Design of Digital Circuits

 Lecture 5: Combinational Logic II \& Hardware Description LanguagesProf. Onur Mutlu

ETH Zurich

Spring 2019
7 March 2019

- Assignments for this week and the next
- Wrap up the Comp Arch Mysteries lectures
- Takeaways
- Discuss course expectations (very brief)
- Combinational Logic Circuits and Design

Assignment: Required Lecture Video

- Why study computer architecture?
- Why is it important?
- Future Computing Architectures
- Required Assignment
- Watch my inaugural lecture at ETH and understand it
- https://www.youtube.com/watch?v=kgiZISOcGFM
- Optional Assignment - for 1\% extra credit
- Write a 1-page summary of the lecture
- What are your key takeaways?
- What did you learn?
- What did you like or dislike?
- Upload PDF file to Moodle - Deadline: Friday, March 15.

Assignment: Required Readings

- Last+This week
- Combinational Logic
- P\&P Chapter 3 until $3.3+\quad \mathrm{H} \& \mathrm{H}$ Chapter 2
- This+Next week
- Hardware Description Languages and Verilog
- H\&H Chapter 4 until 4.3 and 4.5
- Sequential Logic
- P\&P Chapter 3.4 until end $+\quad$ H\&H Chapter 3 in full
- By the end of next week, make sure you are done with - P\&P Chapters 1-3 + H\&H Chapters 1-4

Combinational Logic Circuits and Design

What We Will Learn Today?

- Building blocks of modern computers
- Transistors
- Logic gates
- Boolean algebra
- Combinational circuits
- How to use Boolean algebra to represent combinational circuits
- Minimizing logic circuits (if time permits)

Recall: CMOS NOT, NAND, AND Gates

Recall: General CMOS Gate Structure

- The general form used to construct any inverting logic gate, such as: NOT, NAND, or NOR
- The networks may consist of transistors in series or in parallel
- When transistors are in parallel, the network is $\mathbf{O N}$ if one of the transistors is $\mathbf{O N}$
- When transistors are in series, the network is ON only if all transistors are ON
pMOS transistors are used for pull-up
nMOS transistors are used for pull-down

Recall: Digging Deeper: Power Consumption

- Dynamic Power Consumption
- $\mathrm{C} * \mathrm{~V}^{2}$ *f
- C = capacitance of the circuit (wires and gates)
- $\mathrm{V}=$ supply voltage
- $f=$ charging frequency of the capacitor
- Static Power consumption
- $\mathrm{V}^{*} \mathrm{I}_{\text {leakage }}$
- supply voltage * leakage current
- Energy Consumption
- Power * Time
- See more in H\&H Chapter 1.8

Common Logic Gates

Larger Gates

- We can extend the gates to more than 2 inputs
- Example: 3-input AND gate, 10-input NOR gate
- See your readings

Aside: Moore's Law:
Enabler of Many Gates on a Chip

An Enabler: Moore's Law

Moore, "Cramming more components onto integrated circuits," Electronics Magazine, 1965.

Component counts double every other year

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

Number of transistors on an integrated circuit doubles ~ every two years

This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are strongly linked to Moore's law.

Recommended Reading

- Moore, "Cramming more components onto integrated circuits," Electronics Magazine, 1965.
- Only 3 pages
- A quote:
"With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65000 components on a single silicon chip."
- Another quote:
"Will it be possible to remove the heat generated by tens of thousands of components in a single silicon chip?"

How Do We Keep Moore's Law

- Manufacturing smaller transistors/structures
- Some structures are already a few atoms in size
- Developing materials with better properties
- Copper instead of Aluminum (better conductor)
- Hafnium Oxide, air for Insulators
- Making sure all materials are compatible is the challenge
- Optimizing the manufacturing steps
- How to use 193 nm ultraviolet light to pattern 20nm structures
- New technologies
- FinFET, Gate All Around transistor, Single Electron Transistor...

Combinational Logic Circuits

We Can Now Build Logic Circuits

Now, we understand the workings of the basic logic gates

What is our next step?

