y(x + 1) = y(x)] + y(x) = f(x)

leads to

y(x +2) =fx)
which is trivial. It is the maximum of the difference in the arguments of the un-
known function that determines the order of the equation.

The close analogy between the difference and differential equations will be
exploited to shorten the treatment. We will also look at only the simpler prob-
lems in the field.

Among the various ways of approaching a field, one can give the general
theory or instead give only a few well-chosen examples from which the reader can
easily understand how the general theory goes. There are many occasions when
the second approach is more effective, and in this chapter we shall adoptit. Thus
the chapter is mainly a sequence of carefully chosen examples which illustrate how
to solve typical difference equations of the forms we need.

13.2 FIRST-ORDER DIFFERENCE EQUATIONS
WITH CONSTANT COEFFICIENTS

To solve the first-order differential equation

yY+y=x
we first consider the homogeneous equation
y+y=0
To solve this, we guess at a solution of the form
y=ev
and get
e(m+1)=0
m= -1
y=e~

and the general solution of the homogeneous equation is
y(x) =Ce™*
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For the complete equation we again guess, this time at one particular solu-
tion. In this case it is reasonable to suspect that the right-hand side could only
arise from a function like

y=ax+b
Trying this, we get
atax+b=x
whichdeterminesa = landb = —1. Addingthissolutionto the generalsolution

of the homogeneous equation, we have the general solution of the original equa-
tion
y=C*+(x-1)

All this should be familiar from the calculus course, and follows from the
linearity of the operation of differentiation and the linearity of the equation. We
expect, therefore, that the solution of the corresponding difference equation will
be similar.

Given the difference equation

yE+D+yx) =x
we first solve the homogeneous equation
yx+1)+y(x)=0
We guess at
y(x)=a
where we have used the conventional notation of writing @ = ¢™. The result of
substituting this into the homogeneous equation is

a@a+1)=0
a=~—1
y(x) = C(-1)"

For the particular solution of the complete equation with the right-hand side x,we
again guess at the form

y(x)=ax+b
from which we get
ax+1)+b+ax+b=x
a=1/2 b=-1/4
and the complete solution is

L, 2x—1
y=C(-1"+—
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PROBLEMS

13.2.1 Solve the equation Y4y — ya=n-+1 y(0)=0.
_n(n+1)

Ans. y 2

13.2.2 Solve yuer1+ya=n*  y(0)=0.
13.2.3 Explain what you must do to solve y,+1 — ay, = a"
Ans. y=n+ C)a"?

13.3 THE GENERAL FIRST-ORDER
LINEAR DIFFERENCE EQUATION

We next consider
y(x + 1) + A(x)y(x) = B(x)
where A(x) and B(x) are known functions. The homogeneous equation is
y(x +1) + Ax)y(x) =0
thus
y(x +1) = —AX)Y(x) = AX)Ax — Dy(x = 1) = -+
= (=" A(x)A4(x — 1) - 40)y(0)

where y(0) is an arbitrary constant, say C. Thus a solution is

¥+ D = [11-40)]

Let this solution be labeled u(x).
As in the case of differential equations, we set

Y(x) = u(x)v(x)
where u(x) is the above solution. Putting this into the complete equation, we get
u(x + Do(x + 1) + A(x)u(x)o(x) = B(x)
Substituting v(x + 1) = v(x) + Av(x), we get
v()[u(x + 1) + A(x)u(x)] + u(x + 1)Av(x) = B(x)
The term within the square bracket is zero, since u(x) is a solution of the homo-
geneous equation. Thus
B(x)

Av(x) = e




13.4 THE FIBONACCI EQUATION 215

Summing this over the variable x from x = 0 to x = x, we get

o(x+1)= i B(k)

c
Lowk+D T

where C is an arbitrary constant.
Thisis exactly analogous to the case of differential equations and is known as
*“the variation of parameters method.”

PROBLEMS

Solve the following problems.
13.31 ny(n+1)— @+ Dyn)=1

1332 y(n+1)—n*(m)=0,3(1)=1 Ans. y(n+1)=(n)?
C 2n? —3n+1
13.3.3 (n+ Dy + 1) — ny(n) = n? Ans. y(n+1) = P + 3

13.34 y(n+1)— 3ny(n) = 3"
1335 y(n+1)—ny(n)=n (n>0)
13.36 y(n+1)—(n+ Dym)=2"(n—1)

134 THE FIBONACCI EQUATION

Leonardo of Pisa (1180-1250) was interested in the famous second-order difference
equation with constant coefficients
Yat1 =Vnt Vot Yo=0  y =1
where we have now adopted the subscript notation.
We again try
Ya=a
and get
a @ -a-1)=0
a*—a—-1=0
1+./5

2

a=

Hence the general solution is

Vo= cl(1 +2\/5)" + Cz(l _2*/5)"
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To satisfy the two initial conditions, we have available the two constants C, and
C,. We get the two following equations for them:

Yo=Ci +C;=0

This gives

and the solution is

, _L(1+\/§)~_L(1-\/§)"

B2 ) T T
Note that the square root cancels out (as it must since from the original equation
all the Fibonacci numbers are integers).

Mathematically speaking this is the solution, but practically it is generally
easier to compute the numbers from the equation than from the solution. Thus
we easily get

V=Y +Y=14+0=1
Vi=y,+y=1+1=2
Va=y3+y2=2+1=3
Vs=Yst+y;=3+2=5
Ve=Ys+ys=5+3=8

.................................

An alternate approach to the Fibonacci numbers uses generating functions.
If we multiply the defining equation by t"and sumn =1, 2, ..., we get

1 o n+1 = n < n—1
T Zt Yner T )= = 21‘)’;-"“2!‘ Yn-1
n= n=

n=1

Setting

5 9= Y0)
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we have the following equation for the generating function Y(¢)

10~y = YO +1Y0)

Y(t)(%—l—t)=y,=l
1t
ft=1—t 1—t—1?

If this rational function is broken up into two linear factors and these are
suitably divided out, then the earlier expression for y, is obtained.

Y(1) = I

PROBLEMS

13.4.1 Divide out the generating function to find the first five Fibonacci numbers.
134.2 Find a formula for the sum of the first N Fibonacci numbers.

N
Ans. ;}'n=)’N+I +yv—1

13.4.3 Carry out the steps in the last paragraph in this section.

13.5 ANOTHER EXAMPLE OF A
SECOND-ORDER LINEAR EQUATION

As a second example, consider the equation
Xp4y — 2X, €08 ¢ + X, =0
where ¢ is some constant. We try
x,=a"
a®—2acosp+1=0
a=cos ¢+ \/ m—_l
=cos ¢ +isin¢g
=¢'b, g1
Hence the solution is
x, = Cye™™ + C e~ i
or, if you prefer,
x, = C, cosnp + C, sin nd

This can, of course, be checked by direct substitution into the difference equation.



218 13 DIFFERENCE EQUATIONS

PROBLEMS

Solve

13.5.1 Pusr—2pacosh g+ yaoy =0

13.5.2 Yuir+2ay,—b*,1 =0

13.5.3 ypsr=a\yn+ a2 ya- Yo=0 n=a

13.6 AN EXAMPLE OF A SYSTEM OF EQUATIONS

A system of two first-order difference equations is equivalent to a single second-
order equation. Often all that is needed is the behavior of the solution, and we
now give an example of how to find the behavior without actually solving the
problem. Consider the system of equations
Pn+1=DPn+ an (136])
Gnt1 =Pn+qn

We know that the solutions will be of the form
. = Aa," + Ba,"
Pr=s00 T 136.)
¢, = Ca," + Da,"

with some constraints on the four coefficients 4, B, C, and D. We assume
|a,| > |as|. Wecan write
DPn+1 — pn + an =pn/qn + K
qn+l pn+qn pn/qn+ 1

(13.6.3)

But
Pn_Aa\"+ Ba)" A+ Bayfa,)" A

4, Ca,"+Day"  C+D(asfar)" C
asn— . Let A/C=r. Then in the limit equation, Eq. (13.6.3) gives

r+K
r=
r+1
This is the same as
rP+r=r+K
r=\/l_(=lim&'
qn

Thus we have a way of computing square roots regardless of the initial choices p,
and g, (not both zero).
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PROBLEMS

13.6.1 1In the above example, discuss the cases where
a,=a,
a = —a,
13.6.2 Discuss the case
DPnsr = app + bq..
Gn+1 = CPu + dq:r
13.6.3 Discuss the possibilities of the starting values for p, and g, eliminating a,, that
is, A= C =0, with due regard to roundoff.

13.7 A SYSTEM OF EQUATIONS WITH
VARIABLE COEFFICIENTS

Consider finding the values of the two integrals

J(n) = f x"e” % sin x dx
o
n=0

L
K@n) = fo x"e”* cos x dx

We shall be particularly interested in showing that J(4k + 3) = 0, because using
the transformation x = t/4, we get the integral

L
AJ@dk +3) = e " sin ¥y dt=0 k=0,1,...
0
This shows that the kernel in the parentheses has all/its moments equal to zero, but
is not identically zero. Thus the moments of a function do not uniqucly deter-
mine the function.

The second purpose of this example is to show how a system of equations
with variable coefficients can sometimes be reduced to a system with constant
coefficients by a suitable choice of notation.

Using integration by parts on both integrals, we get the pair of simultaneous
linear difference equations

J(n) = g U =1) + K(z — 1)]
K(n) =g [—J(n — 1) + K(n — 1)]

Standard integration tables give J(0) = K(0) = 1/2.
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The variable coefficient /2 suggests that J(n) has a factor n/2, J(n — 1) hasa
factor (n — 1)/2, etc., which suggests that J(n) behaves like n!/2".
Thus we are led to the transformation

!
Jn) = 5n)
K(n) = g—;: k(n)

which leads to the system
jm) =jln—1) +k(n—1) j)=1/2
k(ny= —jn—=1)+k(n—-1) k@0)=1/2
We reduce this to a single second-order equation by writing the top equation as
Jn + 1) =jn) + k(n)
and using the second equation of the pair, we eliminate k(n)
Jo+ 1)y =jn)+ —jln—-1) +k(n—1)
Now using the first equation, we eliminate k(n — 1)
Jn+1)=2i(m)+2i(n—-1)=0 jO)=112 jl)=1
The general solution is (where i = \/j)
Jjm)=Ci(1 +i)y" + C,(1 = i)
The initial conditions give
Ci+C,=1)2
(A+)C,+(1-i)C,=1

which leads to

1-i 141§
Cl__4_— Cz—T
and finally
1
Jy =51+ 4 (= 1]
or
n! an=1 a1
J(n)=F—l[(l +O" A=)

(which is actually a real number).



13.8 SECOND-ORDER RECURRENCE RELATIONS 221

To find J(4k + 3), we observe that
A+ =1+4i+6i2+4i’>+i*=—-d=(1-i)*

hence
(4k + 3)! . .

stk +3 = SED a0 + 0+ (1 - 7 =0
PROBLEMS
13.7.1 Show that K(4k+1)=0
1372 If

_ ["cos kf —cos k¢
ORI R e

show that for k = an integer, I(¢) satisfies
Ly 2o($) — 2cos ¢ Ly i (P) + I($) =0 L@ ==
and hence

msin k¢

L = sin ¢

13.7.3 Solve the system of equations in this section as a system.

13.8 SECOND-ORDER RECURRENCE RELATIONS
Many of the special functions that arise in practice satisfy second-order linear-
recurrence relations. For example,
sin nf: sin(n + 1)0 — 2 cos 0 sin n6 + sin(n — 1)0 =0
cos nf: cos(n + 1)0 — 2 cos 6 cos n@ + cos(n — 1)0 =0
T,(x): T4s(x) = 2xT(x) + T,-4(x) = 0

where T,(x) is the Chebyshev polynomial of order n (see Chaps. 28 and 29). Not
all special functions satisfy such equations with constant coefficients. Most of
the special functions have equations with variable coefficients; for example,

Siri® =2 f2) + a2 = 0

is the equation for the Bessel functions J,(z) and Y,(z) of the first and second kinds.
The variable is, of course, #, and not z.
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It is reasonable to expect that locally the solutions of an equation with vari-
able coefficients will behave much like the solutions of an equation with constant
coefficients, provided the constants are some reasonable local averages of the
variable coefficients. Assuming that this is so, we recall that the solution was
typically the sum of two solutions and of the form

m=Ca" +Cra,"

Supposing that |a,| > |a,], then even if we started with C, = 0, roundoff
would bring in some of the first solution, and in time this would dominate so that
the second solution would not be visible

n C a " n
mcari+ € 2]

Thus because of roundoff noise the calculation of the second solution is not
practical this way.

This is what usually happens in practice—we want the solution that is
growing less rapidly than the other. For example, the Bessel function J,(x) de-
creases as a function of nin the long run, while Y,(x) grows toward infinity. Itis
obvious that the way to counteract this effect is to compute from high values of n
to low values so that the desired solution will grow and the unwanted one will
decay. Thus starting out with a sufficiently high index n, we set the (1 + 1)st
solution to zero and the nth one to some value,say 1. Recurring down, we see the
numbers grow (there may be local oscillation, but the amplitude will grow) until
we get down to the first value. We will not have Jy(x) but rather some constant
multiple of it, and our problem is to find this constant. In the case of the Bessel
function it is customary to use the known identity

Jo(2) + 2'"2 Jon(2) = 1

to determine this constant. Thus the recurrence has given us not only J,(x) but
also many of the values J,(x) (not all the way up to the starting value but quite a
way up provided we started high enough in n).

This is animportant fact to realize; it means that when we are presented with
an expansion of a function in terms of a special function, we may many times find
all the function values (for a given x) with a comparatively small amount of com-
putation. Thus much of classical mathematics becomes practical when this de-
vice is used.

We have not discussed the way to pick the starting index n, as thisis a com-
plicated topic of some specialization, nor have we made the treatment rigorous.
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When it is necessary to do some such recurrence, the reader can consult the litera-
ture.!

In the case of the trigonometric difference equations it has been observed
that it is better to use the pair of first-order equations than the second-order
equation. Furthermore, experience shows that the use of cos 8 = 1 — ¢(0) is
preferable. Thus the equations to be used are

sin(x + Ax) = sin x — ¢(Ax)sin x + cos x sin Ax
cos(x + Ax) = cos x — ¢(Ax)cos x — sin x sin Ax

These are very useful in practice, especially when converting point by point from
polar to rectangular coordinates. Experience shows that the accuracy is better
than +3 in the sixth significant figure in an eight-digit computation provided the
equations are reinitialized every 100 steps. If +3 in the fifth is acceptable, then
reinitialize every 500 steps.

1 See the classic papers by F. W. J. Olver, Numerical Solution of Second-Order Linear
Difference Equations, J. Res., Natl. Bur. Std., vol. 71, nos. 2 and 3, pp. 111-129, Apr.—
Sept. 1967; and Bounds for the Solutions of Second-Order Linear Difference Equations,
J. Res., Natl. Bur. Std., vol. 71, no. 4, Oct.-Dec. 1967,
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POLYNOMIAL INTERPOLATION

14.1 ORIENTATION

Speakingintheatrical terms, we have just finished Act I in which various ideas and
techniques are introduced and used to meet a number of short-range goals. In
the second act, Part II of this book, the individual ideas and techniques will
reappear in various ways, and a number of new ideas will also make their appear-
ance. It will also include the further development of the basic themes with more
of the classic ““unity, emphasis, and coherence.” Act III, in its turn, will give
some new views of what happens in Act I1, as well as introduce a few new themes.
Regretfully for the analogy (and for the book), Parts IV and V are not the dramat-
ic conclusion in which all the loose ends are gathered together, but rather they
drift into a collection of miscellaneous topics needed to round out the whole.
Thus they lack much of the central unity of Parts Il and III, and only a few of the
earlier themes are picked up and developed further.

In Part I we were almost exclusively concerned with finite, discrete problems
and faced the infinite only in the very mild form of an infinite series. Thus the
finite nature of the machine occurred mainly in the form of roundoff. In PartII
we begin with interpolation, the simplest of the problems in which truncation
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error occurs, and we proceed to more difficult problems such as integration. We
will also introduce (Chaps. 25 to 30) a pair of new ideas as to what is regarded as a
solution to the problem of approximating an infinite operation with a finite
amount of arithmetic on a finite computing machine.

We are more concerned with methods than with results, and therefore the
results are often scattered in various chapters. For example, * Interpolation” is
the title of this chapter, but it is also treated in Chaps. 15 and 17 through 20; the
Index provides the cross references to subject material, while the chapters tend to
be organized around the methods and ideas used.

142 INTERPOLATION

The first problem in inierpolation that a person usually meets is that of ““reading
between the lines” of a published table, say a trigonometric or logarithmic table.
In this process it is customary to use a straight line that passes through two adja-
cent table points—exactly the same as we did in the false-position method (Sec.
4.4). If we use the straight line to compute the values of the function in the
interval a < x < b, then it is called “interpolation,” while if the value to be com-
puted from the line lies outside the interval, then it is called “extrapolation.”
The formulas in both cases are the same

S6) =1(@) + 3= L16) ~f(a)]

_(b=x)f(a) + (x — a)f(b)
B b—a

it is only the value of x that differs.

In the case of Newton’s method for finding the real zeros of a function
(Sec. 4.6), we used both the value of the function and the value of the first derivative
at the point to determine the approximating line and its zero. The formula was

Sx)

Xn+1 =Xn— 777

J(x)

f(x)
f(x)

Extrapolation

/ x
FIGURE 14.2.1 Interpolation
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To generalize, we can use as our samples both function values and values of
various orders of derivatives to determine a suitable-degree polynomial that will
be used as the basis for interpolation. We have called this process ‘“analytic
substitution” (Sec. 4.6)—for the function we cannot handle we substitute an
analytic approximation that we can.

The samples we use can arise directly from measurement, or they can come
rom computing values of a function that we cannot handle and are forced to
sample. In the first case we generally have little or no control over the samples
~e are given (the information), and the samples are generally equally spaced in the
ndependent variable. Inthe second case we can select what we will use, and this
teedom is applied in later chapters, especially in Chap. 19 where we will use
ampling places that in practice would be awkward to measure but are easy to
:ompute from a function (on a computer, but not by hand).

Because of the wide variety of possible combinations of sampling places, and
f values of functions and derivatives that are possible (and actually do occur in
rractice), it is hopeless to try to give a formula for each specific situation. Instead
/e give a general approach which finds the particular formula that takes advantage
f whatever information is available. We also need a broad approach within
‘hich we can compare various formulas, so that we can both pick out the right one
» use and compare alternate approaches to a situation.

The plan is, therefore, to examine the use of information in these forms:

Function values only—Chaps. 14 and 15
Values of the derivatives—Chap. 17
Differences of function values—Chap. 18
Arbitrarily placed samples—Chap. 19

text is clipped in Dover reprint

Once we have decided on the information we are going to use (position as
:1l as function and derivative values), then we face the problem of picking the
1ss of approximation functions to be used. In Part II we will use polynomials
clusively, and this is the classical approach. In Part III we will use sines and
sines, which is the more modern approach. Exponential approximation
curs in Part IV.

Next we need to consider the criteria we will use to pick out the particular
'mber of the class to use. We have so far used polynomials that exactly
itched (agreed) with the information in the samples (within roundoff). In
1aps. 25 to 30, we will use two other criteria, least squares and the Chebyshev, or
nimax, criteria.

Lastly, where shall we apply the test for matching? This question we will
stpone for some time, though we faced it in finding zeros when we asked
ether it was the closeness of the function to zero or the closeness of the com-
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puted root to the correct one that we wanted to achieve. We will for now simply
assume that it is the two functions, the given and approximating ones, that are to
be close to each other. However, in Part ITI we will see that there are very differ-
ent answers to the question of where we should apply the criteria of matching.

To summarize, we have four questions which, it will turn out, determine the
formula uniquely:

1 What samples (function and derivative values, etc.) shall we use?

2 What class of functions shall we use (polynomials here in Part IT)?

3 What criterion shall we use (exact matching, least squares, Chebysheyv,
etc.)?

4 Where shall we apply the criterion?

143 INTERPOLATION USING
ONLY FUNCTION VALUES

Our basic tool for finding formulas is the method of undetermined coefficients.
The method assumes the form of the answer, and the conditions on the formula
determine the arbitrary coefficients of the form. For example, given N + 1
sample points (x;, y)) (i=1,2,..., N + 1), we can fit a polynomial of degree N

N
Py(x)=ay+ax +a;x* + - +ayx" = Y aqx*
k=0
to the data (since the polynomial form has exactly N + 1 coefficients to be deter-
mined by the N + 1 conditions). The condition that the polynomial Py(x) pass
through the sample point (x;, y;) is
N
yi=PN(x")=Zakx‘k i=l,2,...,N+l
k=0
These N + 1 equations determine the coefficients a,.

The determinant of the coefficients of the unknows, a, , is the Vandermonde*
determinant

1 x, X x,:
1 x X x
= 2 2 2 |k
Visr =00 =[x
2
1 Xy XN+1 XN+1

! Alexandre Theophile Vandermonde (1735-1796).



14.3 INTERPOLATION USING ONLY FUNCTION VALUES 231

In the next section we will show that if x; # x; for i # j, then the determinant
cannot be zero; hence we can always solve for the g, , and we have a solution to the
interpolation problem for polynomials.

If we solve for the a, by the use of determinants, substitute the results into
the polynomial, and finally rearrange it suitably, we would have

y 1 x x? xN
2 N
N I x X1 X4
y2 1 X2 x: sz = 0
1 x x xN
VN +1 N+1 XN+1 N+1

We can see directly that this is the solution. Expanding by the elements
of the top row, it is clearly a polynomial of degree N. If x and y take on the values
x; and y;, then two rows would be the same, and hence the determinant would be
zero. This observation shows that the polynomial passes through the given
points.

From this form it is immediately evident that if all the y; were zero, then the
polynomial would also be identically zero, y(x) =0. This result is important
because it means that the interpolating polynomial is unique (within roundoff’). The
interpolating polynomial can be written in many different forms and in many
different notations, but if the same information is used in two different methods,
then necessarily the two resulting polynomials are the same (within roundoff). It
is also easy to see what the condition is for the coefficient of x to be zero. We
will speak of the interpolating polynomial being of degree N even if, as sometimes
happens, the actual polynomial is of lower degree.

