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Readings
n Caches

n Required
q H&H Chapters 8.1-8.3
q Refresh: P&P Chapter 3.5

n Recommended
q An early cache paper by Maurice Wilkes

n Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965. 
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Memory Hierarchy
n Fundamental tradeoff

q Fast memory: small
q Large memory: slow

n Idea: Memory hierarchy

n Latency, cost, size, 
bandwidth
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Cache
n Generically, any structure that “memoizes” frequently used 

results to avoid repeating the long-latency operations 
required to reproduce the results from scratch, e.g. a web 
cache

n Most commonly in the processor design context: an 
automatically-managed memory structure based on SRAM
q memoize in SRAM the most frequently accessed DRAM 

memory locations to avoid repeatedly paying for the DRAM 
access latency
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Caching Basics
n Block (line): Unit of storage in the cache

q Memory is logically divided into cache blocks that map to 
locations in the cache

n On a reference:
q HIT: If in cache, use cached data instead of accessing memory
q MISS: If not in cache, bring block into cache

n Maybe have to kick something else out to do it

n Some important cache design decisions
q Placement: where and how to place/find a block in cache?
q Replacement: what data to remove to make room in cache?
q Granularity of management: large or small blocks? Subblocks?
q Write policy: what do we do about writes?
q Instructions/data: do we treat them separately?
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Cache Abstraction and Metrics

n Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)
n Average memory access time (AMAT)

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency )
n Aside: Is reducing AMAT always beneficial for performance?
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A Basic Hardware Cache Design
n We will start with a basic hardware cache design

n Then, we will examine a multitude of ideas to make it 
better
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Blocks and Addressing the Cache
n Memory is logically divided into fixed-size blocks

n Each block maps to a location in the cache, determined by 
the index bits in the address
q used to index into the tag and data stores 

n Cache access: 
1) index into the tag and data stores with index bits in address 
2) check valid bit in tag store
3) compare tag bits in address with the stored tag in tag store

n If a block is in the cache (cache hit), the stored tag should be 
valid and match the tag of the block
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8-bit address

tag index byte in block
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Direct-Mapped Cache: Placement and Access
n Assume byte-addressable memory:           

256 bytes, 8-byte blocks à 32 blocks
n Assume cache: 64 bytes, 8 blocks

q Direct-mapped: A block can go to only one location

q Addresses with same index contend for the same location
n Cause conflict misses
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Tag store Data store

Address

tag index byte in block

3 bits3 bits2b

V tag

=? MUX
byte in block

Hit? Data

Block: 00000
Block: 00001
Block: 00010
Block: 00011
Block: 00100
Block: 00101
Block: 00110
Block: 00111
Block: 01000
Block: 01001
Block: 01010
Block: 01011
Block: 01100
Block: 01101
Block: 01110
Block: 01111
Block: 10000
Block: 10001
Block: 10010
Block: 10011
Block: 10100
Block: 10101
Block: 10110
Block: 10111
Block: 11000
Block: 11001
Block: 11010
Block: 11011
Block: 11100
Block: 11101
Block: 11110
Block: 11111

Main memory



Direct-Mapped Caches
n Direct-mapped cache: Two blocks in memory that map to 

the same index in the cache cannot be present in the cache 
at the same time
q One index à one entry

n Can lead to 0% hit rate if more than one block accessed in 
an interleaved manner map to the same index 
q Assume addresses A and B have the same index bits but 

different tag bits
q A, B, A, B, A, B, A, B, … à conflict in the cache index
q All accesses are conflict misses
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n Addresses 0 and 8 always conflict in direct mapped cache
n Instead of having one column of 8, have 2 columns of 4 blocks

Set Associativity
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V tag

=?
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Address

tag index byte in block

3 bits2 bits3b

Logic

MUX

MUX
byte in block

Key idea: Associative memory within the set
+ Accommodates conflicts better (fewer conflict misses)

-- More complex, slower access, larger tag store
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Higher Associativity
n 4-way

