## Design of Digital Circuits

# Lecture 22a: Memory Organization and Memory Technology

Prof. Onur Mutlu

ETH Zurich

Spring 2019

16 May 2019

#### Readings for This Lecture and Next

#### Memory Hierarchy and Caches

- Required
  - H&H Chapters 8.1-8.3
  - Refresh: P&P Chapter 3.5
- Recommended
  - An early cache paper by Maurice Wilkes
    - Wilkes, "Slave Memories and Dynamic Storage Allocation," IEEE Trans. On Electronic Computers, 1965.

## A Computing System

- Three key components
- Computation
- Communication
- Storage/memory



Burks, Goldstein, von Neumann, "Preliminary discussion of the logical design of an electronic computing instrument," 1946.

#### Computing System



## What is A Computer?

We will cover all three components



## Memory (Programmer's View)



### Abstraction: Virtual vs. Physical Memory

- Programmer sees virtual memory
  - Can assume the memory is "infinite"
- Reality: Physical memory size is much smaller than what the programmer assumes
- The system (system software + hardware, cooperatively)
  maps virtual memory addresses to physical memory
  - The system automatically manages the physical memory space transparently to the programmer
- + Programmer does not need to know the physical size of memory nor manage it → A small physical memory can appear as a huge one to the programmer → Life is easier for the programmer
- -- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff

### (Physical) Memory System

- You need a larger level of storage to manage a small amount of physical memory automatically
  - → Physical memory has a backing store: disk
- We will first start with the physical memory system
- For now, ignore the virtual → physical indirection
- We will get back to it later, if time permits...

#### Idealism



- Zero latency access
- Infinite capacity
- Zero cost
- Perfect control flow

- No pipeline stalls
- -Perfect data flow (reg/memory dependencies)
- Zero-cycle interconnect (operand communication)
- Enough functional units
- Zero latency compute

- Zero latency access
- Infinite capacity
- Infinite bandwidth
- Zero cost

## Quick Overview of Memory Arrays

#### How Can We Store Data?

- Flip-Flops (or Latches)
  - Very fast, parallel access
  - Very expensive (one bit costs tens of transistors)
- Static RAM (we will describe them in a moment)
  - Relatively fast, only one data word at a time
  - Expensive (one bit costs 6 transistors)
- Dynamic RAM (we will describe them a bit later)
  - Slower, one data word at a time, reading destroys content (refresh), needs special process for manufacturing
  - Cheap (one bit costs only one transistor plus one capacitor)
- Other storage technology (flash memory, hard disk, tape)
  - Much slower, access takes a long time, non-volatile
  - Very cheap (no transistors directly involved)

#### Array Organization of Memories

- Goal: Efficiently store large amounts of data
  - A memory array (stores data)
  - Address selection logic (selects one row of the array)
  - Readout circuitry (reads data out)



- An M-bit value can be read or written at each unique N-bit address
  - All values can be accessed, but only M-bits at a time
  - Access restriction allows more compact organization

### Memory Arrays

- Two-dimensional array of bit cells
  - Each bit cell stores one bit
- An array with N address bits and M data bits:
  - 2<sup>N</sup> rows and M columns
  - Depth: number of rows (number of words)
  - Width: number of columns (size of word)
  - $\square$  Array size: depth  $\times$  width =  $2^{N}$   $\times$  M



#### Memory Array Example

- $= 2^2 \times 3$ -bit array
- Number of words: 4
- Word size: 3-bits
- For example, the 3-bit word stored at address 10 is 100



### Larger and Wider Memory Array Example



## Memory Array Organization (I)

- Storage nodes in one column connected to one bitline
- Address decoder activates only ONE wordline
- Content of one line of storage available at output



## Memory Array Organization (II)

- Storage nodes in one column connected to one bitline
- Address decoder activates only ONE wordline
- Content of one line of storage available at output



#### How is Access Controlled?

- Access transistors configured as switches connect the bit storage to the bitline.
- Access controlled by the wordline



## Building Larger Memories

- Requires larger memory arrays
- Large → slow
- How do we make the memory large without making it very slow?
- Idea: Divide the memory into smaller arrays and interconnect the arrays to input/output buses
  - Large memories are hierarchical array structures
  - □ DRAM: Channel  $\rightarrow$  Rank  $\rightarrow$  Bank  $\rightarrow$  Subarrays  $\rightarrow$  Mats

## General Principle: Interleaving (Banking)

#### Interleaving (banking)

- Problem: a single monolithic large memory array takes long to access and does not enable multiple accesses in parallel
- Goal: Reduce the latency of memory array access and enable multiple accesses in parallel
- Idea: Divide a large array into multiple banks that can be accessed independently (in the same cycle or in consecutive cycles)
  - Each bank is smaller than the entire memory storage
  - Accesses to different banks can be overlapped
- A Key Issue: How do you map data to different banks? (i.e., how do you interleave data across banks?)

## Memory Technology: DRAM and SRAM

### Memory Technology: DRAM

- Dynamic random access memory
- Capacitor charge state indicates stored value
  - Whether the capacitor is charged or discharged indicates storage of 1 or 0
  - 1 capacitor
  - 1 access transistor
- Capacitor leaks through the RC path
  - DRAM cell loses charge over time
  - DRAM cell needs to be refreshed



### Memory Technology: SRAM

- Static random access memory
- Two cross coupled inverters store a single bit
  - Feedback path enables the stored value to persist in the "cell"
  - 4 transistors for storage
  - 2 transistors for access



#### Memory Bank Organization and Operation



- Read access sequence:
  - Decode row address
    drive word-lines
  - 2. Selected bits drive bit-lines
    - Entire row read
  - 3. Amplify row data
  - 4. Decode column address & select subset of row
    - Send to output
  - 5. Precharge bit-lines
    - For next access

## SRAM (Static Random Access Memory)





#### Read Sequence

- 1. address decode
- 2. drive row select
- 3. selected bit-cells drive bitlines (entire row is read together)
- 4. differential sensing and column select (data is ready)
- precharge all bitlines(for next read or write)

Access latency dominated by steps 2 and 3 Cycling time dominated by steps 2, 3 and 5

- step 2 proportional to 2<sup>m</sup>
- step 3 and 5 proportional to 2<sup>n</sup>

### DRAM (Dynamic Random Access Memory)



Bits stored as charges on node capacitance (non-restorative)

- bit cell loses charge when read
- bit cell loses charge over time

#### Read Sequence

- 1~3 same as SRAM
- 4. a "flip-flopping" sense amp amplifies and regenerates the bitline, data bit is mux' ed out
- 5. precharge all bitlines

#### Destructive reads

#### Charge loss over time

Refresh: A DRAM controller must periodically read each row within the allowed refresh time (10s of ms) such that charge is restored

#### DRAM vs. SRAM

#### DRAM

- Slower access (capacitor)
- Higher density (1T 1C cell)
- Lower cost
- Requires refresh (power, performance, circuitry)
- Manufacturing requires putting capacitor and logic together

#### SRAM

- Faster access (no capacitor)
- Lower density (6T cell)
- Higher cost
- No need for refresh
- Manufacturing compatible with logic process (no capacitor)

## Design of Digital Circuits

# Lecture 22a: Memory Organization and Memory Technology

Prof. Onur Mutlu

ETH Zurich

Spring 2019

16 May 2019