As an example of finding an interpolating polynomial consider the problem
where we are given the four points (0, 2), (1, 2), (2, 0), (3, 0) and wish to determine
the cubic through them (see Fig. 14.3.1). We have the four equations

P(0)=2=a,

P(l)=2=ay+a, +a,+a,
PQ2) =0 =ay + 2a, + 4a, + 8a,
P(3) =0 =a, + 3a, + 9a, + 27a,

It is easy to eliminate a, = 2. We next subtract twice the second equation from
the third, and three times the second from the fourth to get

—2=2a, + 6a,
—2 = 6a2 + 24a3



232 14 POLYNOMIAL INTERPOLATION

FIGURE 14.3.1

It follows that

03 =2/3

_ a2="'3

4 = 6a, a =13
a, =2

and
P(x) =2 + Ix—3x* + %x3
As a second example, we find the interpolating polynomial for
y=logx x=12,3,4
We have for the equations that determine the coefficients of the cubic
Py=ay+ax +ayx* + a3 x*
log1 =0.0000 =a, + a, + a, + a;
log 2 =0.3010 = a, + 24, + 4a, + 8a,
log 3 =0.4771 = ay + 3a, + 9a, + 27a,
log 4 = 0.6021 = a, + 4a, + 16a, + 64a,
Eliminating a, pairwise to preserve some symmetry, we get
0.3010 = a, + 3a, + Ta,
0.1761 = a; + Sa, + 19a,
0.1250 = a, + Ta, + 37a,
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Again eliminating pairwise, this time a,, we get
—0.1249 = 2a; + 12a,4
—0.0511 = 2a, + 18a;

Eliminating a, , we have

ay= 001230
a, = —0.13625
00738 =6a; | ,*_ " (6365
ap = —0.49970

and
Py(x) = 0.0123x> — 0.13625x% + 0.62365x — 0.4997

This, then, is the cubic approximating y = log x.

PROBLEMS

14.3.1 Find a quadratic through (0, 1), (1, 2), and (2, 3).
14.3.2 Find a quadratic through (-1, a), (0, b), and (1, ¢).

Ans. y(x)=b+c;ax+c_22b+ax

2

14.3.3 Find a cubic through (0, 1), (1, 0), (2, 1), and (3, 0).

—2x* . 10x
3 T3 -5+l

14.3.4 Find a quartic through (—2, a), (—1, b), (0, ¢), (1, b), and (2,a). (Note that
the symmetry removes the powers x and x3.)

Ans. y(x) =

144 THE VANDERMONDE DETERMINANT

In Sec. 14.3 we met the important Vandermonde determinant, which plays a
central role, along with its variants, in the theory of polynomial approximation.
The determinant is defined by

VN+1(x1,x2,...,XN+1)= lxikl k=0, 1, ..-,N
i=1,2..,N+1

Consider it as a function of the variables x;. It is clearly a polynomial in
the x;, and a count of the exponents shows that the degree is

NV +1)

O+1+2+43+ - +N=—""
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Now if xy 4, = x,, then Vy,, = 0, and the determinant has the factor xy,, — x,.
Similarly, if xy4+; = X5, X3, ..., Xy, then we have the corresponding factors.
Thus we have, in total, the N factors

N
H (Xy41— j)
j=1
Again, if xy =X, X5, ..., Xy—1, we have the N — 1 factors
N-1
H (xn — x;)
i=1

Repeating this argument, we see that we have all the factors

N+1

H (xx —x j)
k>j=1
This product is a polynomial of degree
_NIN+1)

N+(N=1+-+1 5

and so we have found all the factors, and it remains to find the multiplicative
constant by which the two representations might differ. To find this constant
we compare the same term in both representations. The diagonal term in the
determinant is

1oxg e x3® e Xy
The term from the left-hand sides of the product is

N N - .
XN+1 " XN X2
These are the same, hence
X N+1
Vne1(Xp X250y X)) = lxi | = H (xx — xj)
k>j=1
The Vandermonde determinant shows that the powers of x (1, x, ..., x¥)are

linearly independent over any set of N + 1 distinct points. Thus sampling a
polynomial of degree N at N + 1 distinct points enables us to reconstruct (within
roundoff) the polynomial from the samples alone. In this form it compares with
the famous sampling theorem which we will examine in Chap. 34. The funda-
mental theorem of algebra shows that the powers of x are linearly independent in
any interval; the Vandermonde shows that the first N + 1 powers are linearly
independent over any N + 1 distinct points, and we know that there cannot be
N + 2 functions linearly independent over N + 1 points.
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PROBLEMS

14.4.1 Bydirect expansion of the determinant show that Vs(x, x2, x3) factors properly.
14.4.2 Show directly that

N
Vas1=Vn "I_Il(xnn —X1)

and hence evaluate the Vandermonde determinant by recursion.

145 LAGRANGE! INTERPOLATION

In this section we give an alternate approach to the problem of finding the inter-
polating polynomial through N + 1 sample points. The method, ideas, and
notation are more important than the result.

Suppose we first find a polynomial of degree N through the N + 1 points
whose y values are all zero except the ith which we will take as being 1. We
introduce a notation that we shall repeatedly use, namely,

m(x) = (x — x;)(x = x3) =+ (X = X)X = Xp41) *0* (X — Xn41)
which is the product of all the factors except the ith one. Using this notation,
we easily see that the solution to the problem is
m,(x)
m(x;)

since for i # j

m(x;)
This sampling polynomial is of degree N and has the required values of being zero
at all samples except the ith at which it is 1.

Now, just as we did in the first matrix inversion (Sec. 7.11), where we con-
structed the general solution out of the special unit solutions, so, too, we have by
immediate inspection that the general solution is

N+1 9
Py(x) = ‘;1 i [%‘E%]

This technique of using the sampling polynomials is very useful and should be
clearly understood.

m(x) =0 m(x)#0 and 1

1Joscph-Louis Lagrange (1736-1813).
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The Lagrange interpolating pclynomial is, of course, the same polynomial
as before in Sec. 14.3, within roundoff. It is written in a different form which is
more of theoretical than practical interest (since it has a great deal of roundoff in
many cases).

146 ERROR OF POLYNOMIAL APPROXIMATIONS

Givena function f(x), we took N + 1 sample points (x;, y), i =1,2,..., N+ 1),
and found a polynomial Py(x) through these points. We intend to use this poly-
nomial in place of the original function, and it is therefore important to examine
the question of how much the function and the polynomial differ at points other
than the sample points (where they agree within roundoff error).

As an example, consider the function y(x) = log x (see Table 14.6). In
Sec. 14.3 we found the polynomial approximating the function. As a measure
of the difference log x — P(x), let us examine the values at the sample points and
the midpoints between them where we would expect the error to be fairly large.

A theoretical expression for the difference between the original function
f(x) and the approximating polynomial P(x) can be found if we observe that the
difference is zero at all the sample points, and write

P(xX) = P(x) = (x = x)(x — x3) *** (x = xn4)K(x)
where K(x) is suitably chosen. We now choose an arbitrary x*. We have
Vx*) = P(x*) = (x* = x)(x* — x3) =+ (x* — xy41)K(x*) =0
Now consider the function
D(x) = y(x) — P(x) — (x — x)(x — x3) *** (x = xy41)K(x*)

If y(x) has an (N + 1)st derivative, we can differentiate N + 1 times, and since
P(x) is a polynomial of degree N and K(x*) is a constant, we get

DN+ D(x) = YN+ (x) — (N + 1)1K(x*)

Table 14.6
x log x P(x) log x— P(x)
1.0 0.0000 0.0000 0.0000
1.5 0.1761 0.1707 +0.0054
20 03010 03010 0.0000
2.5 03979 04000 —0.0021
3.0 04771 04771 0.0000
3.5 0.5441 0.5414 +0.0027
4.0 0.6021 0.6021 0.0000
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But ®(x) vanishes N + 2 times (at x* and x, x,,..., Xy+;). Hence, by the
mean value theorem, ®’(x) vanishes at least N + 1 times in the interval containing
all the x values (including x*). Continuing to apply this theorem, we find that
®™(x) vanishes at least N + 2 — k times and that ®¥ * )(x) vanishes at least once.
Thus there is an X in the interval of the x values such that

YNHO(R) = (N + 1)IK(x*)

We now have a value for the constant K(x*) and can put this back in the original
expression to get

(x* — x)(x* — xp) o (x* — XN+1)}’(N“)(~’?)
N+ 1)

Y(x*) = P(x*) +

But, since x* was arbitrary, we may write x* as x, and we have finally

—X)(x — X)) (x — XNH)}’(NH)(’_‘)
W+ 1)

0 =P + &

If we use this error term to estimate the error made in interpolating in the log
table, we get

(x - D(x - 2‘)1(!x —-3)(x—4) YOG

)

To estimate the error at x = 3/2, we obtain

U= VDCIA=52) (=) 1 1

41 ?) 643,
All that we know is that 1 < x <4. At worst the error is 15/64 ~ 0.23, while at
best it is 0.001—from Table 14.6 it is about 0.0054, which shows how little accuracy
such an error term actually gives in this case.

It should be noted that the value X = X(x) depends on x, and there may be
several x’s for some values of x. Also, X is not necessarily a continuous function
of x. This latter effect is illustrated by applying the mean value theorem to the
function y(x) = x(1 — x)* (Fig. 14.6.1) and choosing a = 0 in the usual form for
the mean value theorem:

yl(i) =J’(x):J’(a)=}_’_(_x2 _ (l _x)2
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¥y
/
/
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/ x(1-x?)
/
//
/
/
/
/
/
/
/-
/
4 P
T 1 *
FIGURE 14.6.1 3

Thus y'(X) >0, and as
x goesto 0 to 1, X goes from 0 to 1/3
x goes from 1 to 2, X goes from 1/3t0 0
x goes beyond 2, X jumps over the interval where ' <0, to x > 1

Hence X = X(x) is not a continuous function of x.

147 DIFFICULTY OF POLYNOMIAL APPROXIMATION

It is customary, as in the previous section, to express the error of a polynomial
approximation in terms of a suitable derivative of the function being approxi-
mated. It is usually thought that for “most”’ reasonable functions such expres-
sions for the error become small for sufficiently large n, but this is not so.

Suppose that we restrict our discussion to analytic functions, that is,
functions having a convergent Taylor series

2 (x = xo)
yE) =Y T yxg)
n=0 n:

at all points x, in our range of interest. If, further, the function is an integral
(entire) function, that is, converges everywhere in the finite part of the complex
plane, as do sin x, e*, polynomials in x, etc., then it is indeed possible that all the
higher derivatives are small. But if the function has a singularity in the finite
part of the complex plane, as do tan x, log x, rational functions in x, etc., then the
Taylor series must have a finite radius of convergence R, and this in turn means
that for an infinite number of values of n

(R+9)”

22yl 21 5>0

. n!
Iy( )(xO)I 2(R+8)"
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In words, the upper bound on the nth derivative grows as n!. As an example,
consider

y=Inx
yol

x
. —1
i
. 2!
=3

...........................

w_ (=1 =1)!
y<)_x—"

Thus, even though the curve y = In x looks smooth near some value x, neverthe-
less as n gets large, the derivatives at this point become very large in size and tend
to behave as n! or worse.

This is the general case; for “most” functions some of the higher-order
derivatives tend to grow asn!. Itis only for certain integral functions that all the
derivatives can remain bounded.! Even for polynomials there is a tendency for
the derivatives to grow in size until the Nth one which is a, N, after which they
suddenly all become zero. Of course, many of the higher derivatives of a function
may be small while some of the others are large. For example, an even function,
f(x?), has all its odd-order derivatives equal to zero at the origin, but if the func-
tion is not an integral function, then there are also an infinite number of the even-
order derivatives which tend to behave as n!, or worse.

It would be helpful if we had to deal only with integral functions which can
have nicely bounded derivatives, but the facts seem to be that if the function is an
integral function, quite likely the whole problem can be solved analytically,
whereas if it is necessary to use numerical methods, the function is likely to be
rather poorly behaved.

The Weierstrass theorem which states, loosely speaking, that a continuous
function in a closed interval can be uniformly approximated by a polynomial is
often cited as justification for using a polynomial approximation [49, pp. 28-31].

! The converse is not true; the derivatives of an integral function do not need to be
bounded. For example, if y = xe*, then y™(0) = n.
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However, the method that we have been using of exact matching at the sample
points is not the way in which the Weierstrass polynomial is defined; hence the
theorem, while possibly suggestive, does not apply. Indeed, the simple function
[56]

1
y(x)—l_l_x2 —-5<x<5

is well known as a bad example, since as a selected set of equally spaced points is
increased in number, the approximating polynomial (in the sense of exact match-
ing) diverges from the function between some of the sample points. Thus, even
for equally spaced sample points, we cannot rely on a polynomial to be a good
approximation if exact matching at the sample points is the criterion used to
select the polynomial. The explanation of this phenomenon is, of course, that
the derivatives grow too rapidly.

As an example of this effect, consider the Riemann zeta function given in
Table 10.6.2 in Sec. 10.6. The top line of differences does not tend to become
small very rapidly, which is caused by the obvious singularity at x = 1.

It should be noted, however, that if a table is given at one-half the spacing of
a second table of the same function, then the first differences are one-half as large,
the second one-fourth as large, etc., as those of the second table.  This suggests an
empirical rule: If the differences of a table approach zero rapidly, then probably
too small a spacing was used and the table was overcomputed, whereas if the
differences do not become small, then a finer spacing should be considered.

A final, and perhaps much more basic, objection to polynomial approxima-
tion is that it rarely has any physical implications that will lead to useful insights.
Remember: The purpose of computing is insight, not numbers.

On the other hand, the theory is simple and well developed, requires a
minimum of computation, and is useful. Experience shows that polynomials
often do a good job, although the error term may be either unobtainable or
pessimistic. The values of the difference table can be highly suggestive of the
values of the derivative, and they indicate the smallness of the contribution due
to taking more terms in the Newton interpolation polynomial. However, the use
of the differences as a guide to the values of the derivatives can be dangerous; thus,
for integer x the values of sin nx are all zero, so that the difference table is also all
zeros, suggesting zero error in the approximation

sinnx =0

which is hardly true. The fallacy is obvious here, but in some situations it might
be overlooked.
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PROBLEMS

14.7.1 Compute the nth derivative of
11 (_‘_ - __1_) i=v>1

T+x 2i\x—i x+i

and evaluate at x = 0.

148 ON SELECTING SAMPLE POINTS

The problem of which sample points to select occurs when we try to interpolate.
1f we had complete freedom in choosing, we would select the value x for which we
were going to interpolate, thus making the problem trivial. But it often happens
that we have an extensive set of values (x;, ;) which we might use, none of which
coincides with the desired value x. In the absence of knowledge of the size of the
derivative occurring in the error term we can only pick our samples to minimize
the factor

(x = x)(x = x3) o (X = Xpay)
in front of the derivative term.

Common sense and the minimization of this factor coincide, that is, use
information close to the place at which we want to interpolate.

149 SUBTABULATION

Subtabulation means interpolating values into a table at equally spaced points.
This is often far cheaper than computing the values at the points. Of course it
requires the use of some standard subtabulating routine, which is additional
programming, but it can often save machine time. For example, Table 14.9 for
cubic interpolation gives the values to use to multiply the original table values to
get the subtabulated values at one-tenth the spacing. Other formulas are easily
found.

Since the results of a computation are often to be used by humans, it is
necessary to have the final results at a fine enough spacing to support linear inter-
polation (most humans will not go into quadratic or cubic interpolation them-
selves). When the computation of the individual values is very expensive, that is
the time to consider subtabulation, a highly developed field due to past hand-cal-
culation efforts of table makers. Before making any table, consult Fox [12].
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Table 14.9
S(x) = A_,0)f(—1) + Ao ()f(0) + A, (x)f(1) + A2(x)f(2)

x A=y Ao Ay Az

0.0 0 1.0 0.0 0.0 1.0
0.1 —0.0285 0.9405 0.1045 —0.0165 09
0.2 —0.0480 0.8640 02160 —0.0320 0.8
03 —0.0595 0.7735 0.3315 —0.0455 0.7
04 —0.0640 0.6720 04480 —0.0560 0.6
0.5 —0.0625 0.5625 0.5625 —0.0625 0.5

Az Ay Ao Ay x

PROBLEMS

14.9.1 Using these Lagrange interpolating coefficients, compute the error integral at
1.40 from Table 10.6.3.

14.9.2 Using Table 10.6.3 of the error integral (Sec. 10.6), compute the entries in the
table for the midpoints.



15

FORMULAS USING FUNCTION VALUES

15.1 INTRODUCTION

The purpose of this chapter is to present a uniform method for finding a wide class
of formulas based on sample values of the function. Chapters 17, 18, and 19
will elaborate the basic method for formulas that use other kinds of information
besides the function values. Chapter 16 is devoted to a uniform method for
finding the corresponding error terms of the formulas.

The empbhasis is on a uniform approach to the problem of finding a formula
to meet a given situation. We are not interested in giving an exhaustive list of
formulas because, among other reasons, it is hopeless. The situation is some-
thing like the problem of trigonometric identities. There are so many possible
identities that after giving a short list of basic ones and assuming a modest amount
of experience in deriving others, we drop the subject. One does not seriously
propose to make a large table of trigonometric identities—it is generally easier to
derive the one you need from a few basic ones than to look it up in some large
table. Similarly, after giving a few standard formulas, we shall be content with a
description of how to find any reasonable formula you might want from the given
class of possible formulas.
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The problem may be viewed as one of information retrieval; we wish to find
a particular piece of information, not knowing for sure that it has ever been
recorded, and instead of trying to provide a catalog of known results (which
would necessarily be finite and to a great extent represent past interests), we prefer
a method of creating it as needed. Instead of information retrieval we prefer
information regeneration. Of course this attitude will not work in all areas of
knowledge, but in a mature science the principles should show how to recreate the
information on demand. We will end these few chapters with a flow diagram
indicating how to derive formulas. Currently on computers we recreate the
elementary, special function values when needed rather than use a table, and so
the approach is not novel.

Our basic approach is through these four questions (given in the preceding
chapter):

1 What samples?

2 What class of functions?

3 What criterion of goodness of fit?
4 Where is the test to be applied?

Here in Part I we use polynomials as our approximating functions. This, as we
said before, is the classical approach. In Parts III and IV we will use other
classes.

In the next few chapters we will use the criterion of the formula being true for
the successive powers of x, as high as we can go. Later we will try other criteria.
We will also apply the test of accuracy to the functions themselves, and only much
later will we consider other ways of applying the criteria of accuracy.

Returning to the first question, What samples ?, we will confine ourselves in
this chapter to function values, in Chap. 17 to function values plus various orders
of derivatives of the functions, in Chap. 18 to function values and their differences,
and in Chap. 19 we shall take the location of the samples as parameters which
gives further freedom in the choice of a formula to fit a given situation.

Thus, the four questions provide the structure of the chapters and the basis
for our uniform method which is used throughout much of the book.

152 FORMULAS USING INTERPOLATION

The classical approach to finding a formula for some operation, typically integra-
tion, is to first find the interpolating polynomial and then apply the operation,
typically integration, to the polynomial. This is the method of analytic substi-
tution.
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As an example, consider finding the formula for integrating a function
between the two given endpoints @ and b. We have the two points (a, y(a)) and
(b, y(b)), and the interpolating line through them is

_ & =x)y@) + (x — a)y(d)

y(x) T

Integrating this curve, we get

b bep —
s [ DO =00,
_ —(b—x)’y(a) + (x — a)’y(b)
B 2(b — a)
_(b—a)*y(b) + (b — a)*y(a)
B 2(b - a)

- [y(b) 42- y(a)] - a)

b

which is the well-known trapezoid rule.

As a second example, consider finding a quadratic through three equally
spaced points and integrating to find the area. We take the points (—1, y(—1)),
(0, ¥(0)), and (1, (1)). Using undetermined coefficients, we assume the form

y=Ao+ Ax + A, x*
W=1D)=4do— 4, + 4,
¥(0) = 4o
y(1) =4y + A, + A4,
It follows easily that
Ao, = y(0)
Ay =3y(1) — y(=1)]
4, =3[y(1) = 2(0) + (- 1)]

The integral of this quadratic is

! 24
1=f (Ao + Ayx + A %) dx = 240 + =32
-1

=2y, + 3[y(1) — 2y(0) + (= 1)]
= 3[y(=1) + 4y(0) + y(1)]

which is the well-known Simpson’s formula.
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Suppose we apply this formula to
1
f e dx
0o

We need to shift either the formula or the integral so that the ranges match; we
move the formula

1
[ v dx =300 + 9@ + 01

€% = 1.0000 1-¢°=1.0000
el? =1.6487 4-e'? =6.5948
el =2.7183 1-¢!'=27183
10.3131

L = 3(10.3131) = 1.7188

1
Loy = f efdx=e'—1=17183 error = 0.0005
o

PROBLEMS

1
15.2.1 Compute I; e~* dx using Simpson’s formula.

15.2.2 Compute f : sin x dx using Simpson’s formula.

1
15.2.3 Find the midpoint formula fo f(x)dx=1£(1/2)

15.3 THE TAYLOR-SERIES METHOD
OF FINDING FORMULAS

There is a second method of finding formulas that is occasionally used. In this
method the function, typically an integrand, is expanded into a Taylor series
about the midpoint (usually), and then the unknown coefficients are determined
so that as many terms of the series exactly cancel as possible; the rest is regarded as
theerror, the truncation error. Thus the truncation error is the rest of the infinite
series that did not exactly cancel out.

As an example of the Taylor-series approach, consider again finding
Simpson’s formula.

| f0dx=af =1+ O + )
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We write f(x) as a Taylor series about x =0
xz X 3 x4 v
J(x) =£(0) + xf'(0) + 2 @O+ O+ 5O+

We get on the two sides of the formula
2 ", 2 iv
SO + 5/ O+ 5@+

70 70 f0)
20 3 T "]

—a [f(O) —FO)+
+ B O)]
n c[f(O) O+

ST TRAY

Since we want this formula to be true for a wide class of functions, we must
regard the derivative values at x =0 as being independent variables, and we
therefore set their coefficients equal to zero. This gives the equations [using

k(0]

EONEEOPFMON ]

2=a+b+c
0=-a +c
4=a +c
O0=—-a +c¢

$=a + ¢ + error

The solution of these equations is @ = 1/3 = c and b = 4/3, as before. We
see that Simpson’s formula is exactly true for cubics even though it was originally

FIGURE 15.3.1 F-1
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derived only for quadratics. This is true because due to symmetry the cubic part
of the function exactly cancels out. Thus the cubic

y(x) = x(1 = x?)

which vanishes at the sample points has its area equal to zero, and any multiple of
this can be subtracted from a function without changing the answer (see Fig.
15.3.1).

The value of the error E, is, from the last equation,

E,=%-%=—1%

154 THE DIRECT METHOD OF FINDING FORMULAS

Instead of finding formulas from the interpolating polynomial, which is the classic
method, we shall adopt another method, the direct approach to the formula.
This method is not only, as its name implies, more direct, it is also more power-
ful in that it can find formulas that the interpolation method cannot—by going
directly to the formula, we can avoid those cases in which thereis no interpolating
polynomial but for which there is a formula of the required form. But far more
important is the fact that the direct method provides a natural basis for generali-
zation to other classes of functions. It will be our basic approach to finding
formulas. For polynomials, the direct method resembles the Taylor-series
method, but has a different approach to the error.

