Design of Digital Circuits
Lecture 19b: Systolic Arrays and Beyond

Prof. Onur Mutlu
ETH Zurich
Spring 2019
3 May 2019

Bachelor’s Seminar in Comp Arch

Fall 2019
2 credit units

Rigorous seminar on fundamental and cutting-edge
topics in computer architecture

Critical presentation, review, and discussion of seminal
works in computer architecture

o We will cover many ideas & issues, analyze their tradeoffs,
perform critical thinking and brainstorming

Participation, presentation, synthesis report

You can register for the course online
https://safari.ethz.ch/architecture _seminar/fall2018/doku.php

https://safari.ethz.ch/architecture_seminar/fall2018/doku.php

Announcement

If you are interested in learning more and doing research in
Computer Architecture, three suggestions:

a Email me with your interest (CC: Juan)
a Take the seminar course and the “"Computer Architecture” course
o Do readings and assignments on your own

There are many exciting projects and research positions
available, spanning:

Memory systems

Hardware security

GPUs, FPGAs, heterogeneous systems, ...

New execution paradigms (e.g., in-memory computing)
Security-architecture-reliability-energy-performance interactions
Architectures for medical/health/genomics

o o o o o O

3

We Are Almost Done With This...

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

s Out-of-Order Execution

= Other Execution Paradigms

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

m Superscalar Execution

s VLIW

» Fine-Grained Multithreading

= Systolic Arrays

= Decoupled Access Execute

= SIMD Processing (Vector and array processors, GPUs)

Readings for Today

Required

H. T. Kung, "Why Systolic Architectures?,” IEEE Computer
1982.

Recommended

o Jouppi et al., “"In-Datacenter Performance Analysis of a Tensor
Processing Unit”, ISCA 2017.

Systolic Arrays

Systolic Arrays: Motivation

Goal: design an accelerator that has

a Simple, regular design (keep # unique parts small and regular)
a High concurrency - high performance

o Balanced computation and I/O (memory) bandwidth

Idea: Replace a single processing element (PE) with a regular
array of PEs and carefully orchestrate flow of data between
the PEs

o such that they collectively transform a piece of input data before
outputting it to memory

Benefit: Maximizes computation done on a single piece of
data element brought from memory

Systolic Arrays

INSTEAD OF:

{ MEMORY €=

—»{ 7
WE HAVE:
MEMORY]‘-—

100 ns

100 ns
"PLPE PE | PE lPE I PE | PE

THE SYSTOLIC ARRAY

5 MILLION
OPERATIONS
PER SECOND
AT MOST

30 MOPS
POSSIBLE

Figure 1. Basic principle of a systolic system.

Memory: heart
Data: blood
PEs: cells

Memory pulses
data through
PEs

= H. T. Kung, "Why Systolic Architectures?,” IEEE Computer 1982.

Why Systolic Architectures?

Idea: Data flows from the computer memory in a rhythmic

fashion, passing through many processing elements before it
returns to memory

Similar to blood flow: heart = many cells - heart
a Different cells “process” the blood

o Many veins operate simultaneously

o Can be many-dimensional

Why? Special purpose accelerators/architectures need

a Simple, regular design (keep # unique parts small and regular)
a High concurrency - high performance

o Balanced computation and I/O (memory) bandwidth

10

Systolic Architectures

Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs

o Balance computation and memory bandwidth

INSTEAD OF:
MEMORY 5 MILLION
OPERATIONS
100 ns PER SECOND
AT MOST
PE

MEMORY

WE HAVE:

30 MOPS
POSSIBLE

100 ns

PE|PE | PE | PE | PE | PE

Differences from pipelining:
o These are individual PEs Figure 1. Basic principle of a systolc system,

o Array structure can be non-linear and multi-dimensional

o PE connections can be multidirectional (and different speed)
a

PEs can have local memory and execute kernels (rather than a
piece of the instruction)

11

Systolic Computation Example

= Convolution

o Used in filtering, pattern matching, correlation, polynomial
evaluation, etc ...

o Many image processing tasks

o Machine learning: up to hundreds of convolutional layers in
Convolutional Neural Networks (CNN)