+ Likelihood of conflict misses even lower
-- More tag comparators and wider data mux; larger tags
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Full Associativity
n Fully associative cache

q A block can be placed in any cache location
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Associativity (and Tradeoffs)
n Degree of associativity: How many blocks can map to the 

same index (or set)?

n Higher associativity
++ Higher hit rate
-- Slower cache access time (hit latency and data access latency)
-- More expensive hardware (more comparators)

n Diminishing returns from higher
associativity
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Issues in Set-Associative Caches
n Think of each block in a set having a “priority”

q Indicating how important it is to keep the block in the cache
n Key issue: How do you determine/adjust block priorities?
n There are three key decisions in a set:

q Insertion, promotion, eviction (replacement)

n Insertion: What happens to priorities on a cache fill?
q Where to insert the incoming block, whether or not to insert the block

n Promotion: What happens to priorities on a cache hit?
q Whether and how to change block priority

n Eviction/replacement: What happens to priorities on a cache 
miss?
q Which block to evict and how to adjust priorities
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Eviction/Replacement Policy
n Which block in the set to replace on a cache miss?

q Any invalid block first
q If all are valid, consult the replacement policy

n Random
n FIFO
n Least recently used (how to implement?)
n Not most recently used
n Least frequently used?
n Least costly to re-fetch?

q Why would memory accesses have different cost?
n Hybrid replacement policies
n Optimal replacement policy? 
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Implementing LRU
n Idea: Evict the least recently accessed block
n Problem: Need to keep track of access ordering of blocks

n Question: 2-way set associative cache:
q What do you need to implement LRU perfectly?

n Question: 4-way set associative cache: 
q What do you need to implement LRU perfectly?
q How many different orderings possible for the 4 blocks in the 

set? 
q How many bits needed to encode the LRU order of a block?
q What is the logic needed to determine the LRU victim?
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Approximations of LRU
n Most modern processors do not implement “true LRU” (also 

called “perfect LRU”) in highly-associative caches

n Why?
q True LRU is complex
q LRU is an approximation to predict locality anyway (i.e., not 

the best possible cache management policy)

n Examples:
q Not MRU (not most recently used)
q Hierarchical LRU: divide the N-way set into M “groups”, track 

the MRU group and the MRU way in each group
q Victim-NextVictim Replacement: Only keep track of the victim 

and the next victim
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Cache Replacement Policy: LRU or Random
n LRU vs. Random: Which one is better?

q Example: 4-way cache, cyclic references to A, B, C, D, E 
n 0% hit rate with LRU policy

n Set thrashing: When the �program working set� in a set is 
larger than set associativity
q Random replacement policy is better when thrashing occurs

n In practice:
q Depends on workload
q Average hit rate of LRU and Random are similar

n Best of both Worlds: Hybrid of LRU and Random
q How to choose between the two? Set sampling

n See Qureshi et al., �A Case for MLP-Aware Cache Replacement,�
ISCA 2006.
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What Is the Optimal Replacement Policy?
n Belady�s OPT

q Replace the block that is going to be referenced furthest in the 
future by the program

q Belady, �A study of replacement algorithms for a virtual-
storage computer,� IBM Systems Journal, 1966.

q How do we implement this? Simulate?

n Is this optimal for minimizing miss rate?
n Is this optimal for minimizing execution time?

q No. Cache miss latency/cost varies from block to block!
q Two reasons: Remote vs. local caches and miss overlapping
q Qureshi et al. �A Case for MLP-Aware Cache Replacement,�

ISCA 2006.
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Reading
n Key observation: Some misses more costly than others as their latency is 

exposed as stall time. Reducing miss rate is not always good for 
performance. Cache replacement should take into account MLP of misses.

n Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,
"A Case for MLP-Aware Cache Replacement"
Proceedings of the 33rd International Symposium on Computer 
Architecture (ISCA), pages 167-177, Boston, MA, June 2006. Slides (ppt)
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Recall: Cache Structure
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n Addresses 0 and 8 always conflict in direct mapped cache
n Instead of having one column of 8, have 2 columns of 4 blocks

