
Design of Digital Circuits
Lecture 19b: Systolic Arrays and Beyond

Prof. Onur Mutlu
ETH Zurich
Spring 2019
3 May 2019

Bachelor’s Seminar in Comp Arch

n Fall 2019
n 2 credit units

n Rigorous seminar on fundamental and cutting-edge
topics in computer architecture

n Critical presentation, review, and discussion of seminal
works in computer architecture
q We will cover many ideas & issues, analyze their tradeoffs,

perform critical thinking and brainstorming

n Participation, presentation, synthesis report
n You can register for the course online
n https://safari.ethz.ch/architecture_seminar/fall2018/doku.php

2

https://safari.ethz.ch/architecture_seminar/fall2018/doku.php

Announcement
n If you are interested in learning more and doing research in

Computer Architecture, three suggestions:

q Email me with your interest (CC: Juan)

q Take the seminar course and the “Computer Architecture” course

q Do readings and assignments on your own

n There are many exciting projects and research positions

available, spanning:

q Memory systems

q Hardware security

q GPUs, FPGAs, heterogeneous systems, …

q New execution paradigms (e.g., in-memory computing)

q Security-architecture-reliability-energy-performance interactions

q Architectures for medical/health/genomics

3

Broader Agenda
n Single-cycle Microarchitectures

n Multi-cycle and Microprogrammed Microarchitectures

n Pipelining

n Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n Out-of-Order Execution

n Other Execution Paradigms

4

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n Systolic Arrays
n Decoupled Access Execute
n SIMD Processing (Vector and array processors, GPUs)

5

Readings for Today
n Required

n H. T. Kung, “Why Systolic Architectures?,” IEEE Computer
1982.

n Recommended
q Jouppi et al., “In-Datacenter Performance Analysis of a Tensor

Processing Unit”, ISCA 2017.

6

Readings for Next Week
n Required

q Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

n Recommended
q Peleg and Weiser, �MMX Technology Extension to the Intel

Architecture,� IEEE Micro 1996.

7

Systolic Arrays

8

Systolic Arrays: Motivation
n Goal: design an accelerator that has

q Simple, regular design (keep # unique parts small and regular)
q High concurrency à high performance
q Balanced computation and I/O (memory) bandwidth

n Idea: Replace a single processing element (PE) with a regular
array of PEs and carefully orchestrate flow of data between
the PEs
q such that they collectively transform a piece of input data before

outputting it to memory

n Benefit: Maximizes computation done on a single piece of
data element brought from memory

9

Systolic Arrays

n H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.
10

Memory: heart
Data: blood
PEs: cells

Memory pulses
data through
PEs

Why Systolic Architectures?
n Idea: Data flows from the computer memory in a rhythmic

fashion, passing through many processing elements before it
returns to memory

n Similar to blood flow: heart à many cells à heart
q Different cells “process” the blood
q Many veins operate simultaneously
q Can be many-dimensional

n Why? Special purpose accelerators/architectures need
q Simple, regular design (keep # unique parts small and regular)
q High concurrency à high performance
q Balanced computation and I/O (memory) bandwidth

11

Systolic Architectures
n Basic principle: Replace a single PE with a regular array of

PEs and carefully orchestrate flow of data between the PEs
q Balance computation and memory bandwidth

n Differences from pipelining:
q These are individual PEs
q Array structure can be non-linear and multi-dimensional
q PE connections can be multidirectional (and different speed)
q PEs can have local memory and execute kernels (rather than a

piece of the instruction)
12

Systolic Computation Example
n Convolution

q Used in filtering, pattern matching, correlation, polynomial
evaluation, etc …

q Many image processing tasks
q Machine learning: up to hundreds of convolutional layers in

Convolutional Neural Networks (CNN)

13

LeNet-5, a Convolutional Neural Network
for Hand-Written Digit Recognition

14

This is a 1024*8 bit input, which will
have a truth table of 2 8196 entries

Slide credit: Hwu & Kirk

Convolutional Neural Networks: Demo

15

http://yann.lecun.com/exdb/lenet/index.html

Implementing a Convolutional Layer
with Matrix Multiplication

16
Slide credit: Hwu & Kirk

12

Power of Convolutions and Applied Courses

n In 2010, Prof. Andreas Moshovos adopted Professor Hwu’s
ECE498AL Programming Massively Parallel Processors Class

n Several of Prof. Geoffrey Hinton’s graduate students took
the course

n These students developed the GPU implementation of the
Deep CNN that was trained with 1.2M images to win the
ImageNet competition

Slide credit: Hwu & Kirk

17

Example: AlexNet (2012)

18

n AlexNet won ImageNet with more than 10.8% points ahead
of the runner up
q Krizhevsky et al., “ImageNet Classification with Deep

Convolutional Neural Networks”, NIPS 2012.

n Google improves accuracy by adding more layers
q From 8 in AlexNet to 22 in GoogLeNet
q Szegedy et al., “Going Deeper with Convolutions”, CVPR 2015.

Example: GoogLeNet (2014)

19

n He et al., “Deep Residual Learning for Image Recognition”, CVPR 2016.