Given the sequence of weights (w;, wy, . . ., wg|
and the input sequence Xy, X3, . . . , X, ,

compute the result sequence Vi, V>, - - - s Vnsl-k .
defined by

Yi= M’|XI'+ Wa X, 1 T e e T WiXis k=1

12

LeNet-5, a Convolutional Neural Network
for Hand-Written Digit Recognition

This is a 1024*8 bit input, which will
have a truth table of 2 819 entries

C3:f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
* S2:f. ma C5: layer .
Yo' F6:layer OUTPUT
L 84 10

32x32
6@ 14x1r 20

I
Full conAection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Slide credit: Hwu & Kirk

13

Convolutional Neural Networks: Demo

Back to Yann's
Home
Publications

LeNet-5 Demos

Unusual
Patterns
unusual styles
weirdos

Invariance
translation (anim)
scale (anim)
rotation (anim)
squeezing_(anim)
stroke width
(anim)

Noise
Resistance
noisy 3 and 6
noisy 2 (anim)
noisy 4 (anim)

Multiple
Character
various stills
dancing 00 (anim)
dancing 384
(anim)

Complex cases
(anim)

35->53
12->4-> 21

23 ->32

30 + noise
31-51-57-61

LeNet-5, convolutional

neural networks

Convolutional Neural Networks are are a special kind of
multi-layer neural networks. Like almost every other
neural networks they are trained with a version of the
back-propagation algorithm. Where they differ is in the

Convolutional Neural Networks are designed to
recognize visual patterns directly from pixel images with
minimal preprocessing.

They can recognize patterns with extreme variability
(such as handwritten characters), and with robustness to
distortions and simple geometric transformations.

LeNet-5 is our latest convolutional network designed for
handwritten and machine-printed character recognition.
Here is an example of LeNet-5 in action.

%W LeNel 5 | qeseancu
answer: 7

Many more examples are available in the column on the
left:

Several papers on LeNet and convolutional networks are
available on my publication page:

[LeCun et al., 1998]
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE, november 1998.
Psgz

[Bottou et al., 1997]
L. Bottou, Y. LeCun, and Y. Bengio. Global training of

%
;

~
Dl
4

3

:Qza;

& 7
iy

http://yann.lecun.com/exdb/lenet/index.html

14

Implementing a Convolutional Layer

with Matrix Multiplication

= B
15 24 17 26 .
1 1 1 1 0 0 2 1 1 2 Convaitian
Flltatrs
2 2 1 1 1 1 2 1 2 0
‘A’
1 2 0 ‘6 1 1 1 Input
1 3 2 3 Featurss
0 2 2 1 0 3 2 X
1122 1111 0110 T?TT 14 20 15 23
z||lo|l2]|3 =
1001 2121 1220 il allz 12 24 17 26
1113|212
Convolution ollzllallz Output
Flitetrs 22l 2]l 2 Features
w of|2]| 2|2 Y
1[j2]||1||0O
1ll12]|%||2
2[|1||0O||3
o[l1|]|3]||3
1{13]||3||2
Input
Featurss
X_unrolled

Slide credit: Hwu & Kirk

15

Power ot Convolutions and Applied Courses

In 2010, Prof. Andreas Moshovos adopted Professor Hwu'’s
ECE498AL Programming Massively Parallel Processors Class

Several of Prof. Geoffrey Hinton’s graduate students took
the course

These students developed the GPU implementation of the
Deep CNN that was trained with 1.2M images to win the
ImageNet competition

Slide credit: Hwu & Kirk

16

Example: AlexNet (2012)

AlexNet won ImageNet with more than 10.8% points ahead

of the runner up

o Krizhevsky et al., “"ImageNet Classification with Deep

Convolutional Neural Networks”, NIPS 2012.

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca 1ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

17

Example: Googl.eNet (2014)

= Google improves the precision by adding more layers
o From 8 in AlexNet to 22 in GooglLeNet

o Szegedy et al., "Going Deeper with Convolutions”, CVPR 2015.

Going Deeper with Convolutions

Christian Szegedy', Wei Liu?, Yangqing Jia', Pierre Sermanet!, Scott Reed?,
Dragomir Anguelov!, Dumitru Erhan', Vincent Vanhoucke!, Andrew Rabinovich?
1Google Inc. ?University of North Carolina, Chapel Hill
$University of Michigan, Ann Arbor *“Magic Leap Inc.