Recall: Set Associativity
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Key idea: Associative memory within the set
+ Accommodates conflicts better (fewer conflict misses)

-- More complex, slower access, larger tag store
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What’s In A Tag Store Entry?
n Valid bit
n Tag
n Replacement policy bits

n Dirty bit?
q Write back vs. write through caches

24



Handling Writes (I)
n When do we write the modified data in a cache to the next level?

n Write through: At the time the write happens
n Write back: When the block is evicted

q Write-back
+ Can combine multiple writes to the same block before eviction

q Potentially saves bandwidth between cache levels + saves energy
-- Need a bit in the tag store indicating the block is �dirty/modified�

q Write-through
+ Simpler
+ All levels are up to date. Consistency: Simpler cache coherence 

because no need to check close-to-processor caches’ tag stores for 
presence

-- More bandwidth intensive; no combining of writes
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Handling Writes (II)
n Do we allocate a cache block on a write miss?

q Allocate on write miss: Yes
q No-allocate on write miss: No

n Allocate on write miss
+ Can combine writes instead of writing each of them 

individually to next level
+ Simpler because write misses can be treated the same way as 

read misses
-- Requires transfer of the whole cache block

n No-allocate
+ Conserves cache space if locality of writes is low (potentially 

better cache hit rate)
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Handling Writes (III)
n What if the processor writes to an entire block over a small 

amount of time?

n Is there any need to bring the block into the cache from 
memory in the first place?

n Why do we not simply write to only a portion of the block, 
i.e., subblock
q E.g., 4 bytes out of 64 bytes
q Problem: Valid and dirty bits are associated with the entire 64 

bytes, not with each individual 4 bytes
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Subblocked (Sectored) Caches
n Idea: Divide a block into subblocks (or sectors)

q Have separate valid and dirty bits for each subblock (sector)
q Allocate only a subblock (or a subset of subblocks) on a request

++ No need to transfer the entire cache block into the cache
(A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a 
cache block does not need to be in the cache fully)

(How many subblocks do you transfer on a read?)

-- More complex design
-- May not exploit spatial locality fully

28
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Instruction vs. Data Caches
n Separate or Unified?

n Pros and Cons of Unified:
+ Dynamic sharing of cache space: no overprovisioning that 

might happen with static partitioning (i.e., separate I and D 
caches)

-- Instructions and data can thrash each other (i.e., no 
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where 
do we place the unified cache for fast access?

n First level caches are almost always split 
q Mainly for the last reason above

n Higher level caches are almost always unified
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Multi-level Caching in a Pipelined Design
n First-level caches (instruction and data)

q Decisions very much affected by cycle time
q Small, lower associativity; latency is critical
q Tag store and data store accessed in parallel

n Second-level caches
q Decisions need to balance hit rate and access latency
q Usually large and highly associative; latency not as important
q Tag store and data store accessed serially

n Serial vs. Parallel access of levels
q Serial: Second level cache accessed only if first-level misses
q Second level does not see the same accesses as the first

n First level acts as a filter (filters some temporal and spatial locality)
n Management policies are therefore different
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Cache Performance



Cache Parameters vs. Miss/Hit Rate
n Cache size

n Block size

n Associativity

n Replacement policy
n Insertion/Placement policy
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Cache Size
n Cache size: total data (not including tag) capacity

q bigger can exploit temporal locality better
q not ALWAYS better

n Too large a cache adversely affects hit and miss latency
q smaller is faster => bigger is slower
q access time may degrade critical path

n Too small a cache
q doesn’t exploit temporal locality well
q useful data replaced often

n Working set: the whole set of data                                                    
the executing application references 
q Within a time interval 
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Block Size
n Block size is the data that is associated with an address tag 

q not necessarily the unit of transfer between hierarchies
n Sub-blocking: A block divided into multiple pieces (each w/ V/D bits)

n Too small blocks
q don’t exploit spatial locality well
q have larger tag overhead

n Too large blocks
q too few total # of blocks à less

temporal locality exploitation
q waste of cache space and bandwidth/energy 

if spatial locality is not high
34
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Large Blocks: Critical-Word and Subblocking
n Large cache blocks can take a long time to fill into the cache

q fill cache line critical word first 
q restart cache access before complete fill

n Large cache blocks can waste bus bandwidth 
q divide a block into subblocks
q associate separate valid and dirty bits for each subblock
q Recall: When is this useful?
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Associativity
n How many blocks can be present in the same index (i.e., set)?