Build some of the logic structures that are important components of the microarchitecture of a computer!

- A logic circuit is composed of:
- Inputs
- Outputs

- Functional specification (describes relationship between inputs and outputs)
- Timing specification (describes the delay between inputs changing and outputs responding)

Types of Logic Circuits

- Combinational Logic
- Memoryless
- Outputs are strictly dependent on the combination of input values that are being applied to circuit right now
- In some books called Combinatorial Logic
- Later we will learn: Sequential Logic
- Has memory
- Structure stores history \rightarrow Can "store" data values
- Outputs are determined by previous (historical) and current values of inputs

Boolean Equations

Functional Specification

- Functional specification of outputs in terms of inputs
- What do we mean by "function"?
- Unique mapping from input values to output values
- The same input values produce the same output value every time
- No memory (does not depend on the history of input values)
- Example (ful/ 1-bit adder - more later):

$$
\begin{array}{ll}
S & =\mathrm{F}\left(A, B, C_{\mathrm{in}}\right) \\
C_{\mathrm{out}} & =\mathrm{G}\left(A, B, C_{\mathrm{in}}\right)
\end{array}
$$

$$
\begin{aligned}
& S=A \oplus B \oplus C_{\mathrm{in}} \\
& C_{\mathrm{out}}=A B+A C_{\mathrm{in}}+B C_{\mathrm{in}}
\end{aligned}
$$

Simple Equations: NOT / AND / OR

\bar{A} (reads "not A") is 1 iff A is 0

A	\bar{A}
0	1
1	0

$\mathrm{A} \cdot \mathrm{B}\left(\right.$ reads "A and B ") is 1 iff A and B are both $1 \begin{array}{cc|c}A & B & A \cdot B \\ \hline & 0 & 0 \\ \mathrm{~A} & 0 \\ 0 & 1 & 0 \\ & 1 & 0 \\ \hline\end{array}$
$\mathrm{A}+\mathrm{B}$ (reads "A or B ") is 1 iff either A or B is 1

A	B	$A+B$
0	0	0
0	1	1
1	0	1
1	1	1

Boolean Algebra: Big Picture

- An algebra on 1's and 0's
- with AND, OR, NOT operations
- What you start with
- Axioms: basic things about objects and operations you just assume to be true at the start

- What you derive first
- Laws and theorems: allow you to manipulate Boolean expressions
- ...also allow us to do some simplification on Boolean expressions
- What you derive later
- More "sophisticated" properties useful for manipulating digital designs represented in the form of Boolean equations

George Boole, "The Mathematical Analysis of Logic," 1847.

Boolean Algebra: Axioms

Formal version

1. B contains at least two elements, 0 and 1 , such that $0 \neq 1$
2. Closure $a, b \in B$,
(i) $a+b \in B$
(ii) $a \cdot b \in B$
3. Commutative Laws: $a, b \in B$,
(i)
(ii)
4. Identities: $0,1 \in B$
(i)
(ii)
5. Distributive Laws:
(i)
(ii)
6. Complement:
(i)
(ii)

English version
Math formality...

Result of AND, OR stays in set you start with

For primitive AND, OR of 2 inputs, order doesn't matter

There are identity elements for AND, OR, that give you back what you started with

- distributes over + , just like algebra
...but + distributes over ${ }^{\bullet}$, also (!!)

There is a complement element;
AND/ORing with it gives the identity elm.

Boolean Algebra: Duality

- Observation
- All the axioms come in "dual" form
- Anything true for an expression also true for its dual
- So any derivation you could make that is true, can be flipped into dual form, and it stays true
- Duality — More formally
- A dual of a Boolean expression is derived by replacing
- Every AND operation with... an OR operation
- Every OR operation with... an AND
- Every constant 1 with... a constant 0
- Every constant 0 with... a constant 1
- But don't change any of the literals or play with the complements!