'{szegedy, jiayq, sermanet,dragomir, dumitru, vanhoucke}@google.com

2 1 3 ; 4 . . .
wliu@cs.unc.edu, “"reedscott@umich.edu, “arabinovich@magicleap.com

18

Example: ResNet (2015)

= He et al., "Deep Residual Learning for Image Recognition”, CVPR 2016.

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqging Ren Jian Sun
Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @ microsoft.com

ImageNet experiments 282

1521
il First CNN

\
\
\
22 layers ‘ 19 Iayers
\ 6.7

Human: 5.1% /i II | sﬁmslaimlm"ow.

ILSVRC'15S ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

231CCV15 19

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015

Systolic Computation Example: Convolution (1)

= Convolution

o Used in filtering, pattern matching, correlation, polynomial
evaluation, etc ...

o Many image processing tasks

o Machine learning: up to hundreds of convolutional layers in
Convolutional Neural Networks (CNN)

Given the sequence of weights jw;, wa, . . ., Wi,
and the input sequence Xy, X3, . . . , X, ,

compute the result sequence Vi, V>, - - - s Vnsl-k .
defined by

Yi= M’|X,'+ WHrX; 4 T e e T WiXis k=1

20

Systolic Computation |

yl = wilxl +
W2Xx2 + W3x3

y2 = Wilx2 +
w2x3 + w3x4

y3 = Wlx3 +
w2x4 + w3x5

“xample: Convolution (II)

(b)

r

w

Yin

Xout

1 r " r A 4
n Wo X Wi
L J L JH{L J

Yout = Yin + W X

Xout = Xin

Figure 8. Design W1: systolic convolution array (a) and
cell (b) where w;’s stay and x;’s and y;’s move systolically
in opposite directions.

21

Systolic Computation Example: Convolution (I11I)

RESULTS 4—?—- ‘—?ﬂ— 4—?4- -)
- A’é - A’% WTA’é
X = = —»l > > —J—y (IGNORED)

@ = MULTIPLIER @ = ADDER = LATCH

Figure 10. Overlapping the executions of multiply and add in design W1.

= Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

22

Systolic Computation Example: Convolution (IV)

= One needs to carefully orchestrate when data elements are
input to the array

= And when output is buffered

= This gets more involved when
o Array dimensionality increases
a PEs are less predictable in terms of latency

23

Two-Dimensional Systolic Arrays

(a) T

(b)

T (c)

Figure 11. Two-dimensional systolic arrays: (a) type R, (b) type H, and

(c) type T.

To a given problem there could be both one- and two-
dimensional systolic array solutions. For example, two-
dimensional convolution can be performed by a one-
dimensional systolic array?*?> or a two-dimensional
systolic array.® When the memory speed is more than cell
speed, two-dimensional systolic arrays such as those
depicted in Figure 11 should be used. At each cell cycle, all
the I/0 ports on the array boundaries can input or output
data items to or from the memory; as a result, the
available memory bandwidth can be fully utilized. Thus,
the choice of a one- or two-dimensional scheme is very
depenjém on how cells and memories will be imple-
mented.

24

Combinations

Systolic arrays can be
chained together to
form powerful systems

This systolic array is
capable of producing
on-the-fly least-squares
fit to all the data that
has arrived up to any
given moment

Y3
X34 Y2
X33 X24 Y1
‘ GIVEN AN n x p MATRIX X WITH
X392 X3 Xq4 n = p, AND AN n-VECTOR y,
DETERMINE A p-VECTOR b SUCH THAT
* ‘ ly — xb Il IS MINIMIZED.
X31 X2 X413 : STEP 1: ORTHOGONAL
* * ‘ TRIANGULARIZATION
STEP 2° SOLUTION OF TRIANGULAR
X921 X192 . . LINEAR SYSTEM
T
X11 . . .

ok 20nE 2 2 B 2

|)— * I F=7 F=7 r=7 A

it

: l | - - - o \>

| i i | r- /, 7

bt

| | -

| I

| ~-

| I-’:.-

I |

| VY #

| 7/

s SYSTOLIC ARRAY FOR
SYSTOLIC ARRAY FOR , »° SOLVING TRIANGULAR
ORTHOGONAL Vs LINEAR SYSTEMS
TRIANGULARIZATION W\

\
bq by,bp_1bp

Figure 12. On-the-fly least-squares solutions using one- and two-
dimensional systolic arrays, withp = 4.

