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Readings for This Lecture and Next
n Memory Hierarchy and Caches

n Required
q H&H Chapters 8.1-8.3
q Refresh: P&P Chapter 3.5

n Recommended
q An early cache paper by Maurice Wilkes

n Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965. 
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A Computing System
n Three key components
n Computation 
n Communication
n Storage/memory
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



What is A Computer?
n We will cover all three components
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Memory (Programmer’s View) 
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Abstraction: Virtual vs. Physical Memory
n Programmer sees virtual memory

q Can assume the memory is “infinite”
n Reality: Physical memory size is much smaller than what 

the programmer assumes
n The system (system software + hardware, cooperatively) 

maps virtual memory addresses to physical memory
q The system automatically manages the physical memory 

space transparently to the programmer

+ Programmer does not need to know the physical size of memory 
nor manage it à A small physical memory can appear as a huge 
one to the programmer à Life is easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff
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(Physical) Memory System
n You need a larger level of storage to manage a small 

amount of physical memory automatically
à Physical memory has a backing store: disk

n We will first start with the physical memory system

n For now, ignore the virtualàphysical indirection

n We will get back to it later, if time permits…
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Idealism
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Quick Overview of Memory Arrays



How Can We Store Data?
n Flip-Flops (or Latches)

q Very fast, parallel access
q Very expensive (one bit costs tens of transistors)

n Static RAM (we will describe them in a moment)
q Relatively fast, only one data word at a time
q Expensive (one bit costs 6 transistors)

n Dynamic RAM (we will describe them a bit later)
q Slower, one data word at a time, reading destroys content 

(refresh), needs special process for manufacturing
q Cheap (one bit costs only one transistor plus one capacitor)

n Other storage technology (flash memory, hard disk, tape)
q Much slower, access takes a long time, non-volatile
q Very cheap (no transistors directly involved) 



Array Organization of Memories
n Goal: Efficiently store large amounts of data

q A memory array (stores data)
q Address selection logic (selects one row of the array)
q Readout circuitry (reads data out)

n An M-bit value can be read or written at each unique 
N-bit address
q All values can be accessed, but only M-bits at a time
q Access restriction allows more compact organization
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Data

ArrayN

M



Memory Arrays
n Two-dimensional array of bit cells 

q Each bit cell stores one bit

n An array with N address bits and M data bits:
q 2N rows and M columns
q Depth: number of rows (number of words)
q Width: number of columns (size of word)
q Array size: depth × width = 2N × M 

Address

Data

ArrayN

M

Address Data
11
10
01
00

depth

0 1 0
1 0 0
1 1 0
0 1 1

width

Address

Data

Array2
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n 22× 3-bit array
n Number of words: 4
n Word size: 3-bits
n For example, the 3-bit word stored at address 10 is 100

Address Data
11
10
01
00

depth

0 1 0
1 0 0
1 1 0
0 1 1

width

Address

Data

Array2
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Memory Array Example



Larger and Wider Memory Array Example

Address

Data

1024-word x
32-bit
Array

10

32



Memory Array Organization (I)
n Storage nodes in one column connected to one bitline
n Address decoder activates only ONE wordline
n Content of one line of storage available at output 

wordline311
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Memory Array Organization (II)
n Storage nodes in one column connected to one bitline
n Address decoder activates only ONE wordline
n Content of one line of storage available at output 

wordline311
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How is Access Controlled?
n Access transistors configured as switches connect the bit 

storage to the bitline.
n Access controlled by the wordline

stored 
bit

wordline
bitline

wordline
bitline bitlinewordline

bitline
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Building Larger Memories
n Requires larger memory arrays

n Large à slow

n How do we make the memory large without making it very 
slow?

n Idea: Divide the memory into smaller arrays and 
interconnect the arrays to input/output buses
q Large memories are hierarchical array structures
q DRAM: Channel à Rank à Bank à Subarrays à Mats
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General Principle: Interleaving (Banking)
n Interleaving (banking)

q Problem: a single monolithic large memory array takes long to 
access and does not enable multiple accesses in parallel

q Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel

q Idea: Divide a large array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles)
n Each bank is smaller than the entire memory storage
n Accesses to different banks can be overlapped

q A Key Issue: How do you map data to different banks? (i.e., 
how do you interleave data across banks?)
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Memory Technology:
DRAM and SRAM



Memory Technology: DRAM
n Dynamic random access memory
n Capacitor charge state indicates stored value

q Whether the capacitor is charged or discharged indicates 
storage of 1 or 0

q 1 capacitor
q 1 access transistor

n Capacitor leaks through the RC path
q DRAM cell loses charge over time
q DRAM cell needs to be refreshed
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n Static random access memory
n Two cross coupled inverters store a single bit

q Feedback path enables the stored value to persist in the “cell”
q 4 transistors for storage
q 2 transistors for access

Memory Technology: SRAM
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Memory Bank Organization and Operation
n Read access sequence:

1. Decode row address 
& drive word-lines

2. Selected bits drive 
bit-lines

• Entire row read

3. Amplify row data

4. Decode column 
address & select subset 
of row

• Send to output

5. Precharge bit-lines
• For next access
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SRAM (Static Random Access Memory)
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Read Sequence
1. address decode
2. drive row select
3. selected bit-cells drive bitlines

(entire row is read together)
4. differential sensing and column select

(data is ready)
5. precharge all bitlines

(for next read or write)

Access latency dominated by steps 2 and 3
Cycling time dominated by steps 2, 3 and 5

- step 2 proportional to 2m

- step 3 and 5 proportional to 2n



DRAM (Dynamic Random Access Memory)
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RAS

CAS
A DRAM die comprises 
of multiple such arrays

Bits stored as charges on node 
capacitance (non-restorative)

- bit cell loses charge when read
- bit cell loses charge over time

Read Sequence
1~3 same as SRAM
4. a “flip-flopping” sense amp 

amplifies and regenerates the 
bitline, data bit is mux’ed out

5. precharge all bitlines

Destructive reads
Charge loss over time
Refresh: A DRAM controller must 
periodically read each row within 
the allowed refresh time (10s of 
ms) such that charge is restored



DRAM vs. SRAM
n DRAM

q Slower access (capacitor)
q Higher density (1T 1C cell)
q Lower cost
q Requires refresh (power, performance, circuitry)
q Manufacturing requires putting capacitor and logic together

n SRAM
q Faster access (no capacitor)
q Lower density (6T cell)
q Higher cost
q No need for refresh
q Manufacturing compatible with logic process (no capacitor)
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