Example

$$
\begin{aligned}
& a \cdot(b+c)=(a \cdot b)+(a \cdot c) \\
\rightarrow & a+(b \cdot c)=(a+b) \cdot(a+c)
\end{aligned}
$$

Boolean Algebra: Useful Laws

Operations with 0 and 1:

1. $\mathrm{X}+0=\mathrm{X}$
1D. $\mathrm{X} \cdot 1=\mathrm{X}$
2. $X+1=1$
2D. $X \cdot 0=0$

Idempotent Law:
3. $\mathbf{X}+\mathbf{X}=\mathbf{X}$
3D. $X \cdot X=X$

Involution Law:
4. $\overline{(\bar{X})}=\mathbf{X}$

Laws of Complementarity:

$$
\text { 5. } \mathbf{X}+\overline{\mathbf{X}}=1 \quad \text { 5D. } \mathrm{X} \cdot \overline{\mathrm{X}}=0
$$

Commutative Law:
6. $\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$
6D. $X \cdot Y=Y \cdot X$
Just an axiom...

Useful Laws (cont)

Associative Laws:

$$
\text { 7. } \begin{aligned}
(\mathbf{X}+\mathbf{Y})+\mathbf{Z} & =\mathbf{X}+(\mathbf{Y}+\mathbf{Z}) \\
& =\mathbf{X}+\mathbf{Y}+\mathbf{Z}
\end{aligned}
$$

7D. $(\mathrm{X} \cdot \mathrm{Y}) \cdot \mathrm{Z}=\mathrm{X} \cdot(\mathrm{Y} \cdot \mathrm{Z})$ $=\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Z}$

Distributive Laws:
8. $\mathrm{X} \cdot(\mathrm{Y}+\mathrm{Z})=(\mathrm{X} \cdot \mathrm{Y})+(\mathrm{X} \cdot \mathrm{Z}) \quad$ 8D. $\mathrm{X}+(\mathrm{Y} \cdot \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z}) \quad$ Axiom

Simplification Theorems:
9.

9D.
10D.
11D.

Useful for simplifying expressions

Actually worth remembering - they show up a lot in real designs...

Boolean Algebra: Proving Things

Proving theorems via axioms of Boolean Algebra:
EX: Prove the theorem: $\mathbf{X} \cdot \mathbf{Y}+\mathbf{X} \cdot \bar{Y}=\mathbf{X}$
Distributive (5)
Complement (6)
Identity (4)
EX2: Prove the theorem: $\quad \mathbf{X}+\mathbf{X} \cdot \mathbf{Y}=\mathbf{X}$
Identity (4)
Distributive (5)
Identity (2)
Identity (4)

DeMorgan's Law: Enabling Transformations

DeMorgan's Law:

$$
\begin{aligned}
& \text { 12. } \overline{(X+Y+Z+\cdots)}=\bar{X} \cdot \bar{Y} \cdot \bar{Z} . \ldots \\
& \text { 12D. } \overline{(X \cdot Y . Z \ldots)}=\bar{X}+\bar{Y}+\bar{Z}+\ldots
\end{aligned}
$$

Think of this as a transformation

- Let's say we have:

$$
\mathrm{F}=\mathrm{A}+\mathrm{B}+\mathrm{C}
$$

- Applying DeMorgan's Law (12), gives us

$$
F=\overline{\overline{(A+B+C)}}=\overline{(\bar{A} \cdot \bar{B} \cdot \bar{C})}
$$

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false

DeMorgan's Law (Continued)

These are conversions between different types of logic functions They can prove useful if you do not have every type of gate

$$
A=\overline{(X+Y)}=\bar{X} \bar{Y}
$$

NOR is equivalent to AND with inputs complemented

$$
B=\overline{(X Y)}=\bar{X}+\bar{Y}
$$

NAND is equivalent to OR with inputs complemented

X	Y	$\overline{X+Y}$	\bar{X}	\bar{Y}	$\bar{X} \bar{Y}$
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	0

X	Y	$\overline{X Y}$	\bar{X}	\bar{Y}	$\bar{X}+\bar{Y}$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