Systolic Arrays: Pros and Cons

Advantages:

o Principled: Efficiently makes use of limited memory bandwidth,
balances computation to I/O bandwidth availability

o Specialized (computation needs to fit PE organization/functions)

- improved efficiency, simple design, high concurrency/
performance

- good to do more with less memory bandwidth requirement

Downside:
o Specialized

- not generally applicable because computation needs to fit
the PE functions/organization

26

More Programmability in Systolic Arrays

Each PE in a systolic array

o Can store multiple “weights”

o Weights can be selected on the fly

o Eases implementation of, e.q., adaptive filtering

Taken further
o Each PE can have its own data and instruction memory
o Data memory - to store partial/temporary results, constants

o Leads to stream processing, pipeline parallelism
More generally, staged execution

27

Pipeline-Parallel (Pipelined) Programs

fori=1toN

(/code In SMOA) PO eo cofa1)B1 01 B2|c2|A3) B3 \cs]

(... / code in stage B |

+ + - + } { $ + - + + { } i

(// code in stage c] t, ot ot ottt ottt ot t. ot ot e

. (a) v . (c))
~ ‘ N
5 | @EEEEE)
} P1 BO|B1|B2|B3|B4|BS

ﬁ l l l l I l
T T T T T T

I i i
T T T

f—F—— time

(b) (d)

Figure 1. (a) The code of a loop, (b) Each iteration is split into 3 pipeline stages: A, B, and C. Ilteration i comprises Ai, Bi, Ci.
(c) Sequential execution of 4 iterations. (d) Parallel execution of 6 iterations using pipeline parallelism on a three-core machine.
Each stage executes on one core.

28

Stages of Pipelined Programs

= Loop iterations are divided into code segments called stages
= Threads execute stages on different cores

loop {
Computel| A

Compute2| B

Compute3| C

Core 3

29

Pipelined File Compression Example

STAGE S1 . STAGES2 [] STAGES3 [STAGES4 [STAGE S5
"ALLOCATE | |» [READINPUT| o [COMPRESS | || [(WRITEOUTPUT, | (DEALLOCATE)
Input .| Alocatebuffers | | o Q=QUEUE1.Pop() | "| o Q=QUEUE2.Pop() » Q= QUEUES.Pop() | Q=QUEUE4PoR) |,
File QUEUETPush(Buf) ® Read file to Buf ® Compress Q i1 Write oldest Q to File | Deallocate Buffers
| o | QUEUE2 Push(Bu) | o QUEUES.Push(Q) ° QUEUE Push() o |)
o o o o
QUEUE1 QUEUE2 QUEUES QUEUE4

Figure 3. File compression algorithm executed using pipeline parallelism

30

Systolic Array: Advantages & Disadvantages

Advantages

o Makes multiple uses of each data item - reduced need for
fetching/refetching > better use of memory bandwidth

a High concurrency
a Regular design (both data and control flow)

Disadvantages
o Not good at exploiting irregular parallelism

o Relatively special purpose - need software, programmer
support to be a general purpose model

31

Example Systolic Array: The WARP Computer

HT Kung, CMU, 1984-1988

Linear array of 10 cells, each cell a 10 Mflop programmable
processor

Attached to a general purpose host machine
HLL and optimizing compiler to program the systolic array
Used extensively to accelerate vision and robotics tasks

Annaratone et al., “Warp Architecture and
Implementation,” ISCA 1986.

Annaratone et al., "The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

32

The WARP Computer

Cell
1

WARP PROCESSOR ARRAY

Figure 1: Warp system overview

33

The WARP Cell

XQ >—
i $12 x 32 | ;
—>— >
YQ <
—_— - < .;T
512 x 32
AReg > Add
——31 31 x 32 >
Data /\‘/
Mem ————— g;gss < Mem
32K x 32 > 2K x 32
YA A
——>{ MReg Lo Mpy
> 31 x 32 '-l
<Literal> ~ '
b
v
A
P Address—€ AGU
<] Cross
AALQ Bar
512 x 32 >

Figure 2: Warp cell data path

34

An Example Modern Systolic Array: TPU (I)

I

oo

i Partial Sums
TETENE
] | 4 = . ’_l —> Done

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the illusion that each 256B input 1s read at once, and they instantly
update one location of each of 256 accumulator RAMs.