n Larger associativity
q lower miss rate (reduced conflicts)
q higher hit latency and area cost (plus diminishing returns)

n Smaller associativity
q lower cost
q lower hit latency

n Especially important for L1 caches

n Is power of 2 associativity required?
36
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Classification of Cache Misses
n Compulsory miss 

q first reference to an address (block) always results in a miss
q subsequent references should hit unless the cache block is 

displaced for the reasons below

n Capacity miss 
q cache is too small to hold everything needed
q defined as the misses that would occur even in a fully-

associative cache (with optimal replacement) of the same 
capacity 

n Conflict miss 
q defined as any miss that is neither a compulsory nor a 

capacity miss
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How to Reduce Each Miss Type
n Compulsory

q Caching cannot help
q Prefetching can: Anticipate which blocks will be needed soon

n Conflict
q More associativity
q Other ways to get more associativity without making the 

cache associative
n Victim cache
n Better, randomized indexing
n Software hints?

n Capacity
q Utilize cache space better: keep blocks that will be referenced
q Software management: divide working set and computation 

such that each �computation phase� fits in cache
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How to Improve Cache Performance
n Three fundamental goals

n Reducing miss rate
q Caveat: reducing miss rate can reduce performance if more 

costly-to-refetch blocks are evicted

n Reducing miss latency or miss cost

n Reducing hit latency or hit cost

n The above three together affect performance 
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Improving Basic Cache Performance
n Reducing miss rate

q More associativity
q Alternatives/enhancements to associativity 

n Victim caches, hashing, pseudo-associativity, skewed associativity
q Better replacement/insertion policies
q Software approaches

n Reducing miss latency/cost
q Multi-level caches
q Critical word first
q Subblocking/sectoring
q Better replacement/insertion policies
q Non-blocking caches (multiple cache misses in parallel)
q Multiple accesses per cycle
q Software approaches
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Software Approaches for Higher Hit Rate
n Restructuring data access patterns
n Restructuring data layout

n Loop interchange
n Data structure separation/merging
n Blocking
n …
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Restructuring Data Access Patterns (I)
n Idea: Restructure data layout or data access patterns
n Example: If column-major

q x[i+1,j] follows x[i,j] in memory
q x[i,j+1] is far away from x[i,j]

n This is called loop interchange
n Other optimizations can also increase hit rate

q Loop fusion, array merging, …
42

Poor code
for i = 1, rows

for j = 1, columns
sum = sum + x[i,j]

Better code
for j = 1, columns

for i = 1, rows
sum = sum + x[i,j]



Restructuring Data Access Patterns (II)

n Blocking
q Divide loops operating on arrays into computation chunks so 

that each chunk can hold its data in the cache
q Avoids cache conflicts between different chunks of 

computation
q Essentially: Divide the working set so that each piece fits in 

the cache

n Also called Tiling
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We did not cover the following slides. 
They are for your preparation for the 

next lecture.
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Restructuring Data Layout (I)
n Pointer based traversal 

(e.g., of a linked list)
n Assume a huge linked 

list (1B nodes) and 
unique keys

n Why does the code on 
the left have poor cache 
hit rate?
q �Other fields� occupy 

most of the cache line 
even though rarely 
accessed!
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struct Node {
struct Node* next;
int key;
char [256] name;
char [256] school;

}

while (node) {
if (nodeàkey == input-key) {

// access other fields of node
}
node = nodeànext;