Using Boolean Equations

 to Represent a Logic Circuit
Sum of Products Form: Key Idea

- Assume we have the truth table of a Boolean Function
- How do we express the function in terms of the inputs in a standard manner?
- Idea: Sum of Products form
- Express the truth table as a two-level Boolean expression
- that contains all input variable combinations that result in a 1 output
- If ANY of the combinations of input variables that results in a 1 is TRUE, then the output is 1
- $F=O R$ of all input variable combinations that result in a 1

Some Definitions

- Complement: variable with a bar over it $\bar{A}, \bar{B}, \bar{C}$
- Literal: variable or its complement $A, \bar{A}, B, \bar{B}, C, \bar{C}$
- Implicant: product (AND) of literals $(\boldsymbol{A} \cdot \boldsymbol{B} \cdot \overline{\boldsymbol{C}}),(\overline{\boldsymbol{A}} \cdot \boldsymbol{C}),(\boldsymbol{B} \cdot \overline{\boldsymbol{C}})$
- Minterm: product (AND) that includes all input variables $(\boldsymbol{A} \cdot \boldsymbol{B} \cdot \overline{\boldsymbol{C}}),(\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}} \cdot \boldsymbol{C}),(\overline{\boldsymbol{A}} \cdot \boldsymbol{B} \cdot \overline{\boldsymbol{C}})$
- Maxterm: sum (OR) that includes all input variables $(A+\bar{B}+\bar{C}),(\bar{A}+B+\bar{C}),(A+B+\bar{C})$

Two-Level Canonical (Standard) Forms

- Truth table is the unique signature of a Boolean function ...
- But, it is an expensive representation
- A Boolean function can have many alternative Boolean expressions
- i.e., many alternative Boolean expressions (and gate realizations) may have the same truth table (and function)
- Canonical form: standard form for a Boolean expression
- Provides a unique algebraic signature
- If they all say the same thing, why do we care?
- Different Boolean expressions lead to different gate realizations

Two-Level Canonical Forms

Sum of Products Form (SOP)

Also known as disjunctive normal form or minterm expansion

- Each row in a truth table has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)

All Boolean equations can be written in SOP form

SOP Form - Why Does It Work?

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0

- Only the shaded product term $-\mathbf{A} \overline{\mathbf{B}} \mathbf{C}=\mathbf{1} \cdot \overline{\mathbf{0}} \cdot \mathbf{1}$ - will be 1
- No other product terms will "turn on" - they will all be 0
- So if inputs A B C correspond to a product term in expression,
- We get $0+0+\ldots+1+\ldots+0+0=1$ for output
- If inputs A B C do not correspond to any product term in expression
- We get $0+0+\ldots+0=0$ for output

Aside: Notation for SOP

- Standard "shorthand" notation
- If we agree on the order of the variables in the rows of truth table...
- then we can enumerate each row with the decimal number that corresponds to the binary number created by the input pattern

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

100 = decimal 4 so this is minterm \#4, or m4
111 = decimal 7 so this is minterm \#7, or m7
$\mathrm{f}=$
We can write this as a sum of products
Or, we can use a summation notation

Canonical SOP Forms

A	B	C	minterms	
0	0	0	$\bar{A} \bar{B} \bar{C}$	$=\mathrm{m} 0$
0	0	1	$\bar{A} \bar{B} C$	$=\mathrm{m} 1$
0	1	0	$\bar{A} B \bar{C}$	$=\mathrm{m} 2$
0	1	1	$\bar{A} B C$	$=\mathrm{m} 3$
1	0	0	$A \bar{B} \bar{C}$	$=\mathrm{m} 4$
1	0	1	$A \bar{B} C$	$=\mathrm{m} 5$
1	1	0	$A B \bar{C}$	$=\mathrm{m} 6$
1	1	1	ABC	$=\mathrm{m} 7$