Figure 3. TPU Printed Circuit Board. It can be inserted in the slot
for an SATA disk 1n a server, but the card uses PCle Gen3 x16.

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

35

An Example Modern Systolic Array: TPU (11

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy
by reducing reads and writes of the Unified Buffer [Kun80][Ram91][Ovt15b]. Figure 4 shows that data flows in from the left,
and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a
diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new
block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update
one location of each of 256 accumulators. From a correctness perspective, software 1s unaware of the systolic nature of the
matrix unit, but for performance, it does worry about the latency of the unit.

e —

I
Y
: L i Pairtial Sums
ey

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
36

An F anmple Modern Systolic Array: TPU (I11)
@ | DDR3 DRAM Chips | |

_ 30 GiB/s
14 GiB/s DDR3 30 GIB/S ™ \Weight FIFO
Interfaces | C—— | (Weight Fetcher) |
D
@ N RERES
©] ‘
o _ Unified - Matrix Multiply
_ g€ : @ 10 GiB/s Buffer Systolic ENEEEEL L IS
14 GiB/s | © % 14 GiB/s “E (Local Data —171—(641'(‘ er cycle)
) A i
@ 6 \‘/1:> g Activation Setup f]
o £ Storage) ‘
§ |
= - A J/ ~ Accumulators
1 Activation
T 167 GiB/s
- — Normalize / Pool
|:| Off-Chip /0 l |
I:I Data Buffer
— i] R ——
. Control

Not to Scale

Figure 1. TPU Block Diagram. The main computation part 1s the
yellow Matrix Multiply unit in the upper right hand corner. Its inputs
are the blue Weight FIFO and the blue Unified Buffer (UB) and its
output 1s the blue Accumulators (Acc). The yellow Activation Unit
performs the nonlinear functions on the Acc, which go to the UB.

37

TPU: Second Generation

https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips
vs 1 chip in TPU1

High Bandwidth Memory
vs DDR3

Floating point operations
vs FP16

45 TFLOPS per chip
vs 23 TOPS

Designed for training
and inference
vs only inference

38

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

m Superscalar Execution

s VLIW

» Fine-Grained Multithreading

= Systolic Arrays

= Decoupled Access Execute

= SIMD Processing (Vector and array processors, GPUs)

39

Decoupled Access/Execute (DAE)

Decoupled Access/Execute (DAE)

= Motivation: Tomasulo’ s algorithm too complex to
implement

o 1980s before Pentium Pro

E-instructions

= Idea: Decouple operand

access and execution via A-instructions 1

AEQ
two separate instruction — _J
: i :
streams that communicate " data | | F_ posccute
via ISA-visible queues. nccess | EAQ
Processor AEBQ
= Smith, “Decoupled Access/Execute reg?ste,. = regi‘(ster
Computer Architectures,” ISCA 1982, file EABQ file

ACM TOCS 1984.

41

Decoupled Access/Execute (II)

= Compiler generates two instruction streams (A and E)
o Synchronizes the two upon control flow instructions (using branch queues)

} = qd+ y(k) * (r * z{(k+10) + t * z(k+11))

Fig. 2a. Lawrence Livermore Loop 1 (HYDRO

FICERPT) Access Execute

A7 « -400 . negative loop count .

A2 « 0 . initialize index

A3 « 1 . index increment .

X2 «r . Toad loop invariants AEQ « z + 10, A2 X4 « X2 *f AEQ

X5 « t . into registers AEQ « z + 11, A2 X3 « X5 *f AEQ
loop: X3 « z + 10, A2 . load Z(k+10) AEQ “y A2 X6 ¢« X3 +f X4

X7 « z + 11, A2 . load z(k+11) AT < A7’+ 1 EAQ « AEQ *f X6

X4 « X2 *f X3 . r*z(k+10)-f1t. mult.

X3 « X5 *f X7 .t % z(k+11) x, A2 « EAQ .

X7 « y, A2 . lToad y(k) A2 <« A2+ A3 .

X6 « X3 +f X4 . r*z(x+10)+t*z(k+11)) . .

X4 « X7 *f X6 . y(k) * (above) .