To illustrate the direct method, suppose we again find Simpson’s formula.
We want a formula for the integral that uses the function values f(—1), 1(0), and

S
1
[ f@dx=af(=1) + b©) + ()

where a, b, and ¢, are the undetermined coefficients. We make the formula
exactly correct for f(x) equals to 1, x, and x2.

fx)=1: 2= a+b+c (1541)

f(x) =x: 0=-a +c (1542

f@=x* %= a +c (1543

These equations are exactly those of the Taylor-series approach, and so the answer
is the same.
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We will, for the moment, rate formulas by the error found from the first
higher power of x that does not exactly cancel; in Chap. 16 we will in part justify
this approach. Putting x3 in the formula, we get

0=-a+c
which is true from Eq. (15.4.2).
Using x*, we get
% =a+c+ E4
Ei=3-%-%=—f
as we should.
As a second example, consider finding a formula of the form

1 .on
[ F0sin 5 x dx = w_y f(=1) + wo S0) + wif (D)
With three parameters w_,, w,, and w; we can make the formula exact for f(x)

equal to 1, x, and x2. We get
0= W_y + Wo + W,

- =—Ww_ +w
nz 1 1
0=w_, + wy
where we have used
LI 1 o= 8 ! . T
f sinzxdx=0 xsinz xdx == J x*sinzxdx=0
-1 2 -1 2 T -1 2
The solution of the three equations is
4
W === —W_ wo =0
1 1!2 1 0o

and the formula is

[ s@sindxas = S UM - 1(-1]

If we try f(x) = x3, we get (on setting x = 7% »)

1 2 4
J‘ x3sin = x dx = (—-)
-1 2 T,

2\ 4 , . s n/2
= (7-:) [By* — 6)sin y — (y*> — 6y)cos y] l_ 12

<G BE - peFev-as

Hence E,; measures the error.

/2
f y3sin y dy
/2
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As a final example of the direct method, consider a formula of the form
1
f_l S(x) dx =w_33 f(—2/3) + wo f£(0) + wa3 f(2/3)

We try successive powers of x
f(x)=1: 2=w_y; + Wo + Wy 3 (15.4.4)
Sx) =x: 0=—%w_,;3 + @y (154.5)
S =x*  F=(=D'w_yp +@)’wys (15.4.6)
S(x) =x% 0= (—3‘)3”’-2/3 + (5)3”’2/3 (15.4.7)
fx) =x* =@ w_y; + (3‘)4”'2/3 +E, (154.8)
From Eq. (15.4.5)
Wai3 =W-2/3
Then from Egs. (15.4.4) and (15.4.6)
2=2w,;3 +w
1=2/32w,,;
we get
Wy =3/4=w_y;3
wo = 2/4
Equation (15.4.7) follows from Eq. (15.4.5), and Eq. (15.4.8) gives

14
E =1

These three examples should make clear the direct method; there may, as in
the second case, be some difficult integrations to get some numbers, but the
method is simple.

PROBLEMS
15.4.1 Find the formula for using
[\ foosin x ax
using f (=), (= /2), f©), f(r/2), and f(m).
ans. [ ssinx dx = (1 - ;fi) ) = F=m) + 33 [fnf2) = f(—nf2)]



15.5 THE INVERSE VANDERMONDE 251

15.4.2 Find a formula for
1
—J; f()In x dx

using £(0), £(1/2), and f(1).
Ans. — '[ : f(ln x dx = % [17£(0) + 20/(1/2) — f(1)]  Es=1/48

1543 Find f S0 dx = wo £(1/3) + wif 2/3)
15.44 Find f: e=*f(x) dx = wo £(0) + w3 £(2)

15.4.5 Find— f: FOOIN x dx = wo £0) + wyf(1/3) + w2 £(2/3) + ws £(1)

15.5 THE INVERSE VANDERMONDE
The method illustrated in the last section consists of the following steps:

1 Write down the proposed formula with undetermined coefficients.

2 For f(x) substitute I, x, x2, x3, ... until there are as many equations
as there are coefficients—Ilater we may find that we need more equations.

3 Solve the resulting linear equations.

The equations can always be solved since the determinant of the unknowns is the
Vandermonde determinant, which we proved (Sec. 14.4) cannot be zero if the
sample points are distinct.

‘The equations define the formula and will be called the defining equations.
If we write the matrix of unknowns as

1 1 1 1
Xy X2 X3 XN
1,2 2 2 2
X=|x X, X3 Xy
xivl 1 xN—' 1 xg-l xN—' 1

and write the weights, which we have generally been labeling w;, as a column vec-
tor w, then the left-hand sides are the moments of the operator for which we are
finding a formula and are the column vector m in the equation

m= Xw

From this we see that there is a separation of the sample points used and the
operator. The sample points occur only in the matrix, while the moments of the
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operator, which are all that we ever use of the operator in the method, are the
resultant vector. If we could find in some direct fashion the inverse matrix X ~!,
which depends only on the sample points, then questions of the loss of accuracy in
the solution process would be easy to examine. We therefore set about to invert
the matrix corresponding to the Vandermonde determinant.

The basis for the inversion process is the sample polynomials introduced in
the Lagrange interpolation process (Sec. 14.5), namely,

m(x)
mi(x;)
Notice that
ni(Xj) _ {0 i #J’
m(x) 1 i=j
We will work with the 7;(x) which have the property

0 i#
T[i(xj) = {ni(x‘.) # 0 =

Expanding out the r;(x), we have the polynomials
X)) = n- X P2 X T e ey =1

where the ¢;, ; are the elementary symmetric functions of the sample points x;
exceptfor theith sample point. The matrix of coefficients times the Vandermonde
matrix gives

€10 €11 C€1,2 0 Cp,n-1\f1 1 1 e 1
€2,0 €2,1 C2,2 0 Cn-1 X% X2 X3 Tt XN
.............................. X2 x? xg? e xy?
N0 Cna Ozttt Cwn-gJ\XYTD O XETH xfT e xR
=(7[i(xj))

which for our initial purposes is close enough to the inverse. To get the inverse,
evidently we only need to divide the ¢; ; by ,(x;), or else we can divide the answer
in the ith position by n,(x;) to get w;. Let C be the inverse matrix

C=x"!
then
w=Cm

is the solution of the system of defining equations.
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Itisimportant to notice that the inverse is found by forming the elementary
symmetric functions of the sample points, excluding one sample point each time,
and using these as the coefficients of the inverse, provided they are normalized by
the constant n,(x;). There are no awkward questions of the solution of the
system of equations and ill-conditioning of the matrix; the method is fairly
straightforward and should be clearly understood since it will be developed
further in later chapters.

156 UNIVERSAL MATRICES

The special case of equally spaced samples arises frequently in practice, and it is
worth tabulating these universal matrices. We have labeled them S, with the
sample points used in the following parentheses; thus S,(—3/2, —1/2, 1/2, 3/2)
means that four sample points at —3/2, —1/2, 1/2, and 3/2 are used. When this
universal matrix is multiplied by the vector of moments of the operator we are
approximating, we get the weights of the formula.

Universal Matrices

si=ss-wp=(1 7)) =1(; 73

0 -} ¥ 0 —1 1
S3=8,(—-1,0,1)= (l 0 —l)=§(2 0 —2)
0 3 b3 0 1 1

-3 2 12 -8
27 —-54 —-12 24
27 54 —12 -24
-3 =2 12 8

0 2 -1 =2 1
0 —16 16 4 —4
Ss=155(—-2,-1,0,1,2) =+ | 24 0 —-30 0 6
0 16 16 —4 -4
0 -2 -1 2 1

Se=Su—=4, -4 1 D=4

Se=Se(—4%,—1,...., %)

45 —18  —200 80 80 -32
—375 250 1,560 —1,040 —240 160
2,250 —4,500 —1,360 2,720 160 —320
=38401 2250 4,500 —1,360 —2,720 160 320

—-375  —250 1,560 1,040 —240 —160
45 18 —200 -80 80 32

0 -12 4 15 -5 =3 1
0 108 —54 —120 60 12 —6
0 —540 540 195 —195 —15 15
S; =] 720 0 —980 0 280 0 -20
0 540 540 —195 —195 15 15
0 —108 —54 120 60 —12 —6
0 12 4 —15 =5 3 1
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To make sure we understand how these universal matrices work and their
power, let us apply them to a number of specific formulas. Again let us derive
Simpson’s formula as a check on the method. We evidently want to use
S3(—1,0,1). The moments of the operator are

mo=fill-dx=2
m,=fjlxdx=0

1
m, = f_l x2dx =2/[3

bt 6-0
Sym = 0 —1) [o]=(%]=w
1 3 W\

which is, of course, the correct answer.
Next consider finding the Simpson’s ‘“ half-formula >

Therefore we have

O

[ 1o dx=w i f(=1) + w0 +10)

The moments are
0

mo=[ 1-dx=1
-1

]
m, =j_lxdx= -1/2

m =f° x*dx=1/3
2

0 -3 3 1 5
)
o % % 3 -1

Again, suppose we had tried to find a formula of the form

a

dx

Hence

=w_1f(=1) + wo f(0) + w, f(1)

| j

The moment vector is
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G s 60

and we have

In the case of

t n
J Sf(X)sin = x dx
-1 2
the moments were 0, 8/, and 0 so that
—4
o -+ 3 [s\ [#
1 0 -1) {S]=| o
o 3+ 3 \7 4
0 -
4

Last, suppose we wanted to interpolate at a point x using the same three
sample points. This time the moment vector depends on x. We have, after a
little thought,

x* —x
0 -3 3\ /1 2
(l 0 —l) (x)= 1—x?
0 3 i \x? x* +x
2
or more usually
2 _ 2
6 =E2 1 + (=@ + T )

as the interpolating quadratic, which is clearly the correct answer.

PROBLEMS

Using the universal matrices, do

15.6.1 Prob. 15.4.2.

15.6.2 Prob. 15.4.5. Use S, and first move the formula to proper sample points.
15.6.3 Prob. 15.4.4.
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15.6.4 Prob. 15.4.3.
15.6.5 Prob.15.4.1.
15.6.6 Find a quartic interpolation formula through (-2, —1, 0, 1, 2).

15,7 SUMMARY OF THE DIRECT METHOD

The direct method consists of first deciding what information (samples) to use
and then writing a linear combination of this information with undetermined
coefficients. We have chosen in this chapter to confine the discussion to function
values at the chosen sample points.

We now impose the conditions that the formula be true for f(x) equal to 1,
x, x2,...asfaraswe can go. This produces the defining equations. On one side
are the moments of the operator; typically this operator is integration, but we did
one problem estimating the derivatives at the origin and another problem esti-
mating an interpolated value at the point x. On the other side of the equation is
the Vandermonde matrix of sample points. The inverse of the Vandermonde
matrix can be found, if desired, as a combination of sums and products of the
sample points in the form of the elementary symmetric functions, each time
excluding one sample.

In the special case of equally spaced values the inverse universal matrices
were tabulated. They show clearly how the method separates the information
used (the samples) from the particular formula sought.

The fact that the Vandermonde determinant cannot be zero shows that any
formula we want can be found provided we can find the moments of the operator
we are approximating.

Conventionally we impose the conditions that the formula be true for
1, x, x, x3, ..., but a little thought will show that we could take any sequence of
polynomials for which the kth polynomial was exactly of degree k (and no lower).
The reason is that if the formula is true for all powers lower than k, then putting in
either x* or a polynomial of degree k is the same since automatically all the lower
powers of the polynomial will cancel out. Thus there are times when for the
convenience of the algebra we will use a sequence of polynomials of degree k.
Note that in the case of finding the error we must use a polynomial whose leading
coefficient is 1 so that we get the right scale factor.

Further thought shows that any set of N linearly independent polynomials
could beusedin place of 1, x, x%, ..., x¥ 7!, and occasionally this freedom is worth-
while.

We have not given long lists of integrals to evaluate; rather we have con-
centrated on finding formulas. The formulas are meant to be used, but the
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process of substituting function values into a formula is so straightforward that it
should not require further drill at this stage. Butitisimportant to realize that the
formulas are to be used and not merely admired.

15.8 APPENDIX

A number of integrals arise in the course of finding formulas of the form
a
L K(x)f(x) dx
Among them are:

0
f e *x"dx=n! naninteger
-0

© 135 Qn-D) o

f e x™Mdx = > nx1
fw eFdx=/n n=0
1 i 1
—fo (IHX)X" x—m
1 /2 /2
J. — dx--J~ cos"xdx=f sin” x dx
o\/l 0 [}
1:3:5:--(n—=1Dnx
I(Wi n—2,4,...
-\ —
‘2 (n b n=1,375,...
+ 3.
/2 I'l(n + 1)2IT[(m + 1)/2]

fo i x cos™ x dx = — o + 1+ 2)12]

where I'x)=(x—-DI(x—1)
L(1/2) = /=
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ERROR TERMS

16.1 THE NEED OF AN ERROR ESTIMATE

We have adopted an algorithmic approach to finding formulas; we intend to give
a rather detailed description of how any of a wide variety of formulas can be
found. With this approach we also need a uniform method for finding the error
term of the formula, because without an estimate of the error it is difficult to rely
on an answer produced by a machine. Theerror term is also called the truncation
error or remainder term, from the Taylor-series form of derivation (Sec. 15.3).
The error is expressed in terms of a high-order derivative, just as in the case of
interpolation formulas, and all the faults of higher derivatives (Sec 14.7) apply;
in practice they are both hard to find and likely to be large. The derivatives
occur because a polynomial approximation is used in the classical approach.

In this chapter we are concerned with [inding the error term, not only for the
kinds of formulas we have already examined, but also for those we will take up in
the next few chapters. Therefore, we treat the general case, and, as so often
happens, the general case is more difficult to carry out than are many trick
methods which work in special cases. It is worth accepting this cost in these
days of almost infinite knowledge. We also ignore, for the moment, the
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question of roundoff in the use of the formulas; in the derivations themselves
we will watch out for roundoff effects.

Our approach s to first find a formula in terms of an influence function which
gives the exact expression for the error. But let us be clear about this: if we had
the exact error in a useful form, then we would know the exact right answer!
When there is an exact expression for an error, it is generally useless, and the
more we give up in precision of stating the error, the more useful we can hope it
will be. From the influence-function representation of the error we will pass in
many cases to a form resembling the mean value theorem with its unknown place
of evaluation, 0—the form of the error will be some known constant times a high-
order derivative evaluated at some 0 in a known interval. From this it is easy to
pass to bounds in terms of bounds on the derivative.

When we want to compare formulas, one with another, and both have
same-order derivatives in their error terms, it is natural to suppose that the one
with the smaller coefficient has the smaller error; but it does notfollow. Indeed,
we realize that a relatively poor formula will for certain functions give more
accurate answer than that of a better formula. Evidently we mean that one
formula is better than another formula when measured over some class of func-
tions. Because of the unknown point 0 in the error terms we are in fact unable
to find the variance over any reasonable ensemble of functions [if f(x) and
—f(x) are both in the ensemble of functions with equal weight or probability,
then the average would be zero]. Thus we are forced to compare formulas having
same-order derivatives by comparing the coefficients of the derivatives, and we will
at times make the wrong choice—we hope to be right most of the time.

16.2 THREE BACKGROUND IDEAS

The method of finding the error term for a formula rests on three important results,
all of which we have seen in the past, but it is worth reexamining them to be sure
we understand what is going on. This is especially necessary because the
method, while simple once it is understood, seems to baffle the beginner.

The first result was used in Sec. 4.7. The general expansion of a function in
a Taylor series with an integral remainder has the form

[0 =1@+ - af@+E D oty 4 -
(X ) m—- m m—1
—e g Y@+ o 1), j F™(s)(x — sym=t ds
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If the last term is integrated by parts, we get

u=(x—"t  du=—(m—1)x - ds

dv = f™)(s) ds v =fm"1(s)

(m ! [(X—S)m—lf(m-l)(s)l +(m— 1)J"f(m D(s)(x — ™" 2ds]

= G = @+ s [ - 9 s

The integrated term cancels the preceding term of the expansion, while the integral
is the same as before except that the index m is reduced by 1. Thus, a Taylor
series with an integral remainder is simply the repeated application of integration
by parts (applied in the reverse way, of course).

The second result we need is the weighted mean value theorem for integrals
(proved in Sec. 4.7), which states that if f(x) and g(x) are continuous and if f(x) > 0
ina<x<b,thenforsomefina<f<b

b b
[f09x) dx = 9(0) [ 1) dx

The third item is the index m for which x™ first fails to satisfy the formula.
We began our derivations by making the formula exact for f(x) equal to 1, x, x?,
.., etc., and continued until we had enough equations to determine the coeffi-
cients in the formula. It sometimes happens that an additional (in principle any
number but in practice generally only one) power of x will fit the formula. For
example, in Simpson’s formula we used 1, x, and x? to determine the three coeffi-
cients, and we later found that x would also fit the formula exactly. In the
Simpson example, m = 4.
We need a test to see if by chance the next power of x exactly fits. In the
cases we have examined we are given function values at the sample points x;
(which are assumed known), and then all the arithmetic is rational in terms of the
moments m, (Sec. 15.5) and the sample points x;. In the case of the next chapter,
where we are also given derivatives of the function as well as function values, the
situation is the same. In Chap. 19 where the x; are not given in advance, we will
have to examine this point further. Thus we assume we can find the value of m
which is the lowest power of x that does not fit the formula. If we let E, be the
error in the formula when x* is substituted into it, we have

E0=El='“= m—1=0 Em¢0
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PROBLEMS

Find m for:
16.2.1 Prob. 15.4.1

16.2.2 Prob. 15.4.3
16.2.3 Prob. 15.4.4

16.3 THE BASIC METHOD APPROACH
The class of formulas we are going to examine has two properties:

1 The LHS (left-hand side) is a linear operator.

2 The estimation of this operator is made by a linear combination of func-
tion values and derivatives of order < m — 2 where the formula is made
exact for f(x) equal to 1, x, x%, ..., x™"1,

It is easiest to think of the operator as integration, but we are not confined to it.
We have the operator equation

LHS = RHS + remainder = RHS + R
or
R =LHS — RHS
Supplying the function f(x), we get
R[f(x)] = (LHS — RHS)[f(x)]

We next represent f(x) in the Taylor series with an integral remainder

[ =1@+ (- af @+ EZ ay

(x=a""" -y
+ — =T f (a)+ 1)'
Now let A4 be the smallest of all the values of x that occur any place in the
formula, and let B be the largest. Inthe Taylor expansion we see that (on setting

a=A)

—— S+

[7s)ee = 9y s

J() =Pp_y(x) + o

(m) —ym—1t
1), [rmoe = syt as
where P,,_,(x) is a polynomial, in x, of degree m-—1.
We made the formula (determined the coefficients and later in Chap. 19
possibly the sample points x;) so that

E,=E =:+=E, =0 E,#0
hence
(LHS — RHS)[P,,-1(x)]=0
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We have, therefore, only to work with the remainder term of the Taylor series

RIS(] = (LHS — RHS)| 5, [ — 97~ as]

(m - 1)!

164 THE INFLUENCE FUNCTION
We now introduce the notation

ifs>x

0
(x—s){*={(x—s)l ifs<x

For j =0 (see Fig. 16.4.1a):

j21

0 ifs>x
— o =
=9 {1 ifs<x

x-9?
/(x -9? x -5)?
I s * | H x x s
(a) ®) ©)
FIGURE 16.4.1

Note that (see Fig. 16.4.15 and ¢):

2 e = = D - 72

a’ _ —
2 =9t Y=(m—-1m-2)(x—-s)7"3
etc., up to derivatives less than' than m — 1. Note also (see Fig. 16.4.2) that
b b — m __ — m
f(x—s)"i"dx=( s)+m(a i m>0

! We canusederivatives of order m — lif we arenot frightened of differentiating (x — s)f,,
to get (x— )% -
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—5!
i "‘)1 (x ~s);

| s X —>s

FIGURE 16.4.2

Using this new notation, we may increase the upper limit of the integral to B
(B was defined in Sec. 16.3); that is, we have

R(f) = (LHS — RHS)[(m i Bi

since we have added nothing in the integrand.
Because everything is linear and the operations in LHS and RHS are on
the variable x, not s, we have

f:ﬂ'"’(s)(x s ds]

1 5 m m~1
R() =57 [ S (HLHS - RES)(x = 7] ds
We set
— qym-1
(LHS — RHS) [%] = G(s)

G(x) is called the influence function.
Hence

B
RU() = [ f™$)G() ds

Notice that in this expression we have separated the dependence on the
formula G(s) from the dependence on the function f(x) we are using.
For the particular function

Sx)==x"

we get
RLf(0)] = j - 'G(s) ds = E,
A

where E,, is, of course, the result of substituting x™ in the formula. Thus we know
that

B E,
L Gy ds =2 #0
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An examination of the structure of G(s) shows that RHS | f(x)] is piecewise
a polynomial inside (4,B) and that it is continuous. For many operators the LHS
{f(x)} is also piecewise continuous.

16.5 WHEN G(s) HAS A CONSTANT SIGN

In most of the important cases it turns out that the influence function G(s) has a
constant sign. When this is so, we can use the mean value theorem for integrals
and write the remainder, or error term, in the form

B B E
R =R(f) = [ f*()G(s) ds =/ *0) [ G()ds =5 1®)

where m is the first power of x that does not satisfy the formula.
As a trivial example of this, consider the Taylor series itself. We have

(x —s)m™!

66 =1

We then apply the weighted mean value theorem and get

2
f@-1@-e-ar@-S2 @ -
(x a"” m— * m m—
= T @) = ey [0 = ds
(m)
- L0 e,
f‘""(0) (x=a" _(x= ™)
(m—l)' m m!

This form of the Taylor series is widely used in applications.

The central problem is, therefore, how we can determine when G(s) has a
constant sign in the interval (4,B). As a first approach, we examine a number of
special cases. Consider first the trapezoid rule

R = [ 00 dx - LOHO



16.5 WHEN G(s) HAS A CONSTANT SIGN 265

which is exact for f(x) equal to 1 and x. Thusm =2, and

LHS — RHS
69 = = [x=9)."]