}



Restructuring Data Layout (II)
n Idea: separate frequently-

used fields of a data 
structure and pack them 
into a separate data 
structure

n Who should do this?
q Programmer
q Compiler 

n Profiling vs. dynamic
q Hardware?
q Who can determine what 

is frequently used?
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struct Node {
struct Node* next;
int key;
struct Node-data* node-data;

}

struct Node-data {
char [256] name;
char [256] school;

}

while (node) {
if (nodeàkey == input-key) {

// access nodeànode-data
}
node = nodeànext;

}



Multi-Core Issues in Caching



Caches in a Multi-Core System
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Caches in Multi-Core Systems
n Cache efficiency becomes even more important in a multi-

core/multi-threaded system
q Memory bandwidth is at premium
q Cache space is a limited resource across cores/threads

n How do we design the caches in a multi-core system?

n Many decisions
q Shared vs. private caches
q How to maximize performance of the entire system?
q How to provide QoS to different threads in a shared cache?
q Should cache management algorithms be aware of threads?
q How should space be allocated to threads in a shared cache?
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Private vs. Shared Caches
n Private cache: Cache belongs to one core (a shared block 

can be in multiple caches)
n Shared cache: Cache is shared by multiple cores

50

CORE 0 CORE 1 CORE 2 CORE 3

L2 
CACHE

L2 
CACHE

L2 
CACHE

DRAM MEMORY CONTROLLER

L2 
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2 
CACHE



Resource Sharing Concept and Advantages
n Idea: Instead of dedicating a hardware resource to a 

hardware context, allow multiple contexts to use it
q Example resources: functional units, pipeline, caches, buses, 

memory
n Why?

+ Resource sharing improves utilization/efficiency à throughput
q When a resource is left idle by one thread, another thread can 

use it; no need to replicate shared data
+ Reduces communication latency

q For example, data shared between multiple threads can be kept 
in the same cache in multithreaded processors

+ Compatible with the shared memory programming model

51



Resource Sharing Disadvantages
n Resource sharing results in contention for resources

q When the resource is not idle, another thread cannot use it
q If space is occupied by one thread, another thread needs to re-

occupy it 

- Sometimes reduces each or some thread�s performance
- Thread performance can be worse than when it is run alone  

- Eliminates performance isolation à inconsistent performance 
across runs

- Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
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Private vs. Shared Caches
n Private cache: Cache belongs to one core (a shared block 

can be in multiple caches)
n Shared cache: Cache is shared by multiple cores
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Shared Caches Between Cores
n Advantages:

q High effective capacity
q Dynamic partitioning of available cache space

n No fragmentation due to static partitioning
n If one core does not utilize some space, another core can

q Easier to maintain coherence (a cache block is in a single location)

n Disadvantages
q Slower access (cache not tightly coupled with the core)
q Cores incur conflict misses due to other cores� accesses

n Misses due to inter-core interference
n Some cores can destroy the hit rate of other cores

q Guaranteeing a minimum level of service (or fairness) to each core is harder 
(how much space, how much bandwidth?)
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Cache Coherence



Cache Coherence 
n Basic question: If multiple processors cache the same 

block, how do they ensure they all see a consistent state?
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The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000



The Cache Coherence Problem
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The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000



The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT 
load 1000



Cache Examples:
For You to Study



Cache Terminology
n Capacity (C): 

q the number of data bytes a cache stores
n Block size (b): 

q bytes of data brought into cache at once
n Number of blocks (B = C/b): 

q number of blocks in cache: B = C/b
n Degree of associativity (N): 

q number of blocks in a set
n Number of sets (S = B/N): 

q each memory address maps to exactly one cache set 
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How is data found?
n Cache organized into S sets

n Each memory address maps to exactly one set

n Caches categorized by number of blocks in a set:

q Direct mapped: 1 block per set

q N-way set associative: N blocks per set

q Fully associative: all cache blocks are in a single set

n Examine each organization for a cache with:

q Capacity (C = 8 words)

q Block size (b = 1 word)

q So, number of blocks (B = 8)
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Direct Mapped Cache