A7 « A7 + 1 . increment loop counter .

x, A2 « X4 . store into x(k)

A2 « A2 + A3 . increment index

. f

il Branch 1 A7 <0 Fig. 2c. Access and execute programs for

Fig. 2b. Compilation onto CRAY-1-like straight-line section of loop
architecture

42

Decoupled Access/Execute (I11)

Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

+ If A is waiting for memory, E can perform useful work
+ If A hits in cache, it supplies data to lagging E
+ Queues reduce the number of required registers
+ Limited out-of-order execution without wakeup/select complexity

Disadvantages:

-- Compiler support to partition the program and manage queues
-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one,
though)

43

Astronautics Z.S-1

= Single stream

T oden steered into A and
oI X pipelines
anac;lsmns j FLOATING _ = Each pipeline in-
MULTIPUER F—’*
E:D order
FLOATING
POINT
ADDER |
el . X RECIPROCAL ‘ = Smith et al., “The
INSTRUCTION 3] APPROX,
PIPELINE UNIT STORE ZS-1 central

INSTRUCTION)

§— WsTRUCT po T g e Al Processor,
UNIT _T

= L e O M e ASPLOS 1987.
A 4 INTEGER LOCAL 6—9 .
INF?IIIQE&T(;ION SHIFTER MEMORY) « .
ADDRESS = Smith, “Dynamic
—X INTE P— . :
A REGISTERS LAO%?%E? ‘: %; _"—a InStrUCtlon
jﬁ 5 S , Scheduling and
B NI =) 1 the Astronautics
[pIviDTR Z/S-1,” 1IEEE

Computer 1989.

44

Loop Unrolling to Eliminate Branches

for (int i = 0; 1 < N; i++){ for (int i = 0; 1 < N; 1i+=4){
A[i] = A[i] + B[i]; A[i] = A[i] + B[i]; |
A[i+1] = A[i+1] + B[i+1]; |
} A[i+2] = A[i+2] + B[i+2];
A[i+3] = A[i+3] + B[i+3];
}

= Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead
o Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)
o Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)
-- Increases code size

45

A Modern DAE Example: Pentium 4

Front-End BTB Instruction T wide
(4K Entries) TLB/Prefetcher S
¥ Y™
Instruction Decoder Microcode
¥ ROM
Terai® 1 Ty o vwomn || [[e
Hop Pumped
: ¥
I Allocator / Register Renamer 3.2 GBIs
Intec Bus
[Memory Scheduler | [_Fast | [Slow/General FP Scheduler] Interface
Unit
| Integer Register File / Bypass Network e=> FP Register / Bypass | I l
‘ A f A { .J-‘ 'Y A
| Fk_] | F
AGU AGU 2x ALU ||| 2xALu || | stow ALu Fp L2 Cache
MMX FP (256K Byte
Load Store Simple Simple Complex SSE Move 8-wa)
Address | | Address Instr. Instr. Instr. SSE2 y
1 |
: . ¢ 48GB/s
L1 Data Cache (8Kbyte 4-way) H

Figure 4: Pentium® 4 processor microarchitecture ;
. . . 7V
Boggs et al., "The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.

Intel Penttum 4 Simplified

Mutlu+, “Runahead Execution,”

FP Uop Queue
TRACE Frontend
CACHE op Queue RAT Int Uop Queue
FETCH
UNIT
o
by
[
! I
[
I
. .
! : Stream—based
. : Hardware = [®*------ i
Instruction ! Prefetcher '
Decoder i I
I
| ! |
f | -
! ---» L2 Access Queue - - — -
| .
1 I
I I
: ¥
L2 CACHE

Access Queue

Checkpointed
R | Architectural
Register Fil
FP FP eglser e
PHYSICAL EXEC
UNITS
REG. FILE
REORDER
» BUFFER
] Z [INT
INT LEXEC =
PHYSICAL UNITS
REG. FILE [
-FADDR
4 GEN - |
UNITS Ll
Chcie | RITIREMEN
I T] Selectiop RAT
il = Logi¢
]
! [
|
! || STORE
: BUFFER
;
]
i
]
B |
RUNAHEAD
CACHE
oo From memory
Front Side Bus To memory

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

m Superscalar Execution

s VLIW

» Fine-Grained Multithreading

= Systolic Arrays

s Decoupled Access Execute

= SIMD Processing (Vector and array processors, GPUs)

48

Design of Digital Circuits
Lecture 19b: Systolic Arrays and Beyond

Prof. Onur Mutlu
ETH Zurich
Spring 2019
3 May 2019