166 = [ (e 9, dy - L= 22029

_(1=93-(0-57 (1—9.+0=9).
N 2 2

For s > 1 (see Fig. 16.5.1)
1!1G(s)=0
since all the terms vanish. For1>s5s>0

1G(s) =211 - 5 = (1 )] = =4 =9

= 0
2 2 =
G(s)
| s
1
-l —— ——
?l\—/
FIGURE 16.5.1

For0>s
l!G(s)=%(l—25+sz—s2—1+s+s)50

Therefore

R =2 @ = - L0

As a second example, consider Simpson’s formula, where m = 4,

31G(s) = (LHS — RHS){(x — 5)3}

RUSLIS- 94 1= 9% + 40— % + (1~ 93]
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We have four regions to consider (see Fig. 16.5.2):s>1;1>5>0;0>s2> —1;
and —1 >s.

s>1: 3!1G(s)=0

(=9 U=-53)3 NI 1)
>0: ! =— = —_ ———
12520 31G(s) 2 3 ¢ s)( y 3
—35-1
— —<)3
=(1-5%) ( P ) <0
(1-9)* (1-5P° 4-s)°
—1: 1 = — 2 _
0z2s>-1: 31G(s) 7 3 3
=1 +465%+85° +35*
N 12
3s—1
= (22—
=(1+5) ( o )<0
-1z=s: 31G(s)=0 by tedious algebra
G(s)
L 1
-1 \/ e
4. L
12
FIGURE 16.5.2
Thus using E, = — 1% (from Sec. 15.3), we have
4 f40)  fY0)
=5 ="
as the error of Simpson’s formula.
As a third example, consider the formula
[ et dx = @;&
(1]
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To find m, we try
® g g 1+1
f(x)= foe dx—l—T—l
® e 0+2
f(x)=x: J; xe dx—l—T—l
© 2
f(x) = x2: j xze"‘dx=2=0+2 =2
[ 2
o 3
f(x) = x%: J x’e""dx=3!;éo+2 =4
[ 2
Hencem =3,and E; = 3! —4 =2. Fors >0 (see Fig. 16.5.3)
2!G(s) = (LHS — RHS)[(x — 5)2]
© _ 2 — <)2
=f e (x —5)? PR Clnt) i el Gl
0 2
® a2
=f e *(x —s) 2 dx-—(2 )
s 2
_ [(x —s5)ie* +2(x —5), e + 2e"‘] (2= 5)%
-1 -1 —-1]| 2
=2e—s_(2—s)2+
Fors>2
2G(s) =2e"*>0
For2>s>0
s (2=sP s
2G(s) = 2e 3 _2_3+
requires some examination.
21 G(s)
2e~S
1 2 $

FIGURE 16.5.3
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From the series expansion we see that at x = 0 the curve is tangent to the s
axis and that the second derivative is positive so that the curve is concave upward.
A little more effort convinces one that G(s) > 0 foralls. Wehad E; = 2, so that

16

Ry =2 10 = L2

16.6 THE PRACTICAL EVALUATION OF G(s)

The three previous examples show that the method is straightforward, but can be
tedious. We need, therefore, to examine the process to see how it can be
simplified.

In the first place, it should be clearly recognized that G(s) is piecewise con-
tinuous and needs to be evaluated only oncefora formula. Thus the simple, crude
method of using a computer to plot the points with small spacing and looking at
the resulting picture can be used.  As we did in the third example, a little bit of the
calculus can also be used to aid in plotting G(s).

There are further items to be noted.  First, outside the range of all the func-
tion values G(s) =0. This follows easily from noting that if s is greater than
every sample pointand value used in the operator, then all the values will be zero.
At the other end of the range of s, all the terms will be there, and since the formula
is true for a polynomial in x of degree m — 1 and in that range we have (x — s)™ !
which is a polynomial of degree m — 1, we know that G(s) will vanish identically.

We notice that as we progress from right to left, taking more and more terms,
the algebra becomes more difficult. This can be easily remedied by using a
second notation

0 s<x
—5) = i
(=) {(x—s)’ s>x 120

whose meaning is obvious. Note that

=5 +x—s) =@x-s)

Now, since
(LHS — RHS)[(x — 5)/]=0 j<m
(x — syt (x —s)ym?
(LHS — RHS) [_(m_—ﬁ'—] = —(LHS — RHS) [—(-m—_—l—)'—]

we can start from the other end of the interval and use fewer terms for a while.
When the formula is symmetric, as Simpson’s formula was, then G(s) is also
symmetric [notice how replacing s by —s transforms one expression for G(s) into
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the other] so that only half the range need be examined. The formula may be
symmetric about a point x # 0, and G(s) will also be symmetric about that point.
We need, in the method, the value of E,,. We can find this directly from
Chap. 15 from knowing the sample points, without finding the weights. All we
need to do is compute, using n(x) = (x — x;,)(x — x3) *** (x — x,), (or xn(x)),

R[x(x)] = (LHS — RHS)[7(x)] = LHS[n(%)] = E,,

since n(x) is zero at each sample point on the right-hand side. Thus before we get
involved in the details of the formula and in finding G(s), we can find the error [if
G(s) turns out to be of constant sign].

PROBLEMS
16.6.1 Show that the three-eighths rule is valid.

3
[ 109 s =3O+ 30 + Q) + 101 - 57O

16.6.2 Show that the midpoint and trapezoid rules have errors which are in the ratio
of —1/2 to each other.
16.6.3 Show that

[ ax=g [yr(-3) +2r0+ 37 (3)] + o5 0

16.6.4 Find the error term of Prob. 15.4.3.
16.6.5 Find the error term of Prob. 15.4.4.
16.6.6 Find the error term of Prob. 15.4.5.

16.7 WHEN G(s) IS NOT OF CONSTANT SIGN

When G(s) is not of constant sign, we cannot express the error as we did in the
previous section, Indeed, for some functions the error cannot be so expressed.
To show this, suppose that G(s) is positive except for some small interval and that
the integral of G(s) is positive (see Fig. 16.7.1). Consider now a function f(x)
whose mth derivative is positive and continuous but which is small outside and
large inside the interval in which G(s) is negative. Thus the integral

j ’ F™(5)G(s) ds
A
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FIGURE 16.7.1

will be negative, but the product
B
1) [ G(s)ds
A

will be positive. Hence there can be no  in such a case, and we have proved
Theorem 16.7.1 If G(s) is not of constant sign, then there are func-
tions which cannot have their error terms written in the form

E m pr(m m i
T S0) =10 [ GGs)ds

The second point to observe is that when G(s) changes sign, we can still get
a bound on theerror. The bound follows readily by taking the absolute value of
G(s):

fo(”)(s)lG(s)] ds = f™(0) JBIG(S)l ds
4 4
Hence

B
< max{| ()} [ 16| ds

B

[ 1")6(s) ds
4

where the maxis overall x (4 < x < B). The computation of the integral
B

[ 1661 ds
A

can be done analytically or estimated numerically since, again, it need be done
only once for any particular formula.
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The third observation is that when the sign of G(s) changes, then we can
still find an error term.  As anillustration, consider the function G(s) as shown in
Fig. 16.7.2. The point x = C has been chosen so that the two shaded areas are
equal in size; that is,

B
j G(s)ds =0
c
We have

B
R =R(/)= [ [™(s)G(s)ds

-[[+[]

"G(s)

I c &“p

FIGURE 16.7.2

We integrate the second term by parts and set

| "G(s)ds = H(s)  Note: H(B) = H(C) =0.
(o}

Then

R= [ F™(6)G(5) ds + F ()
4

B B
= [ 1+ (9H() ds
c Jc
(o} B
= [ £™©)G(s) ds — [ £ s)H(s) ds
A (o}
We can now apply the mean value theorem to each piece.
c B
R=7™©)[ Gs)ds—f™*0,) [ H(s)ds
4 c

If G(s) is as shown in Fig. 16.7.3, we could simply set

H(s) = L G(s) ds
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G(s)
4 N—— B
FIGURE 16.7.3 Another particular G(s)

and integrate this by parts
R(f) =f"(s)H(s)|"

SB

=/™(B)H(B) — /™" V(0) LH(S) ds

J‘ ferO()H(s) ds

If we put f(x) = x™*! in this formula, we get

B
R(f) = E, 4, = (m+ 1)! BH(B) — (m + 1)!f H(s) ds
A
so that
E,
m+ 1!~ m!

B
f H(s) ds =
4
Therefore we have in general

J™(B)E, f™*10)
RN = m! (m + 1)!

We shall not analyze the general case, since the results are not used in the text, but
shall merely observe that such forms can be useful at times.

[Em+l - (m + l)BEm]

16.8 THE FLAW IN THE TAYLOR-SERIES APPROACH

Since there exists an error term from the Taylor-series of the form!

a)

fla+x)=f(a) + (x —a)f'(a) + f'@) +:
(x ) — a)™f"™(a + 6x)
-t f @) + !

1 See Sec. 16.5 for this Lagrange form.
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it is natural to ask why we cannot use the Taylor-series approach (second method,
Sec. 15.3) to obtain the error of the formula. Let us suppose that we do use the
Taylor-series approach. The coefficients of the formula have been determined
to make the powers of x cancel on both sides up to the mth power, which is as-
sumed not to cancel. Let us fix the x; values in our mind. We therefore get a
series of terms in f™(a + 0, x,) for various 6,

o f™a + 0,x)) + o [ (@ + 0,x3) + *+ + 0 f ™ (@ + B x)

where, of course, the 0; depend on x;, 6, = 0,(x;). We now want to replace this
expression by

(g + 0tz 4+ + 2 ) f™(a + 0x)

for some 0 (and we expect some «; to be positive and some to be negative and hence
some cancellation). Under what circumstances does there exist such a §?

We know from the influence-function approach that if G(s) is of constant
sign, then there is such a 0 and that if G(s) is not of constant sign, then there are
some functions f(x) for which thereis no such . In this indirect manner we can
answer the question. There seems to be no direct way of finding the answer, but
if one were found, then it might provide an alternative, and perhaps better,
approach to the theory of the error term.

16.9 A CASE STUDY

The idea that G(s) does not change sign except in very special circumstances is apt
to emerge from the study of classical formulas where it is always of constant sign.
The following example is therefore illuminating.

Consider the family of integration formulas

[ 16 dx = _uf(=) 4 wef @) + m SO

where tisa parameter (see Fig. 16.9.1). This family includes a number of interest-
ing cases. We are sampling the integrand at the points —t, 0, and ¢ and are
weighting the samples by w_,, wy, and w;. We will only consider 0 < ¢ < 1 and
ignore t > 1.

By symmetry it is easy to see that w_, = w;. The defining equations are,
therefore,

f=1 2=2w; +wy
f=x* 23=2w1?
f x*: 2/5 = 2W1t4 + E4
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f(x)

FIGURE 16.9.1

From the second equation we have

and hence from the first

and from the third we get

We need to examine the influence function G(s) (see Fig. 16.9.2). Again by
symmetry we need only examine the two intervals 1 >s>tandt>s>0. We
have, since m =4,

4 4
316 =SB TEZI L gy (- 92
1
-2(1 —?)(—s)i
Forl>s>t
316(s) = & ;”420
Fort>s=>0

(1-9* (-5

’ =
31G(s) 2 37
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G(s)

FIGURE 16.9.2 t 1

Can this change sign? To find out, we evaluate itat s =0
t
31G(0) =1/4 — 3

Hence for t = 3/4, G(0) = 0; for t > 3/4, G(0) < 0, and the influence function G(s)
changes sign(see Fig. 16.9.3). Thus

for3/4<t<1 G(s) changes sign
for0<t<3/4andt=1 G(s) has constant sign
The case ¢ = 1 requires special investigation and is Simpson’s formula

0.3~
G (s) changes sign

0.9 1.0

® Simpson

FIGURE 16.9.3
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If G(s) does not change sign, then the error is

E f“(6) 1(1 r’)

4! 12\s 3
The case E, = 0, which is
t =./3/5=0.7745967 ...

immediately attracts attention. It falls in the region 3/4 < t <1 of sign change.
And this is typical; in the region of sign change there is apt to be a place where the
total area under G(s) is exactly zero, meaning that E,, = 0, and the formula will
haveextraaccuracy [and a different G(s) will have to be investigated using the ap-
propriate m, in this particular case, two higher than before].

Table 16.9 shows a number of special cases of interest in the family of
formulas. A study of this table shows how the error changes as we change where
we sample the integrand. The beginner should study families of formulas to get
a feel for the effects of where samples are taken and how the weights Change.
From this can come a feeling of what can be expected from some new formula
before it is investigated.

Table 16.9

t wo wy Eq Remarks

12 =23 4/3 7/30 = 0233  Bad roundoff properties
1/v3 0 1 8/45 = 0.1778 2 point Gauss (Chap. 19)
2/3 2/4 3/4 14/135 = 0.1037  Better than twice as accurate

B as Simpson’s formula
1/v2 2/3 2/3 1/15 = 0.0667 Chebyshev (Chap. 19)
3/4 22/27 16/27 1/40 = 0.0250 Better than 10 times as
_ accurate as Simpson’s formula
Vv3/5 8/9 5/9 0 = 0.0000 3 point Gauss(Chap. 19)
1 4/3 1/3 —4/15 = —0.2667 Simpson’s forumla
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FORMULAS USING DERIVATIVES

17.1 INTRODUCTION

In the past three chapters we have studied, respectively, interpolation, finding
formulas, and finding their error terms, using only function values. In this
chapter we will repeat the work, this time using values of the function and of one
or more derivatives.

Why should we care about using derivatives? Experimentally they are hard
to come by, but when the function is given in a mathematical form, then they are
easytoget. Thisremarkcontradicts one’s initial impression from having taken a
calculus course where differentiation tends to spread out the formula over more
and more paper as the derivatives get higher and higher. This spreading out is
indeed true, butitis not really relevant to modern computing. When an examina-
tion is made of how machine time is spent, it turns out that the evaluations of
square roots, exponentials, logarithms, arctangents, and sines and cosines are
done by subroutines which usually take more time than 50 arithmetic operations.
But differentiation does not introduce any new radicals, exponentials, logarithms,
or arctangents, and at worst a sine goes into a cosine and a cosine goes into a sine
of the same angle. Thus, while the formula for the derivative may appear much
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longer when written out on paper, it will usually take much less time to evaluate
provided the costly parts of the function evaluation have been saved to be used
again. Aswe shallsee, the value of a derivative at a point is worth almost as much
as another function value at some new point.

We can expect, therefore, that when pressed for machine time, it will be
worth considering formulas which use one or more derivatives as an alternative to
using more function values. In this chapter, we show how to derive such for-
mulas.

17.2 HERMITE! INTERPOLATION

Hermite interpolation uses both the function value and the value of the first deriva-
tive at each point. Thus the interpolating polynomial is tangent to the function
at the sample points, and Hermite interpolation is sometimes known as * osculat-
ing interpolation.” The first approach to Hermite interpolation will be similar to
our approach to Lagrange interpolation (Sec. 14.5). In place of the sampling
polynomials 7;(x) of the Lagrange formula we need to find two such families of
functions, the g;(x), which are zero at all the data except the ith function value, and
the 7,(x), which are zero at all the data except the ith first-derivative value. In
mathematical symbols

ox;) = {;eg izj T(x)=0  forallj
oi(x)=0  forallj Ti(x)) {:g 11 :j

We begin by constructing the 7;(x). Evidently, for all the sample points,
except for x;, we have double zeros, and at x; we have a single zero. Therefore,
our sampling polynomial is

(%) = n2(x)(x — x;)
where as before

(%) = (x = x)(x = x3) "t (X = X)X = Xp40) 0 (X~ Xysy)
The degree of 7,(x) in x is 2N + 1, as it should be.

The o,(x) are less obvious, so we assume the reasonable form

0i(x) = n2(x)(x + b)
where x; + b #0. Differentiating, we get

0i(x) = 2m(X)mi(x)(x + b) + m*(x)

! Charles Hermite (1822-1901).
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But
oi(x) =0
so we have
oi(x) _ 2m(x)mi(x)(x; + b) + 72(x.) -0
oi(x;) m2(x)(x; + b)
mi(x; 1
=2 ‘Ex; T
1

=2
j;,-xi X; x;+b

which determines b.
Again, the important part is iow we found the ¢,(x) and 7,(x), not the result.
Using these functions makes it easy to see that the Hermite interpolating
polynomial is
[ ai(x) ,+T(X) ]
I(‘xl) l(xi)
To find the error term, we proceed exactly as we did in Sec. 14.6. We

know that the difference between the function y(x) and the approximating poly-
nomial P,y ,,(x) has double zeros at each x;, and so we write the difference as

Y(x) = Poy1(x) + T (0)K(x)

y(x)= Z

where, as usual,

n(x) = (x = x)(x — x3) (X — Xnyy)
We now pick an arbitrary x* # x; (all j) such that

Y(x*) = Py o1 (x*) + 22 (x*)K(x*)

and then consider the expression

$(x) = y(x) = Pay+1(x) — I (x)K(x*)
This has double zeros at each x; and asimple zero at x*.  Usinga simple extension
of the mean value theorem, we have that the first derivative has at least 2N + 2

zeros, the second derivative 2N + 1 zeros, ..., the (2N + 2)nd derivative at least
1 zero, say Xx. Hence

YENID(R) = 2N +2)! K(x*)
and putting this in the original expression for ¢(x), we get

()

(2N " 2)' y(“’”)(i)

Y(x*) = Pyy o (x*) +
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But, since x* was arbitrary, we may write x* as x, and we have the formula

n*(x)

v’ @

Wx) = Pyyi(x) +

for the error of Hermite interpolation.

PROBLEMS

17.2.1 Construct the Hermite interpolating polynomial on x = 0and x = 1.
17.2.2 Apply Hermite interpolation to

y=sinx using sin 0° = 0.0000 cos 0° = 1.0000
sin 30° = 0.5000 cos 30° = 0.8660

(beware of radians and degrees!) and compute sin 15°.

17.2.3 Using 0°, 30°, and 60°, by the Hermite interpolation find sin 15°.
17.2.4 Carry out the theory for y, y’, and y”.

17.3 THE DIRECT METHOD

In the direct method for finding the Hermite interpolating polynomial of degree
2N + 1 we simply write down the form

Poyei(¥) =ag + ayx + -+ + ayy g x™¥ !

and impose the conditions on the polynomial to get the defining equations (where
we have put the derivative values after the function values)

— 2 2N+1
Ponsr(x) =ao+ax; + ayx,* +-:+ arn+1Xy
— 24 ... 2N+1
Ponii(x2) =ao+aix; + axx;*+-+ arn+1X2
2 2N+1
Poysr(xy+1) T @0+ aXyer + @Xyyeq+0+ AIN+1XN+1
.. 2N
Pinsr(x) = a, +2a3x;  ++ (2N + Dagye Xy
2N
Poivii(xne) = a, +2a3xy41 + 0+ (2N + Dagy X35

We will later show that the determinant of these equations is not zero, and
hence we can solve directly for the interpolating polynomial.
We recognize that if we were to integrate this polynomial, we would get a
linear combination of the data
N+

b 1
L Poys i) dx = 3 D0 f(x) + wif (x0)]

k=
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Knowing the form, let us apply the direct method for finding the formula for
integration that uses both the function values and the values of the first derivative
at each point. Using f(x) = x/, we get the defining equations

N+1
v omy= Y wexJ+wijxi™'1  j=0,1,...,2N+1
k=1

The matrix of these equations is exactly the transpose of the earlier set of equations
used to find the Hermite interpolating polynomial.

We shall solve these equations by what amounts to finding the inverse
determinant. If we write the o;(x) as polynomials, we get

0(X) = 81,04 Si, 1% + 0+ 8 o XN

Now if for each j we multiply the jthrow by s;, ;and add all the resulting equations,
we get, after some careful thought about what the g;(x) actually are [note that
oi(x;) = 0fori #jand oi(x;) = 0 for all j],

2N+1 N+

1
Y sy my = kz [wea:(xi) + Wi ar(x)] = wio(x))
Jj=0 =1

Similarly, expanding the
TiX) = t,0 + 41X + 00+ by gy X2

we are led to

2N+1

Y b, my=witix)
Jj=0

Thus we have, for all practical purposes, the inverse of the corresponding deter-
minant. Since we have found the inverse, the determinant could not have been
zero.

The method seems a bit magical so we will illustrate it in the next section by
applying it to two particular cases. Again, it is the method more than the result
that we care about.

174 THE HERMITE UNIVERSAL MATRICES

The process of using the sampling polynomials is so useful in the practical work
of finding formulas, and the inverse matrices are so useful, that it is worth
developing the cases of two and three equally spaced data points.
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In the case of two points, we use x = —1/2and x = 1/2 as the sample points.
For any linear operator L[f(x)] we have the defining equations.

L) =myg=w, + w,
L(x) =m;=w,(—1/2) +wy,(1/2) +w} + wy
L(x?) = my = wy(—1/2)* + w(1/2)* + 2[wi(—1/2) + w3(1/2)]
L(x*) = m3 = wy(—1/2)* + w5(1/2)* + 3[wi(=1/2)* + w3(1/2)*]
From symmetry it is obvious that the two a(x) are related, oy,,(x) = g_,,(—x)
O_12 = (x = 1/2)*(x +b)
0Ly =2(x — 1/2)(x + b) + (x — 1/2)?
We know a_,,,(—1/2) = 0, and so we have
=2(-124+b)+1=0
b=1

and therefore
o-12(—1/2)=1]2

Hence
o_ 1/2(x) 3 3 1
— =2 — = x + =
g_ 1/2(_1/2) 2 2
gives the elements of the inverse matrix (namely, 1/2, —3/2, 0, and 2). Corre-
spondingly, we have for 7,,,(x) = —7_;,5(—x)
1 1 1
- 1) =3 2 _ -
T =@-PE+Pd=x-5x ¥t
=2 - D+ +(x—4)?
t’—l/Z(_ 1/2) =1
o1 s 1, 11
PR ES 17 R R
Using these coefficients, we have the inverse matrix on the points x = —1/2
and x =1/2
1 x x X
0-1/2(%)
—_— 1/2 =32 0 2
o-12(—1/2) ! /
012(%)
12 32 0o -2
01/2(1/2) !
T_1/2(%)
_— 1/8 —1/4 —1)2 1
a1 | MUY
RIVECIN —18 —14 12 1

71/2(1/2)
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For three points x is equal to —1, 0, and 1 and we have for the inverse

00 4 -5 -2 3
40 -8 0 4 0
1floo 4 5 -2 -3
2lo0 1 -1 -1 1
04 0 -8 0 4
00 -1 -1 1 1

We derive only one row, say the fifth, since the others are similar.

To(x) = (x — 1)%(x + 1)’x = 0 + x + 0x> — 2x* + Ox* + x°
75(x) = 1 — 6x> + 5x*
75(0) =1
Hence the coefficients are 0, 1,0, —2, 0, and 1, and the 1/4 in front adjusts the

entries correctly.
Higher-order cases of the inverse matrix can be done but are not likely to be

useful.