F in canonical form:

$$
\begin{aligned}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) & =\sum \mathrm{m}(3,4,5,6,7) \\
& =\mathrm{m} 3+\mathrm{m} 4+\mathrm{m} 5+\mathrm{m} 6+\mathrm{m} 7 \\
F & =
\end{aligned}
$$

canonical form \neq minimal form
Shorthand Notation for
Minterms of 3 Variables

From Logic to Gates

- SOP (sum-of-products) leads to two-level logic

- Example: $\boldsymbol{Y}=(\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}} \cdot \overline{\boldsymbol{C}})+(\boldsymbol{A} \cdot \overline{\boldsymbol{B}} \cdot \overline{\boldsymbol{C}})+(\boldsymbol{A} \cdot \overline{\boldsymbol{B}} \cdot \boldsymbol{C})$

Alternative Canonical Form: POS

We can have another from of representation

DeMorgan of SOP of \bar{F}

A product of sums $(\mathbf{P O S})_{F=(A}$
Each sum term represents one of the "zeros" of the function

A	B	C	F	
0	0	0	0	\checkmark
0	0	1	0	
0	1	0	0	Activates this term
0	1	1	1	
1	0	0	1	For the given input, only the shaded sum term
1	0	1	1	will equal 0
1	1	0	1	$A+\bar{B}+C=0+\overline{1}+0$
1	1	1	1	

Anything ANDed with 0 is 0 ; Output F will be 0

Consider $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=0$

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Only one of the products will be 0 , anything ANDed with 0 is 0
Therefore, the output is $\mathrm{F}=0$

POS: How to Write It

A	B	C	F	$F=\underline{(A+B+C})(\underline{A+B+\bar{C}})(\underline{A+\bar{B}+C})$		
0	0	0	\longrightarrow			
0	0	1	0			
0	1	0	0	$\begin{array}{llll}A & \bar{B} & C\end{array}$		
0	1	1	1			
1	0	0	1	$\boldsymbol{A}+\bar{B}+\boldsymbol{C}$		
1	0	1	$1 \quad A+B+C$			
1	1	0	1			
1	1	1	1			
Maxterm form:						
1. Find truth table rows where F is 0						
2. 0 in input col \rightarrow true literal 3. 1 in input col \rightarrow complemented literal						
4. OR the literals to get a Maxterm 5. AND together all the Maxterms						

Or just remember, POS of F is the same as the DeMorgan of SOP of $\bar{F}!!$

Canonical POS Forms

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

Useful Conversions

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand replace minterm indices with the indices not already used E.g., $\mathrm{F}(A, B, C)=\sum m(3,4,5,6,7)=\Pi M(0,1,2)$
2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand replace maxterm indices with the indices not already used

$$
\text { E.g., } F(A, B, C)=\Pi M(0,1,2)=\sum m(3,4,5,6,7)
$$

3. Expansion of \mathbf{F} to expansion of $\overline{\boldsymbol{F}}$:
E. $\mathrm{g} ., \mathrm{F}(A, B, C)=\sum m(3,4,5,6,7) \longrightarrow \bar{F}(A, B, C)=\sum m(0,1,2)$

$$
=\prod M(0,1,2) \quad \longrightarrow \quad=\prod M(3,4,5,6,7)
$$

4. Minterm expansion of F to Maxterm expansion of \bar{F} : rewrite in Maxterm form, using the same indices as F

$$
\text { E. } \begin{aligned}
\mathrm{g}, \mathrm{~F}(A, B, C) & =\sum m(3,4,5,6,7) \quad \longrightarrow \quad \bar{F}(A, B, C) \\
& =\prod M(3,4,5,6,7) \\
& =\sum m(0,1,2) \quad \longrightarrow
\end{aligned} \quad \begin{array}{ll}
&
\end{array}
$$

Combinational Building Blocks

 used in Modern Computers
Combinational Building Blocks

- Combinational logic is often grouped into larger building blocks to build more complex systems
- Hides the unnecessary gate-level details to emphasize the function of the building block
- We now look at:
- Decoders
- Multiplexers
- Full adder
- PLA (Programmable Logic Array)