7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]
mem[0x00...04]
mem[0x00...08]
mem[0x00...0C]
mem[0x00...10]
mem[0x00...14]
mem[0x00...18]
mem[0x00..1C]
mem[0x00..20]
mem[0x00...24]

mem[0xFF...E0]
mem[0xFF...E4]
mem[0xFF...E8]
mem[0xFF...EC]
mem[0xFF...F0]
mem[0xFF...F4]
mem[0xFF...F8]
mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000
00...00000100
00...00001000
00...00001100

00...00010100
00...00011000
00...00011100
00...00100000
00...00100100

11...11110000

11...11100000
11...11100100
11...11101000
11...11101100

11...11110100
11...11111000
11...11111100

6 (110)
5 (101)
4 (100)
3 (011)
2 (010)
1 (001)
0 (000)
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Direct Mapped Cache Hardware

DataTag

00
Tag Set

Byte
OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x
(1+27+32)-bit

SRAM
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Direct Mapped Cache Performance

# MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1
mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate =
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Direct Mapped Cache Performance

# MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1
mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = 3/15
= 

20%
Temporal Locality
Compulsory Misses
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Direct Mapped Cache: Conflict

# MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate =
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Direct Mapped Cache: Conflict

# MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = 10/10
= 100%

Conflict Misses
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N-Way Set Associative Cache

DataTag

Tag Set
Byte

OffsetMemory
Address

Data

Hit1

V

=

01

00

32 32

32

DataTagV

=

Hit1Hit0

Hit

28 2

28 28

Way 1 Way 0

70



N-way Set Associative Performance

# MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate =
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N-way Set Associative Performance

# MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

Miss Rate = 2/10 
= 20%

Associativity reduces 
conflict misses

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0
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Fully Associative Cache

n No conflict misses

n Expensive to build

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV
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Spatial Locality?
n Increase block size:

q Block size, b = 4 words
q C = 8 words
q Direct mapped (1 block per set)
q Number of blocks, B = C/b = 8/4 = 2

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0
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Direct Mapped Cache Performance
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]

Miss Rate =
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Direct Mapped Cache Performance
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

Miss Rate = 1/15 
= 6.67%

Larger blocks reduce 
compulsory misses through 
spatial locality

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]

76



Cache Organization Recap
n Main Parameters

q Capacity: C
q Block size: b
q Number of blocks in cache: B = C/b
q Number of blocks in a set: N
q Number of Sets: S = B/N

Organization
Number of Ways 

(N)
Number of Sets 

(S = B/N)
Direct Mapped 1 B

N-Way Set Associative 1 < N < B B / N

Fully Associative B 1
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Capacity Misses
n Cache is too small to hold all data of interest at one time

q If the cache is full and program tries to access data X that is 
not in cache, cache must evict data Y to make room for X

q Capacity miss occurs if program then tries to access Y again
q X will be placed in a particular set based on its address

n In a direct mapped cache, there is only one place to put X

n In an associative cache, there are multiple ways where X 
could go in the set.

n How to choose Y to minimize chance of needing it again? 
q Least recently used (LRU) replacement: the least recently 

used block in a set is evicted when the cache is full.
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Types of Misses
n Compulsory: first time data is accessed

n Capacity: cache too small to hold all data of interest

n Conflict: data of interest maps to same location in cache

n Miss penalty: time it takes to retrieve a block from lower 
level of hierarchy
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LRU Replacement

# MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV DataTagVU

DataTagV DataTagVU

(a)

(b)

Set Number
3 (11)
2 (10)
1 (01)
0 (00)

Set Number
3 (11)
2 (10)
1 (01)
0 (00)
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LRU Replacement

# MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...04]1 00...000mem[0x00...24] 100...010

0
0

0
0

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...54]1 00...101mem[0x00...24] 100...010

0
0

0
1

(a)

(b)

Way 1 Way 0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)
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