PROBLEMS

1741 Find J * £(%) dx = % [770) + 16£(h) + T£Qh)]
° Hf©9
4,725

h?
+ s [f(0) —f" 2] +
17.4.2 Using both matrices, find — f ' Sf()In x dx.
[
1743 Find | " £(x) dx for 2 points.
o

17.44 Find '[ ' f(x) dx using x=1/4 and x = 3/4 as the sample points for f(x) and
0
().

175 SOME EXAMPLES

We propose to find some typical formulas as illustrations of the method of using
derivatives as well as function values.
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EXAMPLE 17.1 Find
1
[ S0 dx = wo S0/ + w5 ' 112)

if  flx)=1 then 1=w,
if f(x=x then 1/2 = wo(1/2) + wy, wo =0
To get E, we use f(x) = x?
1/3 = wo(1/2)? + 2w(1/2) + E,
E,=1/3—1/4=1/12
The G(s) is (m = 2)
(1-5F-0-9%
2

11G(s) = —(12-3),

Forl>s>1/2
(1 —9)?
2

By symmetry, or further algebra, we conclude that G(s) >0 (0 < s < 1), and we
have the midpoint formula (again)

G(s) = 20

[ =g re
o

EXAMPLE 17.2 Find

1
[ 769 dx = waf (O) + waf (1) + wo s (0) + wif (D)

We can use the inverse in Sec. 17.4 as a check. The defining equations are
1=wy+w
12= +w +wo+ w
3= +w + 2wy
/4= +w + 3wy
I5= +w +4wi + E,
The fourth equation minus the third gives
1/4 —-1/3=w; = —1/12
and the rest is easy, w; = 1/2, wy = 1/2, wy = 1/12, E, = 1/30

190
720

[ 165 = SI67O + 61D + 10— 1) +
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To check G(s), we have
31G(s) = (LHS — RHS)[(x — 5)}]
andforl >s>0

(1-5% 1
— - 60 -9 ~ 301 - 93]

(1 —s)?
4

31G(s) =

[l—25+sz—2+2s+l]=[s(lz_s)]220 1

EXAMPLE 17.3 Find

[} i e = a1+ SO + )
+ b1 S(=1) + bo f'(0) + b, S'(D)

By now we can begin to recognize symmetry and realize that if in this problem we
set

a_;=a

b_y=-b by=0
then the formula will be true for any odd power of x. Thus we only need to
use f{(x) equal to 1, x2, and x*:

f)=1": n=2a; +a,

fx) = x*: ’-2’ =22,  +2(2b)
f(x) =x*: 38_7r =2q, + 4(2b,)

from which it is easy to find

b ;7.‘ a —.5_n a —275
L) 1716 °7 16
Using x®
f—’;=2a1+6(2b,)+£6
Es——'l

16
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Thus we have

L) n
f_l T dx = 2 [10f(=1) + 12/(0) + 10/(1)
(=D ~f W]+ e /OO

‘We can check the algebra by using the universal matrix

00 4 -5 -2 WA 10
4 0 -8 0 4 0}fjo0 12
l 00 4 5 =2 =3) =2)_~=|[ 10
410 0 1 -1 -1 Ifo | 321 1
0 4 0 -8 0 4|38 0
00 -1 -1 1 1/\0 -1
We need, still, to check G(s) and due to symmetry we have only to examine
1>25s>0
We leave the details to the reader. /]

PROBLEMS
17.5.1 Derive

[T 700 de = wo SO + wa S + W SO + W5 1)

Ans. wo=1,wa=0,wo=w3=1/2
17.5.2 Derive

J‘: e~ *f(x) dx = wo f(0) + w2 f(2) + waf(4) + w6 /(0) + wif'(2) + wif'(4)

17.5.3 Derive

1
- f (In 0 f(x) dx
o
using x equal to 0, 2/3, and 1, and both fand f”.
17.5.4 Derive

¢ fx)
——d

o Vaax—ar

using x equal to 0, and a, and both fand f’. Find the error term.
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17.5.5 Derive and check G(s)

[ 9 i = 22 13700 + 27700 + 23720 + 13760)

9h’
11,200

3h?
+20 O -G + y7()

17.5.6 Derive and check G(s)

[ 160 = 2 G0SL7@) + 71+ 604171 + 19D

52h°

= 2h2TL '@ — 'O + 961/ ®) — /(DD + 5523

y0)

17.6 BIRKHOFF INTERPOLATION AND FORMULAS

A natural generalization of the previous methods of interpolation is to allow the
function and a variable number of derivatives to be used as data at each point; we
can use f(x;), f(x;), . .../~ Y(x;) which are k; consecutive derivatives (0, 1, ...,
k; — 1) at the point x;. This we shall call the Birkhoff! interpolation.

The methods used before show that we can find the formula by the method of

undetermined coefficients. The error term will turn out to be
(m)
(CIRERICIPR PRy e LA
wherem =k, + ky+ -+ ky4q.

When we try to find formulas using these same data we are led, in the direct
method, to a system of equations whose matrix is related to the Vandermonde,
and this can again be inverted by the same technique of finding the sampling poly-
nomials. The existence of the inverse shows that the determinant of the system
of equationsis not zero ;therefore we canindeed find the interpolating polynomials
and the formulas of the desired form (provided we can find the moments m, of the
operator).

As an example of the method and the kinds of formulas that can exist, con-
sider

1
f_lf(x) dx=w_1f(—1) + wo f(0) + w, f(1) + wo f'(0) + wif'(1) + wif"(1)
The coefficients of the defining equations can be arranged as in Table 17.6.

! George David Birkhoff (1884-1944).
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Producing all the sampling polynomials is awkward, but we can use those
that are easy to find (a typical compromise we shall often make).

I: Xx =12 =x5=3x*+3x* - x24+0x+0
II: x4+ Dx(x—1)3=x"-2x*+0x>+2x*— x+0
Im:  x+DEDx-1D*=x—- x*— x>+ x*+0x+0

The coefficients are in the respective columns headed I, II, and III. Mul-
tiplying the equations by these numbers and adding, we get the three equations

I:  —2/3—6/5=—8w_, thusw_,= 7/30

II: 4/3 —4/5= —wg thusw, = —16/30

10I: 23—2/5= 4w  thusw! = 2/30
Table 17.6
S(x) my Woy Wo Wp W wi wy I I I
1 2 1 1 1 0 0 0 0 0 0
x 0 -1 0 1 1 1 0 0 -1 0
x? 2/3 1 0 1 0 2 2 -1 2 1
x3 0 -1 0 1 0 3 6 3 0 -1
x* 2/5 1 0 1 0 4 12 -3 -2 -1
x5 0 -1 0 1 0 5 20 1 1 1

From these three, the other constants are easily found, and we have the formula
a1 1
J S(x)dx = m [7(—=1) + 16f(0) + 37/(1) — 16/(0) — 14£'(1) + 2f"(1)]
-1

It should now be apparent that we can find formulas of a wide class—all we
need to know are the moments m, of the operator we are using, and the rest is
tedious algebra. The sample points need not be in the range of integration.

PROBLEMS
17.6.1 Derive

[+ _ £ D)=, [(1)+/0)
2 10 120

[ 1 ax= E = 1120
o

and check G(s).



17.7 AN EXAMPLE OF A NONINTERPOLATORY FORMULA 289

17.6.2 Derive

: SOHO 3 o o a L tpray o g
[ r@ax =232 - 1) - £ @1+ 5 0 + 701

l " " —
+ T /O —~1"O1  Es=1/70
and check G(s).
17.6.3 Find
J: e~ *f(x) dx = ao f(0) + a1 f(4) + bo f'(0) + b1/ D + co f7(0) + c1 /" (4)

17.6.4 Derive
[0 06 dx = 22 @+ = 1) + 2 1O+ 52 SO
—o(nxfx) X—-16f() T3 m 16f( 288
17.6.5 Derive

" ex _1 3ry-Lro-Lpm
[ erwa=1@+3/@ 51030

177 AN EXAMPLE OF A
NONINTERPOLATORY FORMULA

From the Birkhoff interpolation one is apt to draw the conclusion that almost any
reasonable set of information can be used as a basis for interpolation. This is
false. The simple example of three equally spaced points with both the function
and second derivatives (position and acceleration, if you wish) does not determine
a quintic(fifth-degree) polynomial. To prove this, let the points be —1,0,and 1.
The function and defining equations are:

Sx) =Ao+Aix+ Ayx® 4+ Ayxd+ Axt+ AgxS
A=) =dg—4; + 4, — A3 + Ay — 4
Sf(0) =4,

M) =Ao+4, + A, + A3 + A, + A

fr(-n= 24, —64,; +124, —204,
S0 = 24,
1y = 24, —6A4; +124, —204;
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The determinant of the 4, is

] =11 =1 1 =1
1 00 0 0 0
111 111
D=1y 02 -6 12 -2]|7°
0 02 0 0 0
0 02 612 2

To prove that this is zero, we expand by the elements of the second row and then
the elements of the fifth row

-1 -1 1 -1
1111

D=(=D=2| ¢ 6 12 -20/7°
0 6 12 20

Now add the second row to the first and the fourth to the third to get

00 2 0
1111

D=21, 0 14 o|=9°
0 6 12 20

The first and third rows are proportional to each other, and so the determinant is 0.
Thus there is no interpolating polynomial. In a sense the data put four

conditions on the even part and two on the odd part of the polynomial.
However, there are infinitely many formulas of the form

[ ) dx = asf=1) + 60 SO + 1)
FbLuf (= 1)+ 5o O + by (D)

which use the same data, and the formulas are exact for quintics. To show this,
we write the defining equations

1: 2= a.y+ay+a

x: 0= —a +a,

x2: = a_, +a, + 2b_, + by +by)
x3: = —a_, +a, + 6(=b-., +b)
x* i= a_ +a, +12(b_4 +by)
x5 0= -—a_, +a, +20(=b_, +b&)
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Using a, as a parameter (since we know from immediately above that the deter-
minant has rank 5), we get

[ ) 85 =300 + G U=+ 187°0) +7°()
+ =1 = 20 + /]

- Tli F(=1) + 10£°0) + £ ()]}

If we impose the condition that the formula be exact for x® as well, then we get

2 1 1
7=—0(3o+3.0)+a,[(1+ 1)—1—2(3o+30)]
2
7=l+a,(2—5)
or
S
1721

Thus we have
[ Ao dx = 5 1570-1) + 32700 + 700)
l " ", "
— 31 (=1 = 270 +7°(0)

which is exact for sixth degree polynomials.

The complete explanation of this apparent paradox is nontrivial,! but it
should be no surprise that occasionally the two-step process [finding the inter-
polating polynomial and then applying the operator (integration from —1to +1
in this case)] fails even though the direct one-step process succeeds. What is sur-
prising is that it happens in this “reasonable ” case.

PROBLEMS

17.7.1 Discuss the importance of
Q(x) = 3x* — 10x3 + 7x
[which has Q(—1) = Q(0) = Q(1) and Q"(—1) = Q“(0) = Q“(1)] to the exam-
ple of noninterpolatory polynomials.
17.7.2 Give another example of a noninterpolatory polynomial.
17.7.3 If the integration was from O to 1 instead of —1 to 1, show that there is no such
integration formula.

1 M. P. Epstein and R. W. Hamming, ‘ Non-Interpolatory Quadrature Formulas,”
SIAM.
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17.8 AN EXPERIMENT IN COMPARING
THE VALUE OF DERIVATIVES

The existence of the inverse determinant in the Birkhoff interpolation case shows
that the use of consecutive derivatives at a point (omitting none avoids the example
in Sec. 17.7) gives about as much information as only function values at points;
the linear independence of the powers of x is preserved. Or, as in information
theory, a polynomial of degree N can be reconstructed from the N + 1 Birkhoff
samples.

Can we be more precise in this comparison of more sample points versus
more derivatives at the old sample points? One approach is to examine the size
of the error terms for various families of formulas. Assuming that the G(s) func-
tion is of constant sign, then the E,, would provide one measure of the relative
merit—though let us remember we are assuming that over the unspecified ensemble
of functions we are considering, the value of the 6 does not favor one formula over
another.

We shall use the integral

IRCE:

as the basis for an experiment.

The E,, can be found by integrating any polynomial of degree m with leading
coefficient 1. By picking a polynomial with zeros at the sample points (meaning a
multiplicity at x; great enough to make the highest derivative used at that point
zero at that point) we do not have to consider the right-hand side of the formula
since all the values will then be zero. When the degree of the polynomial is odd,
then the formula is clearly accurate for a power one higher, and we must add an-
other factor to the polynomial we are using. It is simplest to pick another factor
xtodothis. Anexample of this effect is Simpson’s formula which is accurate for
one higher power of x than it was designed for.

The first family we shall examine is the one-point family

| jlf(ﬂ dx = Wo f0) + Wi S'©) + W 70) + -+ + W, /(0)

For Nan even number Ey ,; = 0 from symmetry; hence we need only examine the
odd cases for N, and m is even. We have

2
2p+1

1
EZp = f_ lxzp dx =

In particular
E,=23 E,=2/5 E¢=2T Eg=29 E,,=2/1
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A natural second case is the family of two-point formulas

[ 1) dx= 3 v P51 + w )
-1 [

k=
We have
1 1
E,, = f_ (O =17 dx = (=12 jo(l — x*)P dx
Setting x = sin ¢,

(2p)2p—2)---2
QCp+1)(2p—-1)---3

/2
E;p=(-1)2 J; cos?Ht dt = (—1)"2

(=122t (—1)%/7p
T@p+)t T T p+12

In particular
E, =-4/3
E, = 16/15
E¢ = =25/35
E; =256/315
lﬂo:= —51%%93
The third family is

1 N
f f)dx =Y [w_Of O(=1) + wo©f® (0) + w, P f&(1)]
-1 k=0
with
1
f xP(x> — 1)P dx peven
-1

E3p= 1
f xP*Y(x? —1’dx  podd
-1

Setting t = x?, we get
1
(- l)"J 1= DI2(] — )P gy even
0

EBP= 1
(=1 [ e iy podd
0

These are beta functions whose values are
Il(p+ D2IT(p+ 1)
_ I[3(p + D/2]
¥ | Tl + 2210 + 1)
L[Gp +4)/2]

peven

podd
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Table 17.8 gives more results. The columns contain the values of E,,, and
hence the error is of the form

E,.f™(6)
m!

provided G(s) is of constant sign.

We see that as we go up a column, the E,, tend to get larger, meaning that
using more derivatives is not as good as using more points insofar as the size of the
error coefficient is concerned; it still may be worth the machine time saved.

It is important to realize that Table 17.8 refers to one type of formula and
represents an isolated experiment, not a definitive conclusion.

PROBLEMS

17.8.1 Check G(s) for the three-point formulas:
(a) function value only, Es
(b) function value plus first derivative, Es.

17.8.2 Discuss other reasonable experiments that might be tried.

17.8.3 Derive the four-point integration formulas for Es and Es.

17.8.4 (Harder) Write an essay on the effect on the weight used of the function value
at that point when more derivatives are given there.



18

FORMULAS USING DIFFERENCES

18.1 USE OF DIFFERENCES

Before the age of large-scale digital computers most hand calculations were carried
out in terms of function values and their differences. There were at least three
reasons for this. First, differences generally use fewer digits than function values
do—and so with hand calculations the arithmetic is that much easier. Second,
the differences give immediate clues to the values of the derivatives, which are
generally unobtainable. In particular we have the obvious approximations

Ay, dy

AX ~ dx X=Xn+1/2

A%y, d%y

Ax? " ax?

Third, the difference table also gives a clue to the roundoff in the function values.
When computing machines came into widespread use, it became fairly clear

that the first reason, fewer digits leading to faster arithmetic, was not very rele-

vant, and the time to find the differences in a machine greatly exceeds any possible
machine savings. Under the second reason, we still use differences as estimates

x=n+1
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of derivatives, though to some extent this has fallen into disuse because the dif-
ferences are often not found. The third reason of roundoff estimation was ig-
nored chiefly because it soon became evident that the hand-computing experts had
only an intuitive idea of the connection between roundoff and the differences.
We have had to gradually work out a more explicit theory as given in Chap. 10.
In particular, we had to quantify their impression of sign changes in the higher
differences by first computing the correlation coefficient (Sec. 10.5) together with
the corresponding probabilities of observing sign changes. We also had to work
out the relation of the noise in the higher differences to the noise in the original
function values (Sec. 10.4). This theory was intuitively understood, but the hand-
computing experts could not say, with scientific detail, what they did so that it
could be put on a computer. Indeed, they constantly maintained that it was an
artand that it could not be quantified. Needless to say, in the theory presented in
Chap. 10 some of their art was indeed lost, but some of it has been converted from
intuition to measurable effects.

Today we find that much of current computing still ignores the approach
through differences—the feeling persists that the differences take too much time
and space in the computer and are not worth the trouble. The author believes,
however, that going back to using them is a good idea and that many of the cur-
rently popular algorithms are poor substitutes for the direct use of the differences.
For example, Romberg integration' effectively builds a table of differences of the
answers at different spacings and tries to use this table to estimate the error. But
the error comes from two distinct sources, the truncation error and the roundoff
error. Taking more pointsin anintegrand reduces the truncation error but builds
up the roundoff, and in the behavior of the Romberg process it is hard to separate
the two effects. ' With the direct use of the differences of the integrand values, the
corresponding difference table enables us to separate the two effects and to make an
intelligent guess about which is currently dominating and which strategy to adopt
to improve the result—more function values may only increase the roundoff
error!

18.2 NEWTON’S INTERPOLATION FORMULA

The first two methods for finding an interpolating polynomial through N + 1
points (the Vandermonde and Lagrange approaches) tacitly assumed that the
number of points to be used was known. Often what is known is the accuracy
desired, and the number of points to be used is determined as information about

1 The purpose of Romberg integration is to eliminate the low-order-error terms of the
error expansion in powers of Ax. The basic technique is usually attributed to
Richardson.
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the function is computed. Newton’s interpolation formula, which we will now
develop, is simply another way of writing the interpolating polynomial. It is
useful because the number of points being used can easily beincreased or decreased
without repeating all the computation. The Newton formula of Sec. 9.6 is
really the special case of equally spaced sample points.

As before, let the polynomial passing through the N + 1 points

(i) (=12...,N+1)
be labeled Py = Py(x). We can write
Py(x) =y + (x — x)Py-1(x)

where Py _,(x) is some polynomial of degree N — 1. It is clear that Py(x,) =y, ,
and we are reduced to taking care of only N points (i =2,3,..., N+ 1). The
above equation can be written as

Py(x) =y,

Py_1(x) = —x
—X

and hence we want

Py(x;) = Py(x,) - Yi— M1
Xj— X1 X;— Xy

Py_(x) = i=23...,N+1

That is to say, we want Py_,(x) to pass through the points

@“ﬁl&) i=2,3,.. N+1
Xy — Xy
The quantities
Yi—=» _ - }
X—x i, X =[x, x]

are called ““divided differences” and are customarily written with brackets.!
The next step is, of course, to write

Py_1(x) = [x1, X3] + (x — x2)Py_ (%)

and require Py . ,(x) to take on the values of the divided differences of the divided
differences,

[xi, %] = [x5, %]
X — X,

[[xi) X1], [x2, xl]] = = [x;, X2 xl]

! Many other notations are used, for example f[x;, x,] and p[x;, x;].
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It was easy to see that the first-order divided differences were independent of
the order of the arguments in the brackets. We now show that the same is true of
the second-order divided differences. If we start with three points

(x1,7) (x2,72) (*3,73)

we get a unique polynomial (quadratic) through the three points. This may be
written

Y=y + & = x){[x2, ;] + (x — x5)[x3, %2, %, ]}

If we now choose the points in the order x,, x,, and x,, we have

y=Yst+ (x - xa){[xb’ xa] + (X - xb)[xc » Xb> xa]}

Since these are both the same quadratic, the coefficients of the x2 term must be the
same; that is, the two symbols

[X3, X2 xl] = [xc»xb’ xa]

are in fact the same thing in alternative forms.
In general, we define

[xl»xz’“"xn—l]—[xl’xZ""’xn—27xn]
Xn—1 — Xn

[xlyx29x3’°'°’xn]E

and in exactly the same manner show that it is independent of the order of the x;.
Note that the denominator is the difference of the nonrepeated x’s in each [ - -+ ]
taken in the same order.

One way to make a table of the needed values is as follows:

Xy »*
[x2, x,]*
X2 Y2 [x3, x2, x,]*
[x3, x4] [xay x3, %2, X, ]*
x3 | » [x4, %2, x,] .
[x4y xl] .
Xa Ya .

The asterisks indicate entries used as pivots in calculating succeeding values.
From this table we can write

Yx) =1 + (0 = x)([x2, %]+ 6 — x){[x3, %2, X, ]+ (x = x3){ -}
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As a specific example, consider again the log table

x 108 x [)] ["] ["’]
1 0.0000*
0.30100*
2 03010 —0.06245*
0.23855 +0.01230*
3 04771 —0.05015
0.20070
4 0.6021

The asterisks indicate the pivotal values.
Hence we get

¥(x) =0 + (x — 1){0.3010 + (x — 2)[(—0.06245) + (x — 3)(0.01230)]}
In particular,
¥(2.5) = 3/2{0.3010 + 1/2[(—0.06245) + (—1/2)(0.01230)]}
= 0.40001
The correct value for log 2.5 is 0.3979

PROBLEMS

18.2.1 Given a divided difference table, show how to add one more data point at the
botton of the table. Also show how to add one at the top. In the first case
how does one change the Newton polynomial ?

18.2.2 Make the divided difference table for I'(x) in Sec. 10.6.

18.2.3 Make the divided difference table for {(x) in Sec. 10.6.

18.2.4 Make the divided difference table for the error integral in Sec. 10.6.

18.3 AN ALTERNATIVE FORM FOR
THE DIVIDED DIFFERENCE TABLE

The divided difference table, which lies at the heart of Newton’s interpolation
formula, may be written in an alternative and sometimes more useful form. This
is based on the observation that
[xl,xZa '”’xn—l] - [xl’xz» 'H)xn—z,xn]

Xn-1 — Xy

[xlyxzynwxn]:

_ [x1, X35 005 Xg] = [%2, X350, X,]
Xy = Xp
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In particular,

[x1, x,] =[x, x3]

X1, X2, X3] =
[ 19 %2> 3] X, — X3
_ s xp] = [xs, %3]
Xy — X3
Thus we can write
x y ['] ["] ["‘]
X1 P41
[x2, x1]
X2 Y2 [x3, X2, x1]
[x3, x2] x4, X3, %2, 1]
X3 p£] [xa, x3, x,]
[x4, x3]
Xe Ya

While the entries in this table differ from those in the previous section, the entries
in the top row, which are the ones used in Newton’s formula, are the same.
Using the sample example of log x, we get the following table:

x logx [] [l [
1 0.0000
0.3010
2 03010 —0.06245
0.1761 +0.01230
3 047T1 —0.02555
0.1250
4 0.6021

In this form, we may easily add a line at either end of the table and still expect the
entries in the body of the table to vary smoothly.
need to choose the points in numerical order, the smoothness in the table is lost if
they are not. The first divided differences are secant lines and hence approxima-
tionsto the first derivative inthe interval (x;, x;,,). Similarly, the second divided
differences are local approximations to the second derivatives, etc.

PROBLEMS
18.3.1 Using the table

compute the Newton interpolating polynomial.

While there is no theoretical

x l 2 l 0, 3 ' 1
| 8 | o] 27| 1
Show that y = x3.
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18.3.2 Compute the difference table both ways (Secs. 18.2 and 18.3) fory =sin x at a

spacing of 30°:
x | sin x
0° 0.0000
30° 0.5000
60° 0.8660
90° 1.0000

Find the approximating polynomial.