Example: ResNet (2015)

20

Human: 5.1%

First CNN

n Convolution
q Used in filtering, pattern matching, correlation, polynomial

evaluation, etc …
q Many image processing tasks
q Machine learning: up to hundreds of convolutional layers in

Convolutional Neural Networks (CNN)

21

Systolic Computation Example: Convolution (I)

Systolic Computation Example: Convolution (II)

n y1 = w1x1 +
w2x2 + w3x3

n y2 = w1x2 +
w2x3 + w3x4

n y3 = w1x3 +
w2x4 + w3x5

22

Systolic Computation Example: Convolution (III)

n Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

23

Systolic Computation Example: Convolution (IV)

n One needs to carefully orchestrate when data elements are
input to the array

n And when output is buffered

n This gets more involved when
q Array dimensionality increases
q PEs are less predictable in terms of latency

24

Two-Dimensional Systolic Arrays

25

Combinations

26

n Systolic arrays can be
chained together to
form powerful systems

n This systolic array is
capable of producing
on-the-fly least-squares
fit to all the data that
has arrived up to any
given moment

Systolic Arrays: Pros and Cons
n Advantages:

q Principled: Efficiently makes use of limited memory bandwidth,
balances computation to I/O bandwidth availability

q Specialized (computation needs to fit PE organization/functions)
à improved efficiency, simple design, high concurrency/
performance
à good to do more with less memory bandwidth requirement

n Downside:
q Specialized

à not generally applicable because computation needs to fit
the PE functions/organization

27

n Each PE in a systolic array
q Can store multiple “weights”
q Weights can be selected on the fly
q Eases implementation of, e.g., adaptive filtering

n Taken further
q Each PE can have its own data and instruction memory
q Data memory à to store partial/temporary results, constants
q Leads to stream processing, pipeline parallelism

n More generally, staged execution

28

More Programmability in Systolic Arrays

Pipeline-Parallel (Pipelined) Programs

29

Stages of Pipelined Programs
n Loop iterations are divided into code segments called stages
n Threads execute stages on different cores

30

loop {
Compute1

Compute2

Compute3
}

A

B

C

A B C

Pipelined File Compression Example

31

Systolic Array: Advantages & Disadvantages
n Advantages

q Makes multiple uses of each data item à reduced need for
fetching/refetching à better use of memory bandwidth

q High concurrency
q Regular design (both data and control flow)

n Disadvantages
q Not good at exploiting irregular parallelism
q Relatively special purpose à need software, programmer

support to be a general purpose model

32

Example Systolic Array: The WARP Computer

n HT Kung, CMU, 1984-1988

n Linear array of 10 cells, each cell a 10 Mflop programmable

processor

n Attached to a general purpose host machine

n HLL and optimizing compiler to program the systolic array

n Used extensively to accelerate vision and robotics tasks

n Annaratone et al., “Warp Architecture and

Implementation,” ISCA 1986.

n Annaratone et al., “The Warp Computer: Architecture,

Implementation, and Performance,” IEEE TC 1987.

33

The WARP Computer

34

The WARP Cell

35

An Example Modern Systolic Array: TPU (I)

36

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

An Example Modern Systolic Array: TPU (II)

37

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

An Example Modern Systolic Array: TPU (III)

38

TPU: Second Generation

39

https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips
vs 1 chip in TPU1

High Bandwidth Memory
vs DDR3

Floating point operations
vs FP16

45 TFLOPS per chip
vs 23 TOPS

Designed for training
and inference
vs only inference

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n Systolic Arrays
n Decoupled Access Execute
n SIMD Processing (Vector and array processors, GPUs)

40

Decoupled Access/Execute (DAE)

Decoupled Access/Execute (DAE)
n Motivation: Tomasulo�s algorithm too complex to

implement
q 1980s before Pentium Pro

n Idea: Decouple operand
access and execution via
two separate instruction
streams that communicate
via ISA-visible queues.

n Smith, �Decoupled Access/Execute
Computer Architectures,� ISCA 1982,
ACM TOCS 1984.

42

Decoupled Access/Execute (II)
n Compiler generates two instruction streams (A and E)

q Synchronizes the two upon control flow instructions (using branch queues)

43

Decoupled Access/Execute (III)
n Advantages:

+ Execute stream can run ahead of the access stream and vice
versa
+ If A is waiting for memory, E can perform useful work
+ If A hits in cache, it supplies data to lagging E
+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

n Disadvantages:
-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling
-- Branch instructions require synchronization between A and E
-- Multiple instruction streams (can be done with a single one,
though)

44

Astronautics ZS-1
n Single stream

steered into A and
X pipelines

n Each pipeline in-
order

n Smith et al., �The
ZS-1 central
processor,�
ASPLOS 1987.

n Smith, �Dynamic
Instruction
Scheduling and
the Astronautics
ZS-1,� IEEE
Computer 1989.

45

Loop Unrolling to Eliminate Branches

n Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead
q Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)
q Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
46

for (int i = 0; i < N; i++){

A[i] = A[i] + B[i];

}

for (int i = 0; i < N;){

}

for (int i = 0; i < N;){

A[i] = A[i] + B[i];
A[i+1] = A[i+1] + B[i+1];
A[i+2] = A[i+2] + B[i+2];
A[i+3] = A[i+3] + B[i+3];

}

for (int i = 0; i < N; i+=4){

A[i] = A[i] + B[i];
A[i+1] = A[i+1] + B[i+1];
A[i+2] = A[i+2] + B[i+2];
A[i+3] = A[i+3] + B[i+3];

}

for (int i = 0; i < N; i+=4){

A[i] = A[i] + B[i];
A[i+1] = A[i+1] + B[i+1];
A[i+2] = A[i+2] + B[i+2];
A[i+3] = A[i+3] + B[i+3];

}

A Modern DAE Example: Pentium 4

47Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.

Intel Pentium 4 Simplified

48

Mutlu+, “Runahead Execution,”
HPCA 2003.

Approaches to (Instruction-Level) Concurrency

n Pipelining
n Out-of-order execution
n Dataflow (at the ISA level)
n Superscalar Execution
n VLIW
n Fine-Grained Multithreading
n Systolic Arrays
n Decoupled Access Execute
n SIMD Processing (Vector and array processors, GPUs)

49

Design of Digital Circuits
Lecture 19b: Systolic Arrays and Beyond

Prof. Onur Mutlu
ETH Zurich
Spring 2019
3 May 2019