18.3.3 1Ifyou have only the top row of the divided difference table in storage in a com-
puter, how can you add one point at the bottom of-the table and compute the
next divided difference? How do you add one point at the top and find the
new line?

184 NEWTON’S FORMULA AT EQUAL SPACES

Very often our information about a function (in the form of samples) is given at a
set of equally spaced values of x. This simplifies much of the notation and com-
putation as well as the ideas involved.
For equally spaced data it is customary to use the notation of Part 1:
Ay n =Vn+1 = In

This is the familiar notation of the difference calculus except that we have fixed
Ax = h at all times:

Axy=Xp4y — X, =h
We also have
Azyn =DVn+2 — 2yn+l + Vn

etc.
These differences are related to the divided differences as follows:

_Ya—n_An
[xz’xl]_XZ-xl_ h
[x’x]_[x ’x] AJ’/h—'Ay/h
[x3, %2, %] = 2 .7&2'3—.7:12 L= 2 !
&
2142
and, in general,
n—1
[xl,xz,..., n]= A yl

TN
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The differences are approximations to derivatives at the middle of the range of the
samples used:

dy(x + h/2)
Ay, mh—————
Yy RN dx
d*y(x + 1)
Ay mi dx?
d"y(x + nhf2)
A'I ~ n
n xR =755

It is these relationships that enable the finite difference calculus to approximate
expressions in the differential calculus.

Newton’s formula in this new notation for equally spaced sample points is
(Secs. 9.6 and 18.2)

A A?
y=y°+(x—xo)%+(x-—xo)(x—x°—h)—129
+ (x — xo)(x — x¢ — B)(x — x¢ — 2h) 3'h3 2+
If we suppose that x, = 0, we get

y=yo+ x%’ + x(x — h) + x(x — h)(x — 2h)

and if we further assume 4 = 1, we have

3'h3+

Aa}’o
Y=yo+xAyy + x(x — 1) +x(x D(x —2)——

PROBLEMS

18.4.1 Write the error term for Newton’s formula when the data are given at —n,
—(n-1,...,0,1,2,..., nand a (2n)th difference is used in the formula.

18.5 INTERPOLATION IN TABLES

One of the major uses of equally spaced interpolation formulas is for interpolation
in tables of equally spaced data. A typical example is the error integral whose
difference table is givenin Sec. 10.6. The differences are well behaved in the sense
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that they first tend toward zero, being fairly smooth in the third-difference column,
but beginning with the fourth difference, and clearly in the fifth difference where
the sign is almost exactly alternating, we find that roundoff noise is dominating.
For this table we would not expect, then, to go beyond fourth differences in any
interpolation formula.

In principle, Newton’s formula for interpolation gives the answer, and
except for roundoff effects the answer is exactly the same as could be found by any
other interpolating polynomial using the same sample points. Nevertheless, in
practice, many other formulas are used, and in the interest of general education,
so that the reader can understand the methods given in the prefaces of most tables,
we shall discuss some of those which are most popular.

18.6 THE LOZENGE DIAGRAM

Thelozenge diagram is a device for showing that a large number of formulas which
appear to be different are really all the same. We have used the notation for the
binomial coefficients

W+ +k—Du+k=2)@+k—n+1)

Clu+k,n= ]

There are n factors in the numerator and » in the denominator. Viewed as a
function of u, C(u + k, n) is a polynomial of degree n.

Figure 18.6.1 shows the lozenge diagram. A line starting at a point on the
left edge and following some path across the page defines an interpolation formula
if the following rules are used.

la For a left-to-right step, add.

1b  For a right-to-left step, subtract.

2a Iftheslope of the step is positive, use the product of the difference crossed
times the factor immediately below.

2b If the slope of the step is negative, use the product of the difference
crossed times the factor immediately above.

3a Ifthe step is horizontal and passes through a difference, use the product
of the difference times the average of the factors above and below.

3b Ifthe step is horizontal and passes through a factor, use the product of
the factor times the average of the differences above and below.
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\
/

\
/
\

$(-3). Cu+3,1) Ay (-4) Cu+4,3 Aty (-5)

/
\
/

1 Ay (~3) Cu+3,2) 3y (-4) Cu+4,4)
/ \ R \ .
y (-2) Cu+2,1) Ay (-3 C(u+3,3)/A y(-4)
1 \A )/ +2 z\A’ (-3) Clu+3,4)
/ ye2 \C(u ’)/ g \ ’
y(-1)\C(u+l,l)/A’y(-z)\C(un,3)/A4y(-3)
Ay (-1) Cu+1,2) A3y (- C(u+2,4)

\
/
\
/

y(0y Clu,1) Aly(-1) C(u+1,3) Aty (-2)
1 \Ay(c»/cw,z) \A’y<-1>/au+ 1,4)

(-1,1) Ay (0) Aty (-1)

[2]

\
/

y( C(u,3

7
5

Ay (1) C(u-1,2) A%y (0) Cu,4)
Cu-2,1) A2y (1) C-1,3)
Ay(2) Cw-2,2) 3y (1)

C(u-3,1) A2y (2 (u-2,3)

/
\
/

y @ A*y(0)

VoV

\

\
/

\

C(u-1,4)
(1)
A%y (2) Cw-2,4)

/

/
\

y@3

\
/

Ay (3

~

Cu-3,2)

/
\
/

¥ (4
FIGURE 18.6.1

As an example of rules 1a and 2b, consider starting at y(0) and going down
We get, term by term,

y(u) = y(0) + C(u, 1) Ay(0) + C(u, 2) A%p(0) + C(u, 3) Ap(0) + +--

= y(0) + u Ay(0) + 5 A%p(0) +

~—

u(u—1)

'_‘_(_”__13)!(;_2)&},(0)4_...

which is Newton’s formula.
Had we gone up and to the right, we would have used rules 1a and 2a to get
Newton’s backward formula:

() = 90) + Cluy 1) Ay(—1) + C(u + 1, 2) Ap(—2)
+Cu+2,3) A3y(=3) + -

=3(0) + u Ay(—1) + ——— A*p(-2) +

(u+ Nu @+ 2u+ Du

S R

(18.6.1)

2
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To get Stirling’s formula, we start at y(0) and go horizontally to the right,
using rules 3a and 3b:

Ay, +Ay_, + Clu+1,2)+ Cu,2) Ay,
2 2
y_a+ A%y,

A
FCu+1,3) A=

B Ayo+Ay_,  u* , u(u? =1 A% _, + A3y_,
=yotu T S Al o > +

y(u)=y0)+u

(18.6.2)
If we start midway between y(0) and y(1), we get Bessel’s formula:

Yoty ,  Clu, 1)+ Clu—1,1 A’y_; + A?
yu) =1 02 L, (u, 1) 2( )Ay0+C(u,2) y 12 yo+.“

—_— 2 2
="——y°;y' +(u —%)Ayo+“(u2 22 y_12+A Yo p (18.6.3)

If we zigzag properly, we can get Gauss’ formula for interpolation:

u(u — 1) (“2 —=1) A’y(—l) goone (18.6.4)

u
YW) = yo +u Ay + ——— AlY(=1) + =
Allsorts of paths can be chosen, and each will give some formula. What we
need to show is that these are all valid interpolation formulas. Such a proof re-
quires showing the following:

1 At least one valid formula results, and since we have found Newton’s
interpolation formula from the diagram, this step is completed.

2 The contribution around any closed path is zero; hence we may deform
a path into any other path that we wish.

3 Iftwo formulasend at the same place, they are the same. Itis necessary
to prove this fact since the entry points into the lozenge diagram need not
be the same for different formulas.

To prove step 2, we take a single complete lozenge (Fig. 18.6.2).

Clu-s, n>®/A"y (s~ l\@\C(u-H 1,n+1)
A"'ly(S)——-@—C(u-:%A"”y G-1)
Clu-s- lJl})@\A"y(s Clu-s,n+1)

FIGURE 18.6.2
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Pathl: Cu—s,m) AW s—D)+Clu—s+1,n+1)A" ys~1)
Path2:  Cu—s,n)A(s) + Clu —s,n+ 1) A" ly(s — 1)
Ay(s — 1) + A"y(s)

2

Cu—s+l,n+1)+Cu—s,n+1)
+
2

Recalling that going from right to left produces negative terms (rule 15), we have
to show only that the three paths are the same.
Path 1 — path 2

=C(u —s,m[A%(s — 1) — A")(s)]

+[Cu—s+1L,n+1)—=Clu—s,n—1D]A"* 1 ys—1)

=C(u — s, n)[—A"*y(s — 1)]

—s+1)—(@w—s5s—n)
n+1

=Clu—s5,m[—A""y(s— 1)+ A" yis — D] =0

Also, path 3 equals the average of paths 1 and 2. Hence step 2 of the proof is

complete.
To examine step 3 of the proof, we use Fig. 18.6.3.

Path 3: C(u—s,n)

A ly(s = 1)

+ C(u — s, n) (u Atly(s — 1)

— 5§
1

Y(S)R(&@C;(u-s, 1) My (s-1)

—@—3uy0)

FIGURE 18.6.3 .v(s+1)/®f(u-s-1,1)

Pathl =p(s+ 1) + Clu—s—1,1) Ay(s) — C(u — 5, 1) Ap(s) + S
(s + 12) +y(s)+ Clu—s—1, l;+ Clu-—s, I)Ay(s)
—Cu—s1)Ays)+S

Path3 =y(s) + S

Path2 =
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where S is the rest of the formula. Now using

s + 1) = p(s) = Ax(s)
we obtain
Path 1 = y(s) + Ap(s) + (u — 5) Ay(s) — Ap(s) — (u — 5) Ay(s) + S
=y(s) + S =path3

Similarly, path 2 may be reduced to path 3. Thus we conclude that the inter-
polation formula depends on the ending values, not on the path used to reach
them.

18.7 REMARKS ON THESE FORMULAS

How do these different formulas compare with each other and with the Lagrange
formula found earlier? The value obtained in an interpolation depends on the
polynomial used, and the polynomial depends on the sample points actually used
(some formulas might appear to use values not needed). The error term has the
form (see Sec. 14.6)
(x = x)(x = %)+ (X = X, . YT (R)
n+D!

The coefficient of the derivative is minimized when x is in the middle of the range
of samples. Thus there is a tendency to use an even number of samples when the
interpolation point is in the middle of an interval and an odd number when it is
near a sample point.

The methods derived by the lozenge diagram explicitly exhibit the differ-
ences, and these differences give some idea of the accuracy but require more
arithmetic than does the Lagrange method of interpolating. The Lagrange
method, however, does not directly use the differences, and so no indication of
the accuracy is available. This is one of the fundamental problems in numerical
computation—the use of differences gives some clues to the accuracy of the
method being used, while the Lagrange approach minimizes the amount of arith-
metic. As a result, the difference methods tend to be used in exploratory
work, and the Lagrange methods in well-understood, routine work.

18.8 MISCELLANEOUS INTERPOLATION FORMULAS

A number of other formulas which are not directly obtained from the lozenge
diagram are occasionally useful. They usually rest on the fact that any particular
difference may be eliminated by using

Ay(s + 1) — A"y(s) = A" y(s)
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The cost of this elimination is the inclusion of an extra difference of some other
order.

For example, in Bessel’s interpolation formula we may eliminate all odd-
order differences; this gives

@—u)(1 = uf=1)

y() = (1 = w)p(0) + uy(l) + 3!

(=1

(u+ Du—1)

T AL +

which is known as Everett’s formula and is quite popular since the table maker
need only publish the function and even-order differences.

Similarly we may start with almost any formula and eliminate differences of
any order that we please (at the cost of several differences of the orders that we
leave in the formula). If we wish, we could eliminate, say, both the second- and
third-order differences, thus using the function, the first differences, and the fourth
and higher differences. Carried to the extreme, this leads to the Lagrange form
which uses no differences but many function values. The purpose of eliminating
thedifferences is mainly to save type and space in printing the table, and thisis done
at the cost of extra work on the part of the user. The proper balance depends on
circumstances and car:not be given once and for all.

A second device often used is called “throwback.” This idea, due mainly
to Comrie, uses the fact that the coefficients of the successive differences tend to be
proportional to each other in various interpolation formulas, such as Everett’s;
consequently, if suitable amounts of the higher differences are combined with
those of the lower when the table is printed, then much of the effect of the higher-
order differences in the interpolation is automatically achieved by using the lower-
order formula.

Thus, in Bessel’s formula, the ratio of the coefficients of the A* to the coeffi-
cient of A% is

BY  (u+ -2

7= o O<uxl

which varies from —1/6to —3/16. Hence if we put ¢ units of A* with A% to form
the modified second difference column, we make an error of

(BlV _ CB") A4

The number c is often taken as —0.184 as an average compromise.
We again remind the reader that table makingis a highly skilled art and refer
the reader to Fox [12] as well as to the standard text of Ralston [49].
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189 THE HAMMING-PINKHAM
INTEGRATION FORMULA

We now turn to a family of integration formulas whose correction terms (trunca-
tion errors) are expressed as differences of the function values. The effect of
taking more differences is to increase the accuracy of the formula as judged by the
degree of the polynomial for which it is exactly true (within roundoff). Thus we
can sequentially try successive members of the family to find the most appropriate
one instead of more or less committing ourselves to the accuracy before starting
(as we must withother types of formulas). Because we have the difference table of
theintegrand values we can make an estimate of the roundoff errors independently
of the estimate of the truncation error.

These formulas are closely related to the composite integration formulas
discussed in Chap. 20, and so it is worth a few moments to explain the idea of a
composite formula. When we find that the formula such as Simpson’s is not ac-
curate enough, we usually decide to use more points; with more points we can make
the formula more accurate in the sense of being exact for a higher order poly-
nomial. Instead of using this method we can apply the same basic formula to a
sequence of intervals and add the results of the individual integrals. This second
approach leads to the idea of a composite formula. The two best-known examples
are the composite trapezoid rule

J[" ) dx = {5 SO0 +78) 41200+ +fTr = DB + 5 fenb)
and the composite Simpson’s formula
J.Znh Sf(x)dx = g{ S0) + 4f(h) + 2f(2h) + 4f (3h) + -+ - + 4f[(2n — 1)h] + f(2nh)}
0

where in both cases we have used the basic integration formula repeatedly.
The classic formula which led to the investigation of this family of formulas is
the Gregory! formula (1670)

[[ F65)dx =5 70+ S0 + Q) -+ fta = 1)+ 3 e
1 1
— 5 1S = 1) = A - 5 (A0 = D) + AO)]

19 9
~ 72 [A%n - 3) — AY(0)] - 730 A = 4) + AY0)]

863

= Go.ag0 A1 = 9) =AY O + -

1 James Gregory (1638-1675).
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This formula is clearly the composite trapezoid rule with end corrections that make
theformula as accurate as the differences included indicate. The alternating sign
between the differences has the effect of causing the accuracy to jump by 2 or 0 as
one more term of differences is included ; thus we tend to stop on an even-order
difference and get the next odd-order one *free.”

A similar formula based on Simpson’s composite formula is

[" ey dx =170 + 270 +2 70+ + 2 fon = 1)+ 1 si2my
0 "3 3 3 3 3

— A T8 =) — A O] ~ o5 (620 — &) + AY0)]
548 s s
~ goag0 [4°1Cn = 9) = AYO)] +
where the coefficients of the differences are all smaller in size than those of the
Gregory formula (see Table 18.10 for more coefficients).
A still more interesting formula is the Hamming-Pinkham formula

f: Sx) dx = 2[f(1) + f(3) + +++ + f2n = 1)]

+ é [Af(2n — 1) — Af(0)] + Azf(2n - 2) + A*(0)]

+ -3—63—0 [A%(2n — 3) — A*f(0)] +3 [ AN — 8) + A*(0)]

41
* 30240 [A%(2n — 5) — AfO)] + -+

where only half of the integrand values in the basic summation and comparatively
few more at the ends are needed to form the differences. Thusthe coarse sampling
rateis used in the main part of the integrand, and double the rate is used at the ends
toestimate the differences. This meansthat about halfthe computingis saved for
the same order of accuracy.

The first two cases, the Gregory and Simpson composite formulas, can be
used in an adaptive mode of computation by halving the spacing if the truncation
error is too large; the third formula requires taking one-third of the spacing if the
old integrand values are to be used in the next step.

In order to compare these three formulas (and some others) we shall, as
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usual, consider a family of formulas which includes them as special cases. This
family is

f:’}(x) dx = af (0) + bf(1) +2af(2) + -+ + af (2n)

+ i G 2n — ) + (= 1) AY(O)}

where we want both the coefficients aand b and the g, to beindependent of n, which
is the number of double intervals used.

In the polynomial approach to finding formulas we require the formula to
be exact for successive powers of x; that is, we set down the defining equations

[ "2 dx = a(0) + b(1)? + 2a(2)° + G + - + a(@n)?
(1]

+ ’;ioqs{A’(Zn —sP+(=1FA0Y p=0,1,2,...

For p = 0 we have
2n=nb + [2 +2(n — 1)]a =2na + nb
or
b=2(1-a)

which means we have a one parameter family of formulas depending on a.

18.10 THE DERIVATION OF THE FORMULAS

The derivation of the Hamming-Pinkham formula is based on the method of
generating functions (Sec. 11.4). We multiply the pth defining equation by ¢?/p!
and sum to get (using the power-series expansion of the exponential)

2

J

n
e* dx = ae® + be' + 2ae* + -+ + ae™™

+ ¥ a AT T + (= 1)° A°[e°T)
s=0
But noting that this is a composite formula with weights

ab a
ab a
ab a
a

a b 2a b 2a b 2a
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we see that the first sum on the right-hand side is

(ae-t +b +ae‘)(e' +e$t+ e +e(2n-l)r)
2nt __ 1

=(ae”™" + b + ae) ¢

et —e!

The differences that occur in the formula can be written as

A:(eZn-s)l) = A:-l(e(Zn—rl-l)t - e(2n-s)t) = As-l(e(Zn—s+l)l)(l _ e-z)

= e2nt(1 - e—r)s

(_l)s AS(eOI) — (_1):As-l(et - eO) = (_l)sAs- l(et — 1) = (_l)s—l As-l(l _ el)

=(1-ey
Performing the integration on the left-hand side of the formula and as-
sembling the results, we have

ez,,' -1 ean -1 )
=(ae' + b+ ae™) panpe Y qle*™(1 — ™ + (1 = &)]
- s=0
If we now define Q(f) as
1 ae+b+ae™ 2 -
Ay =;——— = T all—e)

—et <o
then we see that we can write the equation as
e + Q(-1)=0
This equation is true, if @Q(¢) =0. If Q(¢) =0, then
1 ae'+b+ae™

0
— =ns = -
s;oqs(l e”’) ! e —e !
and defines the g .
It is natural to set
l—e'=v or e'=1-v t=-In(1-v)

so that we have a power series in v with coefficients g;. Using b = 2(1 — a), we
have
® -1 all—-v)+2—-2a+a(l —v)
I e S VTG Py gy
-1 2 —2v+ av?
Tin(l—v) 20—
-1 1 2a-1

=ln(l-—v)-l-a_'v 2-v
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The choice of @ = 1/2 eliminates one term and gives the Gregory formula (as
a check on the work so far). For a = 1/2 we have

i v‘—_;l__.l;+l
Lols Inl—-v) v 2

to determine theg,. Using

2 v ot
—In(l —v) =0+ 2+ TR
and dividing out 1/In(1 — v), we get
v v 19 o? —
X4 = - 5% 70"

which checks with Gregory’s formula.
If we label the coefficients of Gregory’s formula g, we have for the general
case

i po =l g 1 221
S Tha-o v 2-0
s 2a—1
_’Z‘,ogsv + (a '})_ 2o
e v
= v — (g —
s=Zo.¢1, @-H5—;

Dividing out v/(2 — v), we get
© o fp\S
S;Oq’v - ’;)g,v - (a - %):;l (5)

Equating coefficients of v*, we have ¢, = g, and for s = 0

gs=9s—(a—127°
From this, Table 18.10 is easily compiled and is displayed in Fig. 18.10.1.

A remarkable formula results by setting a = 0 (b = 2) since now half the
integrand values have weight zero and so do not enter into the summation.

J. " fx) dx = 2"§ fCr +1) + 2 (Af2n = 1) = AfO)]

Azf(2n = 2) + AY O] + 7= [A3ﬂ2'l 3) - A0)]

360

A‘f(2n —4) + AAO)] + o= [A%f(2n — 5) — A%(0)] + -

30 240
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-0.20 —

| |

-0.40
0.

8.00 10.co
FIGURE 18.10.1

Table 18.10
s Gregorya=1/2 Simpsona=1/3 a=0 a=1
1 2 4
' 0 vl v
1 2 4
2 Tn 0 % ~%
3 -1 -4 26 _5
720 720 720 720
4 =2 A S _x
480 480 430 480
s 88 _ 8 82 _ 108
60480 60480 60480 60480
_as _ae _ 8 _ g6
24192 24192 24192 24192
_ 33953 29228 _ 19778 _ 48128
3628800 3628800 3628800 3628800
_ 8183 __ 7508 _ 6158 _ 10208
1036800 1026800 1036800 1036800
9 __ 3250433 _ 3094508 _ 2782658 _ 3718208
479001600 479001600 479001600 479001600
10 _ 14013 _ 13628 _ 12858 _ 15168
2365440 2365440 2365440 2365440
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Experimental results show that this formula compares favorably with other
members of the family; indeed the results are somewhat better on the average.
We can, using this formula, estimate the truncation error made by dropping the
differences past some order k, and we can estimate the roundoff from the difference
table.

PROBLEMS

18.10.1 Derive Gregory’s formula when #n is an odd number.

18.10.2 Consider using five points (four intervals) in the basic formula and derive a
two-parameter family of formulas.

18.10.3 Derive the midpoint formula (Bickley’s formula). See [8].

[ 700 =50 (K +3) + 35 (s — 8 g 0o+ A

223 103

+ 5,760 [A3fu 2 — B3 12] + 3,380 [A*fu-0r2 + A%)]
32,119

+ 967,630 [A*facr2 — A%fi2] + o+

18.10.4 Derive

[} eodx = ¥ 1@+ 4]

where

2Q2* —1)
Ax-y = —(27(')'!— 2k
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*FORMULAS USING THE SAMPLE POINTS AS
PARAMETERS

19.1 INTRODUCTION

Up to now we have been using the weights in the formulas as the parameters.
Since the weights occurred linearly in the defining equations, they were easy to find
(the determinant of the system was shown to be nonzero, and we could use the
sampling polynomials to find the w; directly if we wanted to). We now consider
using the position x; of the samples as additional parameters to make the formulas
exact for more powers of x. The new parameters do not occur linearly, and so the
defining equations will be harder to solve. Butagain it should be pointed out that
the defining equations are solved only once when the formula is being developed,
noteach time the formulaisused. The gain in makingthe formula exact for more
powers of x while using the same number of sample points is obvious.

The resulting formulas generally have awkward values for the sample posi-
tions x; and the weights w;, and they were therefore neglected in hand-calculating
days. This is no reason to neglect them when computing machines are readily
available. The principal remaining objection is that the peculiar values of the x;
and w; must be provided to the routine by keypunching and storing them
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from published tables! or from other routines which found them and saved the
results.

The mathematical theory is both elegant and extensive, and we will give only
a minimum of material to indicate what is possible.

19.2 SOME EXAMPLES

Before plunging into the theory associated with the general case, we shall examine
a number of special cases to orient ourselves. First consider estimating the fol-
lowing integral from two samples:

f: e ¥f(x) dx = wy f(x,) + wy f(x2)

where the parameters are w, , w,, x;, and x,. The four defining equations are,
using the first four powers of x,

1: mey=1l=w  +w, Co

x: m =1=wx; +wyx, | ¢ | Co
X2 mp=2=wx2+wyx |1 | g
X my=6=wx>+w,x,° 1

We now use the polynomial
n(x) = (x = x)(x — x,) = x4 eox+ ¢

and multiply the top equation by ¢,, the second equation by ¢, , and the third
equation by 1, and then add the three equations. We get

24 ¢, + cg = wi (%2 4 e1x; + ¢o) + wa(x22 + ;%5 + o)
= wn(x) + wyn(x;) =0

since n(x;) = 0. Shifting the three multipiers down one equation and repeating
the process, we get

6 +2¢; + co = wixyn(xy) + wyx, m(x,) =0
Thus we have the pair of equations
[ + Co = -2

2(.'1 +Co= -6

1 For[L | f(x) dx,[3 e *f(x) dx,{Z« e~ ** f(x) dx and many others, sec National Bureau
of Standards, * Handbook of Mathematical Functions,” and Dover Publications, Inc.,
New York, 1964. Also see Mineur [41] and Stroud and Secrest [57].
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whose solution is

¢ =-4

Since these are the coefficients of n(x), we have
ax)=x>—-4x+2=0
and the sample points are
Xy =2 \/i
Xy =2+ \/5
We are now reduced to the case of Chap. 15 with known sample points. The
first two defining equations are:
1=w +w,
1=Q— /2w +Q2+/2w,

whose solutions are:

Wl—'ﬁ
A
WZ—T\-/T

Our formula is, therefore,

© _ J2+1 = J2-1 -
x = —
fo e x) dx = 7 fe-J2+ NG fQ+./2)
which is exact for cubics using only two samples of the integrand.

How did we know that the weights we found from the first two defining
equations would satisfy the last two equations? The answer is simple; we chose
the x; so that the last two equations were linear combinations (with coefficients ¢, ,
¢1,and 1) of the first two equations; hence the w; automatically satisfied the last

two equations.
As a second example, consider

[ S5y d = w5 + w2 S) s S5
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With six parameters we can write six defining equations:

2=w;, 4w + ws Co
O=wx; +wyx; +Wi3x3 [ ¢ | G
23 =wx; 2 +wyax2+wixs? [ ¢ | e | co
O=wx>+wx 2 +wyxs> |1 | ¢, | ¢

2/5 = W1x14 + Wz x24 + W3 X34 1 Cy

0 = W,xls + WzXzs + W3X35 l
We again use the appropriate n(x),
n(x) = (x —x)(x —x,(x —x;) = x>+, x2 +¢;x + ¢

By multiplying by the ¢, as shown on the right of the defining equations and adding
the results, we get three equations for ¢,, ¢, , and ¢,:

2¢0 +0c) +4%c, +0-1=0

Oco +4¢, +0c, +2-1=0

%co +0c; +2¢, +0-1=0

Clearly ¢o = ¢, =0and ¢; = —3/5. Hence

nx)=x>+0x2~3x+0=0

X1=—\/§5

x, =0
X3 = \/ 3—/3
Knowing the sample points x;, we have the defining equations
2= wy+w,+  w,
0=—3/5w +/35w,
23= W +  iw;

It follows from the second that w, = w5, from the third equation that
wy =wy; =359

and finally from the first equation w, = 8/9. The formula is, therefore,
[ St a5 = 37=/319) + 510 + 2 16/379)

and is exact for fifth-degree polynomials (see Sec. 16.9).
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If we had used the obvious symmetry, we would have realized that w, = w,,
X, = —X5, and x, = 0 would make the formula true for a/l odd powers of x.
Hence we would have had the defining equations

1: 2=2w; 4w
x2: 2/3 =2wx,?
x‘: 2/5 = 2W1xl4
The ratio of the last two equations gives
x2=2/5+2/3=3/5
X = -\/ :75
x; = \/ 3/5

From the second equation

Ol »

Wy = L _
17 3%

and from the first w, = 8/9. The use of symmetry clearly makes things easier!

PROBLEMS

19.2.1 Derive J’jl F) dx=f(—1/VD) + fU/V3)  E.=8/45
(See Sec. 16.5.)

19.2.2 Derive — f: In x £ dx = wy f(x1) + w2 f(x)

_ S vaon

19.2.3 Derive f: XfO) dx=wif(x) + w2 fxs) X 5

x/2

!
19.2.4 Derive f | Sinx 00 dx = wifGer) + wa f(x2)
1
19.25 Derive f_l S dx = wif(x2) + w2 £(x2) + w3 f(x3) + wa f(xe)
Use symmetry to show that w; = ws, X3 = —xa, X2 = — X3,and w2 = w;, 50
that #(x) is a quadratic in x2.
19.2.6 Derive fw e **f(x) dx = wy f(x3) + w2 f(x2) + w3 f(x3)
Use symmetry to show that wy = w_,, x;, = —x3,and x; = 0.
n 4
19.2.7 Derive j sin x f(x) dx = ‘Z; wi f(x1)

Use odd symmetry to show that w, = —ws and w, = —wj.
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19.2.8 Derive,fi1 xf(x) dx = V512TLF(— V3/5) + F(V3/5)]

19.2.9 Derive f_'l VI= % (odx =T (=172 +10/]

19.3 GAUSS’ QUADRATURE (INTEGRATION)—FORMAL

The best-known case of using the sample positions as parameters in an integration
formula is Gauss’ quadrature on N points:

1 N
| fxydx= 3wt
-1 k=1

where both the weights and the sample points are regarded as parameters. Thus
the examples in the previous section were Gaussian quadratures. With 2N pa-
rameters we can write down the 2N defining equations:

1 1-dx =2=my =w +w, 4wy
-1
1

x f x dx =0=m; =wx; + wyx, 4o+ wyxy
-1

2 ) 2 2

x f x*dx =3=m  =wx Wy Xap 4 wyxy?
-1
1

x2N-1. J’ XU dx = 0= myy_y = wix 2V w2 ey xy PN

-1
We again use the polynomial
m(x) = (x = x)(x — x3) *+* (x — xp)
=x"+ey XN+ 40
We now multiply the jth equation by ¢; and sum to get

N-1 N
Y mci+my= 3 wn(x)=0
= K=1

If we shift the multipliers ¢; down one line and repeat, we get

N-1 N
zomj+lcj + My = klekxk n(x) =0
Jj= =

Repeating this shifting process, we are finally led to a total of N equations

N-1
.Zon1j+ij+mN+k=0 k=0,1,...,N—l
j=
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In the next section we will show that under very reasonable assumptions the per-
symmetric determinant [44] of these equations is not zero, and hence the system
can be solved for the ¢;.  We then put these ¢; into the equation for the sampling
places

a(x) =x"+ oy XN+ s+ =0

This will, as we show in the next section, yield N real, distinct zeros. With these
zeros we are now reduced to the case in Chap. 15 with known sample points, and
we can solve the first N of the defining equations for the weights. Thus we have
our formula.

An examination of the process shows that we first solve N simultaneous
linear equations involving the moments m, to obtain the c;. These c; are then
used to form a polynomial, and we have to find the N zeros of it. Using these N
zeros, we now solve another set of N simultaneous linear equations for the N
weights. If all goes well, we will have our formula. We next turn to showing
that all will go well in certain important cases.

19.4 GAUSS’ QUADRATURE—ANALYSIS

The purpose of this section is to show that for a wide class of formulas the process
of finding a Gaussian integration formula will go through without a hitch, in the
sense that mathematically everything will be as we said it would be. Consider
the class of integration formulas

b N
[RCYCEEEPWNIEN
where we assume that

K(x)=0 a<x<b
The moments are

b
mj = L K(x)x! dx

The defining equations are:

N
mj=k;lwkxk1 j=0,1,...,2N -1

If we multiply the jth equation by the ¢; defined by

n(x) = (x — x)(x — X3) =+~ (x — xy)
=xN+CN_1xN_1+"'+Co CN=1
and sum, we get
-1 N
Y mjc;+my= Y wen(x) =0
= k=0

N
Jj=0
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Shifting and repeating, we get, in all, the system of equations as before

N-1
ij+kCJ+mN+k=o k=0,l,...,N—‘l
Jj=0

To prove that the determinant of these equations is not zero, we show that
the only solution the homogeneous equations can have is ¢; = 0 for all j. Using
the set of N homogeneous equations, we multiply the kth equation by ¢, and add,
to get

N-1N-1
Y X mMyk€ie=0
¥=0 j=0

Recalling the definition of m,, we have

N-1 N-1
rK(x)[ Yext Y c,x’] dx=0
a k=0 Jj=0

or
N-1

'[: K(x) [,;:;0 e x"] *ax =0

Since K(x) > 0, the above equation can be zero only if . ¢, x* = 0, that is, when
all the ¢; =0 (as determined by the homogeneous equations). This in turn
means that the determinant cannot be zero, and hence that we can solve the
original set of nonhomogeneous linear equations for the c;.

We now have the polynomial n(x) whose zeros are the sample points. We
need to show that when K(x) > 0, this particular polynomial has exactly N real,
distinct zeros in the interval @ < x < b. We assume, to the contrary, that it does
not, that possibly there are complex zeros, real zeros outside the interval, or
multiple zeros. Take all the odd-order zeros in the interval and for each write a
simple factor in the product

P(x) = (x — x)(x — x3) =+ (x — x)
By our assumption (that, we will prove, leads to a contradiction) the degree k of
p(x) is less than N. Consider now

N
J;r:K(x)n:(x)p(x) dx = 1;1 win(x)p(x;) =0

The right-hand side of the formula is zero because n(x;) = 0 at all the sample
points. Furthermore we made the formula exact for all powers of x up to 2Nand
hence for all polynomials of degree less than 2N. But n(x)p(x) is of degree less
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than 2, and so the integral must be zero.  Finally, the integrand is always non-
negative, and we have a contradiction since

j  K(on()p(x) dx > 0

To avoid the contradiction, we must have k = N, and thus there are N real, distinct
zeros in the interval a < x < b.

When we solve the first N defining equations for the weights w; (the Vander-
monde determinant is not zero), we can reasonably wonder if they will also be ap-
propriate for the last N equations. The equations that defined the ¢; show how
the higher moments are linearly related to the lower moments, and we can apply
these relations to show that the last N equations are consistent with the first N
since each (after the first N) is a linear combination of the earlier ones.

It is an important fact that when K(x) > 0, the weights w; are all positive
numbers. This follows from picking f(x) = m,2(x) which is a polynomial of de-
gree 2(N — 1) for which the error is zero. We get

|| Ko dx = m 2w,

and hence w; > 0. Thus roundoff propagation is not severe in these formulas
(see Sec. 19.8).

19.5 THE ERROR TERM

It would clearly be awkward to prove directly that the associated G(s) is of constant
sign, and so we proceed in an indirect fashion. Consider the Hermite interpola-
tion formula (Sec. 17.2) using the N sample points. We have

AGR()
an)!

J(x) = Pay_y (%) + 7*(%) 6 = 0(x)

We know that the integration formula is exact for all polynomials of degree less
than 2N, and so the polynomial part of the Hermite interpolation formula will
exactly cancel out on both sides of the formula. That leaves the error term to be
considered. On the right-hand side it cancels out due to the factor z(x). Onthe
left we have

DA )]

fK(x)nz(x) @M dx K(x)=0
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where 6 = 6(x). Notethat the factor K(x)n?(x) is of constant sign, and so we may
apply the mean value theorem for integrals (Sec. 4.7) and get

R )

b
o f K()n*(x) dx

But the integral is the same as
b
[ Kn*() dx = Eay #0
a

since all the lower powers of x do not contribute to the error. Thus we have for
the error of Gauss’ quadrature, when K(x) > 0,

G 10(0)

We earlier proved (Sec. 16.7) that if the form of the error was as indicated, then the
G(s) must be of constant sign.

All this reasoning has been based on the assumption that in the interval,
K{(x) does not change sign. If it does change sign, then all kinds of pathological
cases can arise. The extreme case is perhaps the kernel

K(x) = e~ *""*sin x1/4
For the integral
@ 1/4
f e~ sin xV4f(x) dx
1]
all the moments
® 1/4
m, = '[ e **sin(x"*)x* dx =0
1]

by Sec. 13.7. This shows that the defining equations are satisfied if all the weights
are zero, and it gives rise to the formula

j e~ **sin x4 f(x)dx =0
1]

which is true for all polynomials (of finite degree). But for the function
S(x) = sin x!/4

the integral clearly has a positive value. Fortunately in practice the kernel K(x)
of the integral is usually of constant sign, so that the above analysis is relevant and
the particular example is not.
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PROBLEMS

19.5.1 Discuss the kernel
K@) =e*"*[1 +sinx'4] 0<x<ow
which does not change sign. See [27].

19.6 THREE SPECIAL CASES

There are three important special cases for which the sample points x; and the
corresponding weights w; are known in a closed, analytical form. For these cases
there is no necessity for reading in these numbers from some other source—they
can be programmed in. These cases are:

L f(x) o & 2k—1 . fNG)
f.,\/l_xz'd"“m;f(°°s N ")J’zz"-l N)!
N

; x X,k kn_\ 7 9%
2 - — 2 32N Ay
[ VTR 557 290 i (oo w 1) + 7 g

kK=

4 N, kn x £2N(0)
TSP IR T lf(COSZN+ 1) + 3 Gy

We shall derive the first case [30]. The defining equations are:

! l—x
| Taafees

1 x™ N
[ dx:j;wjx;- m=0,1,...,2N - 1

—1/1=x?

Setting
x =cos 0 x; =cos 0;
then

3 N
[ cosm0do= 3 w;cosme,
0 ji=1

We know

cos N = polynomial of degree N in cos 0
= a linear combination of (cos 0)™"

Taking exactly that same linear combination of the first ¥ + 1 defining equations,
we get

n N
f cos N6 df = Y w; cos N6,
0 i=1
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With small modifications of this trick we can get the 2N equations
T N

f cos™0df =Y w;cos™ 6,
0 ji=1
3 N

f cos N0 cos™ 0 df = ) w; cos NO; cos™ 6,
0 ji=1

which are equivalent to the original 2N equations.
Since cos mf equals the polynomialincos 8, we can similarly convert these
equations to the equivalent set (see Sec. 26.2):

] N
f cosmfdf=0= Y w;cosmb;
o j=1

L4 N
f cos N6 cos mf dd =0= Y w;cos NO; cos mf,
0 j=1

The second N equations will be satisfied if

cos NG; =0
or
2j—1
2N
From the orthogonality of the cosines over the equally spaced 6; (Prob.
11.1.3), we see that the first N equations will be satisfied if w; = wand from the first
equation that

01= T j=l,2,...,N

=la

Thus we have our formula.
Similar, more elaborate trigonometry will derive the other two formulas,
although there are other, perhaps preferable, ways to find them.

PROBLEMS

19.6.1 Derive the second formula.
19.6.2 Derive the third formula.

19.7 GIVEN SOME SAMPLE POINTS

It often happens that the values of the function are known at one or both ends of
the interval of integration. Formulas which take advantage of this are known as
Radau and Lobatto integrations, respectively.
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The effect of fixing a sample point is to decrease the number of defining
equations by 1. Let us examine the case of one endpoint, say at x = a. For the
formula

N-
[ ) dx = waf @)+ Zwif )

we have the defining equations

N-1
mk=w,,a"+ Zijjk k=0,1,...,2N—2
=1
If we multiply the kth equation (k =0, 1, ..., 2N — 3) by a and subtract from the
(k + 1)st equation, we get

N-1
Mypy —am= Yy wil@a—x)x* k=10,...,2N-3
=1

Set
My — am, = M,
Wj(a - xJ) = Wj

and we have, in effect, eliminated the known point and are reduced to the pure
Gaussian case of all unknown points. Evidently we can iterate the process and
eliminate another given sample point each time until all we have left are the un-
known sample points. We then find the unknown x;. With these we are then
back to the earlier case of all sample points being known.

Again we may ask, How does it go in practice? Will the sample points be
real, distinct, and in the interval? For the two cases, a sample point at one end
of the interval (Radau) or a sample point at each end (Lobatto) and for X(x) > 0
(a < x < b), we can carry out all the steps. Corresponding to the analysis in
Sec. 19.4 where we used n2(x), we now use

(x — a)n’(x)

[where n(x) is the product over the unknown sample points] in the case of one end-
point, and

(x — a)n?(x)(b — x)
in the case of two endpoints. Thus if we can find the ¢;, then the zeros of the

polynomial are real, distinct, and in the interval @ <x < b. The analysis that we
can solve for the ¢; is a bit messy, but follows readily from Sec. 19.4.
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PROBLEMS

Find (where only endpoints are given):

7.1 | _’l £0) dx = A=) + 1) + S (VIS + F(VIB)]  Ee=—2/357
197.2 [ e /() dx = /@ +/D)]

1973 [ e75fx) dx = wa SO + wif ) + ws f(x)

1974 [ 1) 0 xdx = wo SO + wif () + W £z

1975 [ e5f(x) dx = wo £0) + Waf(x2) + W2 &) =513/ + (1) + )]
19.7.6 Carry out the details of the analysis in the case of Lobatto integration.

19.8 CHEBYSHEV INTEGRATION

It sometimes happens that we are either given or would like to put linear restraints
on the weights of a formula. Such restraints are likely to involve the weights as-
sociated with the known sample points, since they are not easily applied to posi-
tions that have not even been specified in advance. The main exception is the im-
portant case of the same restraint applied to all the weights of the sample. The
reason that this restraint arises is that this is the one that minimizes the effect of the
noise inthe samples; all other sets have some increase in the variance of the weights
since the sum of the weights is given by the first moment m,. The proof goes as
follows. To minimize

subject to the restraint (the first defining equation) that
N
Y wy=my
i=1
we use Lagrange multipliers and minimize the function of the weights

N N
F(W‘) = Z W,'2 - AZ w;
i=1 i=1
We get

for all i

When all the weights are equal, the formula is called *“ Chebyshev.”
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The best-known Chebyshev case is K(x) =1 with the range —1 < x < 1.
The w; =w =2/N. The defining equations are:

N
m=wYx} k=0,1,...,N
is1
or
N m
th"=—5
i=1 w

The sums
N
m
k k
S = Xy = —
;=Zl w

are symmetric functions in the x; and hence by the fundamental theorem [60] of
symmetric functions theory are expressible in terms of the elementary symmetric
functions

PL=—)%
P2 =) %X,
Py =(=1)"x;x; - xy
Indeed, the Newton identities
s +p1=0
Sy + P18y +2p,=0
S3 +Pp1S2 + P28 +3p3=0

........................

express exactly this relationship.

Thus, since the p; are our cy_;, we can convert these defining equations to
equations in terms of the ¢;. It is known that these equations can be solved for
real x; only for the cases! of N =1, 2, ..., 7, 9; all other cases give complex x;.

But let us be reasonable about this; the complex zeros will occur, in this and
other cases, only as conjugate pairs (we are considering integrating only real func-
tions), and the weights will be such that the sumisreal. Therefore, for the labor
of finding one complex function value we get the accuracy equivalent, in some
sense, to that of two real points. And why, given a mathematically expressed

! For tables to 10 decimal places see National Bureau of Standards, ‘“ Handbook of
Mathematical Functions,” op. cit.
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integrand, should we refuse to use complex sample points? An experiment inte-
grating a function with a known analytic answer for the cases N=1,2,...,12
showed that the errors fell on a smooth curve, as expected.

The Chebyshev case

K(x) = —00
1 - x?
is given in Sec. 19.6 and can be solved for all N with real samples—indeed it is both
a Gaussian and a Chebyshev formula at the same time!

199 RALSTON INTEGRATION

A. Ralston has published! an interesting example of a mixed type of integrationin
which two sample points and one linear restraint are assigned. Specifically, the
formula

[ g dx= $wie)

i=1

has the conditions

x1=—l
x, =1
Wy = —W,

We have, therefore, 2N — 3 parameters and can make the formula exact for

1,x,..., x>¥"%, The defining equations are
n—=1
2= Y w
i=2
0= 2w, + Y wx
2/3 = Z Wixlz

0=—2w, + Y w;x

I Z wix‘2N-4

In order to follow the subsequent algebra more easily and at the same time not
oversimplify it, we take the case of N = 5 which gives 2N — 3 = 7 equations.

! A. Ralston, J. Assoc. Computing Machinery, vol. 6, pp. 384-394, July, 1959.
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The sample polynomial is
(%) = (% — X )(x — X3)(x — %) = x> + ¢, X2 + 1 x + ¢

The usual elimination process leads to N — 1 (in this case, four) equations:

¢ +i= - Wi - W
g+t =-wo - Wi

oo +36= - w6 - W
la+1 =-we — wicy

Itis easy to see that we can form N — 3 (= 2) equations which do not involve
the quadratic terms w;¢;(i =0, 1, 2),
$co + %52 =0
56 +35 =0
We have, therefore, N — 3 linear, nonhomogeneous equations in the unknowns
Cos €1y .-y Cx—3, O One more unknown than equations. Solving the equations
in terms of, say, ¢,, we have
Cl = _3/7
Cy = —500

These are put in the first two quadratic equations of the set to give

2
—4co = —3wm
1
I5= 200m

Thus in the general case, as well as in the specific case of N = 5, when we eliminate
¢o, we come to a quadraticin w,. Inthecase of N =35,

The plus or minus sign has the effect of reversing the formula from left to right or
right to left.

Knowing w, , we can easily find the ¢; and the sample polynomial
n(x) = x° = S(zs)x — $x + 75

Reasoning similar to that of Sec. 19.4 shows that the zeros are real, distinct, and in
the interval of integration.

PROBLEMS

19.9.1 Show that the Ralston case of N = 6 has the sample polynomial

4x3 2 4x 1
pa——l = y2
m(x) =x +—3‘/3—3x __7\/3+2_l



334 19 FORMULAS USING THE SAMPLE POINTS AS PARAMETERS

19.10 GAUSSIAN INTEGRATION USING DERIVATIVES

It is natural to turn to Gaussian integration using both function and derivative
values. If only the function and first-derivative values are used, then the sample
points often (not always) turn out to be complex; but if the function and the first
and second derivatives are used, then much of the analytical part of Sec. 19.4 can
be carried through using n*(x) in place of n?(x).

Rather than examine the messy general case, let us examine the particular
case

1
[ J0I dx = wif(=x) + wof () + wif(x)
R AGEDRAAEN
SCTACENERTILORSAEO

where we have used symmetry to reduce the complexity of the algebra and have
made it exact for all odd powers of x.
The defining equations are, on dividing by 2,

1 =w, +12w, 0
x%: 13 =wx? + 2wixy + 2w]  +wg 0
x* 15 =wix* + 4wix,® + 12wix,? + x,8
x$:  1)7 =wyx,S + 6wix,® + 30wix,* —3x,*
x%: 19 =wx,® + 8wix,” + 56wix,® +3x,2

x%  11l=ww° + 10w x,° + 90w(x,® -1

Multiplying these equations by the constants on the right and adding, we get
(dropping the subscripts on the x)

x* 3, 3, 1
AL R T
Regarding this as a function of x,
x* 3, 3, 1 .. o
f(x)=?—7x +§x -l—l-—acubn.mx

we see that f(0) = —1/11 and f(1) = 8(1/33 — 1/35) > 0, and hence there is a real
x that is the solution to our problem of finding a sample point. The rest now
follows easily.
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PROBLEMS

19.10.1 Carry out the details of the analysis mentioned in the text.

19.10.2 Complete the above special case.

19.10.3 Discuss the case where some points use f(x), some f(x), f'(x), f”(x), and some
U A9 AV A

19.10.4 Show that

[ 10 dx = wa ) wa S + Wi ) + w5 S (3

leads to complex sample points x;.
19.10.5 Derive the two-point case using f, f’, and f” for j"_l f(x) dx.

19.11 AN ALGORITHMIC APPROACH
TO FINDING FORMULAS

Computer science emphasizes the algorithmic approach to various fields, and we
shall adoptit for the problem of finding formulas. Inorder notto obscure matters
too much we shall omit a lot of the trivial details that are easily supplied (especially
exits from the flow diagram when various steps fail to work).

The formulas we are considering are of the form of a linear operator which
is being estimated by a linear combination of samples of the function, and possibly
one or more derivatives, using weights w;, wj, w;.... We have examined the
problem mainly in terms of the operation of integration over a definite interval,
but much of the material applies to any linear operator.

To fix notation, let

n, = the number of weights w;, w}, w;, ... to be determined
n, = the number of sample points x; that are given

n,y = the number of sample points x; to be found

n, = the number of linear restraints on the weights

N =n, +n,

We are finding formulas in the classical sense of making them correct for successive
powers of x, that is, putting in 1, x, x%, ... as far as we can to form the defining
equations, Sec. 15.5. How far canwe go? We have n; + ny — n, free param-
eters and can therefore expect that the same number of defining equations will
usually determine all the parameters. We will, therefore, need the same number
of moments m; of the linear operator, and later we will need more m;, both for the
possibility of higher accuracy (as, for example, in Simpson’s formula, Sec. 15.3)
and for the error term, Chap. 16.
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Before writing down the defining equation, box 1 in Fig. 19.11.1, it is well
to look for symmetry about some point x = q, either even or odd symmetry (Sec.
17.5, Example 17.3, and Sec. 19.2). If there is symmetry, then using powers of
x — a, instead of powers of x, will simplify the problem (though it should be
realized that anything that can be done along these lines can be done later by
manipulating the equations properly). When we use the symmetry we have:

Even symmetry 0Odd symmetry

Magyy = 0 allk Nax = 0 allk

xi—a=—@xn-1—0a) xi—a=-—(xy-1—0a)
W£= W}!_[ W5= —Wf(_‘
W3= —Wp.l_l W£= W!!_[
Wi= Wn-y Wi = —Wn-y

......................................

These choices make the corresponding defining equations exact for all values of
the index k, so that we need only write the defining equations for

x2k or x2k+ 1

Thus there will be about half as many defining equations to be solved and about
one-eighth as much algebraic manipulation to solve them.

To the defining equations we append the n, equations giving the linear
restraints on the weights. The combined set of n; + n, equations are to be solved
for both the x; that are not known and for the weights w;, w;, w", ...

If ny = 0 (all sample points are known), then we solve these equations (box
2in Fig. 19.11.1). There are three approaches possible:

1 Direct elimination—the hard way.

2 Solve for some of the weights using the sampling polynomials =;, o;, 1;,

etc., to obtain them directly, Secs. 15.5, 17.4, and 17.6.
3 Inthe Birkhoff cases we can construct the inverse matrix as combinations
of sums and products of the x; (Secs. 14.5, 14.6, 17.4, 17.6).

These equations can be solved when the system has Birkhoff data (consecutive
derivatives) (Sec. 17.6). In other cases we are not certain that they can be solved;
indeed we know from the example of Sec. 17.7 that they can be inconsistent or that
they can admit of a one-parameter (or more) family of solutions. Inthelater case
we can add further defining equations and hope for consistency when the rank
rises to full order (Sec. 17.7).

When we have the formula, we next turn to finding the error term (box 3 of
Fig. 19.11.1) which requires additional moments m,. We first find the value of
m such that E,, 0. Note that the value of E, can be found directly, without
finding the weights, as a linear combination of the moments m;. The coefficients
of this linear combination are polynomials in the x; only (Sec. 17.8). We then
construct the G(s), and if it is of constant sign, we have the structure of the error
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term (Sec. 16.5), while if it is not of constant sign, we turn to Sec. 16.7 for guidance.
For some Gaussian cases we can use the interpolation formula’s error term
instead (Sec. 19.5).

Finally it is necessary to organize our scattered results and print out the
formula, or why we did not get it (box 4 in Fig. 19.11.1).

If ny 5 0 but n, = 0, we have the pure Gaussian case of all unknown sample
points. For the case of only function values we first construct the equations for
the coefficients ¢; of the polynomial n(x) whose zeros are the unknown sample
points. This we can always do (box 5 in Fig. 19.11.1).

To solve these equations for the c, is another matter (box 6 in Fig. 19.11.1).
We need to consider the rank of the equations and what to do if this is less than full
rank. Adding more defining equations is one approach, provided inconsistency
has not shown that such a formula cannot exist. For the case of K(x) > 0, in-
tegration with no constraints on the weights, and at most only endpoints as as-
signed samples, we know that the equations are of full rank (Sec. 19.4). The
general case using derivatives is obscure.

In box 7 of Fig. 19.11.1, we solve this polynomial for the unknown sample
pointsx;. Again we are assured that in the case of integration with K(x) > 0, and
at most assigned sample points at the ends of the interval, we will find real, distinct
zerosin the interval of integration. This can happen in other cases too, and it can
fail to happen. But the conventional view that complex zeros or multiple zeros
are always fatal should be resisted, and the question judged on its own merits. It
is easy to show that in the case of complex zeros only the corresponding weights can
be complex. The complex sample points give rise to a real quadratic factor in the
n(x) and most of the n,(x); and almost all the usual proofs go through as before,
with, at most, minor modification. If multiple roots occur, then thought should
be given to using a one-higher derivative at that place.

In box 8 of Fig. 19.11.1, we add these new sample points to the old ones (if
any) and look for duplicates. If there are none, then using a suitable number of
defining equations, we carry out box 2 (Fig. 19.11.1) and know that the other
defining equations will automatically be satisfied. Duplicate points are unlikely
and have not been discussed.

Ifny # 0,thenn, s 0,and we go to box 9 (Fig. 19.11.1) and eliminate a given
sample point (Sec. 19.7). Going around the loop enough times, we end up with
all unknown sample points x; and go to box 5.

We have ignored many details, and much research can be done to increase the
number of circumstances under which we can be sure that the method will go
through without any problems in going from the defining equations to the for-
mula. With modern symbol-manipulating routines available, this process could
be put on a machine.
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COMPOSITE FORMULAS

20.1 INTRODUCTION

The previous Chaps. 14 to 19 examined the process of approximating a linear
operator as a linear combination of samples of the function, and possibly some its
derivatives, and used integration as a typical linear operator. These chapters
concentrated on methods, as the title of the book suggests, and did not attempt to
apply the resulting formulas to specific functions. The present chapter looks a
little closer at the actual application of the methods to the practical problem of
integration, although we shall also look once more at the problem of interpolation.
In both cases we will look at how formulas can be combined (composite formulas)
to achieve the desired result.

Books on numerical methods often give many examples of formulas applied
tospecificfunctions. Wedonotintend to do thisfor anumber of reasons.  First,
it supposes that the reader cannot evaluate a function, and possibly some of its de-
rivatives, at a givenset of sample points and then compute a weighted sum of these
results—presumably drill in such matters is not necessary at this late stage in the
reader’s mathematical development. Second, for a given formula for integration
it is easy to find a function for which it will give a very good result, while at the
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same time a “ better” formula will give a worse result. Formulas are not to be
judged on how well they do on a specific function, but rather how well they do over
some class of functions. We cannot use the average error over any reasonable
ensemble of functions as a measure because, among other reasons, the ensemble
is very likely to have both f(x) and —f(x) in it with equal probability, so that the
average error will automatically be zero—we probably want to use the variance
over the ensemble if only we could agree on one or more suitable ensembles of
functions! In the absence of such tests, we are forced to use the size of the co-
efficient E,, in the error term as a guide for comparing formulas having the same-
order error term (the same m). As noted earlier, we are not certain about the
effect of the mean value theorem in placing the 0 value more favorably in one for-
mula than in another, and so our choice is not certain, only plausible. Third, with
large-scale computation it is more and more true that the user does not get tolook
at the results—they are buried deep in some inner loop and at best he sees the re-
sults of a few early test cases. But worse than this, he is often forced to pick the
method before any real data are available and later can modify his choice only
slightly. Commitments in large projects must be made in advance of definite
knowledge, and at much later times cannot be broken easily without jeopardiz-
ing the whole project. Thus it is necessary to train numerical analysts to know
in advance what will probably happen. Of course tests can and should often be
made of specific cases. Of course somewhat similar problems can be tried before
making the final choice, but many times there is no real hope of knowing more
than a general description of what the data will be like when they become avail-
able.

For all these reasons we will stick to the somewhat abstract approach of try-
ing to reason what will happen in practice rather than regularly appealing to spe-
cific examples—this approach is necessary in order to get training in this difficult
art of being right even when you are not sure what the problem is. This puts
a burden on testing whatever seems, at the moment, to be relevant material when-
ever you can. Unfortunately the design of experiments lies outside the course,
and the art of guessing is very difficult to teach.

20.2 POLYNOMIAL APPROXIMATION AGAIN

By now it should be very clear that what we are doing by our formulas is equivalent
(with a very few exceptions) to first finding an interpolating polynomial and then
applying a linear operator to this interpolating polynomial—we called it analytic
substitution. We need, therefore, to think a bit about what kinds of functions
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can be approximated well by low-order polynomials, as well as the chief charac-
teristics of high-order polynomials.

First, a polynomial is finite, along with all orders of its derivatives, at all
finite points. This means that integrals like

b - harctan x h
j Jxe ¥ dx f —dx —f In x arctan x dx
0 0 \/x 0

usually are not going to be very accurately done, except by chance or by / being
small. One frequently sees proof in the literature that if a sufficiently small
spacing is used, then some particular composite formula will give accuraie results
(in the limit), but it seems foolish to try to imitate the fundamental definition of
integration by adding enough small intervals to get the sum accurately.

Second, polynomials go to infinity as the argument goes to both + co and
—00. Thus integrals of the form

©  dx © dx ® .

o 1+x? J; x?Iln x J;e S (x) dx

are apt to be troublesome, unless the kernel smothers the growth at infinity, as is
likely to be true in the third example.

Third, polynomials love to wiggle, especially high-order ones. But for inte-
gration with a constant kernel K(x) = 1, the wiggles are apt to be more awful-
looking than they are in practice. There is a tendency for the successive loops to
cancel out more than might seem rcasonable at first sight.  For example, in Simp-
son’s formula applied to a cubic the area between the interpolating quadratic and
the cubic had a net area of zero (Sec. 15.3).

The problem, then, is to discover the nature of any nonpolynomial behavior
andtoincorporate this into the kernel K(x); it is foolish to do otherwise. A very
high percentage of the problems that arise in practice will have some peculiar be-
havior at one or both ends of the interval, but only occasionally will there be
trouble inside the range (being bounded at infinity is real trouble for a polynomial).
It is because such troubles arise so often that we have given all the material for de-
veloping formulas so that an appropriate one can be found for almost any kind of
difficulty you face. Only the most common cases, or perhaps the easiest ones to
discuss, have been reported in the literature, and the others are awaiting you when
you start practicing the difficult art of practical computing. Thus you will oc-
casionally have to develop your own formulas to fit the peculiar needs of your
current work.
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20.3 THE NEWTON-COTES FORMULAS

The most obvious family of formulas, and the most commonly discussed, but not
used in practice, is the Newton-Cotes formulas for integrating a function, given a
set of equally spaced sample points (including the endpoints). The trapezoid
rule (Sec. 16.5)

h
[0 dx = 5@ + 5001 - 55 W ©)
0
Simpson’s formula (Sec.16.5),
2h
(76 = 2@ + 4700 + 12N - 35 1)
0

and the three-eighths rule (Prob. 15.4.4 in disguise)
fo S(x)dx = == [f(0) + 3 (h) + 3fQ2h) + fBM)] - g5 b (0)

are the first three members of the family. Table 20.3 gives the coefficients for the
general form

o f(x) dx = AR[Bof(0) + B f(h) + B, f(2h) + *** + B,f(nh)] + R,

where n is the number of intervals, not the number of sample points as we have been
doing. Evidently there are n + 1 sample points. Since the coefficients are
symmetric, we need not give all the table.

Some of the coefficients become negative forn = 8. Forn =9 they are all
positive, but for n > 10 there are negative coefficients. This tends to produce
poor roundoff properties, and as a result the higher-order Newton-Cotes formulas
are seldom used. The order of the error terms jumps by 2 in going from an odd
number to the next even number, which tends to favor the even-order formulas.

Notice the appearance of the powers of 4 in the error term. When we use
other than unit spacing, the powers of # automatically appear in the defining equa-
tions. We may either compute with the 4 values present or else pretend we have
unit spacing and supply the proper power of 4 later (for equally spaced samples);
the latter is usually preferable.

If these formulas are to be compared for the same interval, then it must be
remembered that & = range of integration/n, and the corresponding adjustments
must be made in the error terms

The Newton-Cotes formulas can be derived in many ways. Perhaps the
simplest way to find the actual coefficients is to observe that the Gregory formula,
when written to include all the differences that can be computed from the sample
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points, is exact for polynomials of the maximum degree, and hence when writtenin
the Lagrange form, must be the same as if it were derived directly. Thus for the
case of n = 4 we have

4
[ F@ds= 4o+ i+ fo t fo + 1 ¥ T5(ASo = AS)

T20% + A%) + 5% — A°)
— 1e5(A%o + AYo) = 14+ +34L A+t
We have not derived the error terms [by showing that the influence function

G(s) is of constant sign] because as we said earlier, the formulas beyond Simpson’s
are seldom used.

PROBLEMS

1
20.3.1 Apply the n=2, 4, 6, 8 Newton-Cotes cases to _[ e *dx. Compare with the
correct answer. 0
20.3.2 Discuss the noise amplification of the Newton-Cotes formulas.
20.3.3 Derive the Newton-Cotes formula from the Gregory formula for n = 6.

20.4 REMARKS ON SOME FORMULAS

Why are the Newton-Cotes formulas seldom used for high orders? Partly be-
cause the roundoff appears to be so bad. If we assume that the roundoff error ¢;
is independent at successive points x; where the function is evaluated and that it
has a noise level of o2, then the variance of the sum will be

Av(Y we} =Y Y wow; Avie;e}
iJ
= (z Wiz)"z

since
Avig;e;} =0 i#j
But this effect should not be exaggerated, though it is serious when the weights
have different signs since their sum is fixed in advance at my .
The Gaussian formulas require peculiar weights and sample points, and this
needlessly discourages people from using them; however the weights being all

positive for K(x) > Oisencouraging. The Chebyshev formulas do not seem to be
worth the trouble of the awkward sample points except when they are given by
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analytical formulas. Thus we are forced to look more closely at the composite
formulas that were briefly mentioned in Sec. 18.9.

However, the Gaussian formulas are often very useful. Among other
places they are often used is in solving integral equations. For example, given the
integral equation

Y0 =1+ [ Kexshi) ds

we apply Gaussian quadrature and are led to a system of simultaneous linear
equations:

N
y(x) =f(x) +I;w, K(x;, sy(s)) i=12,...,N

Since the cost of solving linear equations is proportional to N3, the use of Gaussian
quadrature, which reduces the number of equations by a factor of 2 for the same
order of truncation error, is clearly worth the awkwardness of the peculiar sample
points and weights.

20.5 COMPOSITE FORMULAS

Since high-order formulas are not often used, composite formulas must be the
major formulas in practice. In the case of the Hamming-Pinkham formulas the
error term is given by the sum of all the neglected differences and in practice is
usually not far from the first neglected difference.

In the case of composite formulas based directly on some formula, say Simp-
son’s, we find that the error term is the sum of derivatives, and we need the follow-
ing theorem.

Theorem 20.5.1 If g(x) is continuous and the ¢; > 0, then for some value
0 in the interval of all the arguments

dOF c;= il ¢19(0)

PROOF The proof follows by induction from the simple case of two
Consider

$(0) = ¢19(0,) + c29(8,) — (c; + ¢,)9(6)

In the interval of the 6;, g(f) takes on both a maximum and a mini-
mum. If g(6) is not constant, then ¢(0) has opposite signs at these
two points: hence since it is continuous, it takes on the value O.
The induction follows easily. I
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This theorem is the discrete analog of the theorem

[0t dx =00 [ dx 120

(Secs. 7.4 and 16.2). Thus we get for the composite Simpson’s formula
nh® f96)
90

The h° appears in the error term because we have shifted from unit spacingin t to
the spacing A in x by the transformation

2nh
[5G dx = 5L + 400 + 242 + -+ f2nh] ~

ht=x

w=%a

and
d" _md"
ar =
The error is often written as
(b — 2k ()
- —

where b — a = range of integration = 2nh.

In formulas like Ralston’s, the opposite signs of the function values at the
ends clearly cause them to cancel out, except at the ends of the range, and this is
their chief merit.

In formulas using derivatives there is a strong tendency to have the odd-
order derivatives cancel out. Problem 17.5.2 derives the formula

' ! (0 — iy 1. 25O
[[160 dx = SO + 67 +5@ — D] + 755
or
g h (0 — 1 4. 11O
[ 16y dx = 5 T670) + 67) +7°0) = £/ + =55

The composite formula is, therefore,

76 a5 = 3@ + 1) + -+ + Ll ~ DI + Sk}
K90
720

Thus only the end derivatives are used (this formula can also be found from the
Euler-Maclaurin formula in Sec. 12.8).

+ liZ [f'(0) — f'(nh)] + nh
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PROBLEMS

Find the corresponding composite formula from the following problems:
20.5.1 18.10.4

20.5.2 17.4.1

20.5.3 17.5.3

20.54 17.54.

20.6 COMPOSITE OR HIGH-ACCURACY FORMULA?

How shall we choose between the two alternate choices of integration, a low-
order composite formula or a single high-accuracy formula? The answer is both
very simple and very complex. In principle it is a question of the rate of growth
of the higher derivatives of the integrand [ignoring the kernel K(x)]. Section
14.7 discussed the growth of the higher derivatives for functions that have singu-
larities in the finite part of the complex plane [recall that 1/(1 + x?) has singu-
larities at x = +i] and showed that some of the high-order derivatives must
behave like n! or worse; otherwise the series would converge everywhere.

Since, except for a few elementary cases, the high-order derivatives are not
available in closed form, it is usual to estimate them from a difference table. Of
course this has its dangers, especially near a singularity. While we try to incor-
porate all the singularity we can into the kernel, there is usually some singularity
left, not necessarily in the interval of integration, to cause trouble.

There is no magic number, but experience seems to indicate that for moder-
ate engineering and scientific accuracies of, say, five decimal places, fourth- and
fifth-order derivatives are about as far as it is wise to go in the absence of knowl-
edge that the higher derivatives are not excessively large. On the other hand,
experience with Gaussian integration indicates that good answers can be obtained
from high-accuracy formulas. Apparently it is the equal spacing that is not
favorable to the use of high-order derivatives in the Newton-Cotes, and similar,
formulas.

20.7 GREGORY-TYPE FORMULAS

The trouble in estimating the value of the derivative occurring in the error term
leads to sequential methods of estimating the accuracy of a formula. The use of
several different spacings and the comparison of the resultant numbers provide a
popular way of approaching the problem. One of the more popular methods is
to start with a low-order formula with a known error-term structure, usually
expressed in the Taylor-series form with many terms being kept, and then using
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tighter and tighter spacings, build up a table of values of estimates of the integral.
The next step is to eliminate pairwise the lowest-order derivative that appears in
the error term; thus from n estimates we get n — 1 estimates with one of the deriv-
atives eliminated. Then from these we eliminate the next derivative, etc. This
is not the same as directly finding the most accurate formula you can, but it tends
to avoid oscillation in the weights (the effective weights, once all the elimination is
done) that occurs in the Newton-Cotes formulas.

It would seem, however, that the direct use of the Gregory, or Hamming-
Pinkham, formula (which was invented for this purpose) would be better, and a
number of experiments back up the theory. The approach through the differen-
ces allows almost independent estimates of both truncation and roundoff error, so
that a comparison of the effects of using either a higher-order formula (using more
differences) or more points can be made accurately.

The Gregory and Hamming-Pinkham formulas have an additional feature
worth noting. When the integrand becomes flat at the ends of the interval, for
example,

® 2
f e dx
=
then the differences all approach zero and can be ignored.
Hartree! gives Table 20.7 for results obtained when computing

I ='[ e dx=h{12+ Y e "
0 K1

The remarkable accuracy for /1 = 1/2 is unfortunately accompanied by a lack of
knowledge of when it occurs or when A is too large; the error analysis of Gregory’s
formula is a difficult topic.

Table 20.7 COMPUTATION OF J: e~ dx*

1

0.5 088622 69254 S  Correct to 11 decimals
8

0.6 69254
0.7 69285
0.8 0.88622 72808
0.9 23 598
1.0 32 0

1.1 0.88674

! Sece Hartree [19]. See also R. A. Fisher, Phil. Trans. Roy. Soc. London, Ser. A, 1922,
for gencral /& and crror theory.
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PROBLEMS

20.7.1 Make a flow diagram for the Gregory formula which involves the machine
choice of when to stop using more differences. Discuss your reasoning for
terminating as you do.

20.8 COMPOSITE INTERPOLATION

For interpolation the problem of whether to use one-high-order polynomial for
the whole interval or to use a sequence of lower-order polynomials for various
intervals is exactly the same problem as when to use a single high-order integration
formula or a different composite formula. The chief difference is that inte<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>