Decoder

- n inputs and 2^{n} outputs
- Exactly one of the outputs is 1 and all the rest are 0s
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect

Decoder

- The decoder is useful in determining how to interpret a bit pattern
- It could be the address of a row in DRAM, that the processor intends to read from
- It could be an instruction in the program and the processor has to decide what action to
 do! (based on instruction opcode)

Multiplexer (MUX), or Selector

- Selects one of the N inputs to connect it to the output
- Needs $\log _{2} N$-bit control input
- 2:1 MUX

Multiplexer (MUX)

- The output C is always connected to either the input A or the input B
- Output value depends on the value of the select line S

- Your task: Draw the schematic for an 8-input (8:1) MUX
- Gate level: as a combination of basic AND, OR, NOT gates
- Module level: As a combination of 2-input (2:1) MUXes

Full Adder (I)

- Binary addition
- Similar to decimal addition

$$
\begin{array}{ccc}
a_{n-1} a_{n-2} & \ldots & a_{1} a_{0} \\
b_{n-1} b_{n-2} & \ldots & b_{1} b_{0} \\
C_{n} C_{n-1} & \ldots & C_{1} \\
\hline S_{n-1} & \ldots & S_{1} S_{0}
\end{array}
$$

- Truth table of binary addition on one column of bits within two n-bit operands

$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{b}_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}}$	carry $_{\boldsymbol{i + 1}}$	$\boldsymbol{S}_{\boldsymbol{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder (II)

- Binary addition
- N 1-bit additions
- SOP of 1-bit addition

$$
\begin{array}{ccc}
a_{n-1} a_{n-2} & \ldots & a_{1} a_{0} \\
b_{n-1} b_{n-2} & \ldots & b_{1} b_{0} \\
C_{n} C_{n-1} & \ldots & C_{1} \\
\hline S_{n-1} & \ldots & S_{1} S_{0}
\end{array}
$$

$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{b}_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}+\boldsymbol{1}}$	$\boldsymbol{S}_{\boldsymbol{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

4-Bit Adder from Full Adders

- Creating a 4-bit adder out of 1-bit full adders
- To add two 4-bit binary numbers A and B

The Programmable Logic Array (PLA)

- The below logic structure is a very common building block for implementing any collection of logic functions one wishes to
- An array of AND gates followed by an array of OR gates
- How do we determine the number of AND gates?
- Remember SOP: the number of possible minterms

- For an n-input logic function, we need a PLA with $2^{n} n$-input AND gates
- How do we determine the number of OR gates? The number of output columns in the truth table

The Programmable Logic Array (PLA)

- How do we implement a logic function?
- Connect the output of an AND gate to the input of an OR gate if the corresponding minterm is included in the SOP
- This is a simple programmable logic

Programming a PLA: we program the connections from AND gate outputs to OR gate inputs to implement a desired logic function

- Have you seen any other type of programmable logic?
- Yes! An FPGA...
- An FPGA uses more advanced structures, as we saw in Lecture 3

Implementing a Full Adder Using a PLA

This input should not be
 connected to any outputs

Truth table of a full adder

$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{b}_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}}$	carry $_{\boldsymbol{i + 1}}$	$\boldsymbol{S}_{\boldsymbol{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

We do not need

Logical (Functional) Completeness

- Any logic function we wish to implement could be accomplished with PLA
- PLA consists of only AND gates, OR gates, and inverters
- We just have to program connections based on SOP of the intended logic function
- The set of gates \{AND, OR, NOT\} is logically complete because we can build a circuit to carry out the specification of any truth table we wish, without using any other kind of gate
- NAND is also logically complete. So is NOR.
- Your task: Prove this.

More Combinational Building Blocks

- H\&H Chapter 2 in full
- Required Reading
- E.g., see Tri-state Buffer and Z values in Section 2.6
- H\&H Chapter 5
- Will be required reading soon.
- You will benefit greatly by reading the "combinational" parts of Chapter 5 soon.
- Sections 5.1 and 5.2

Tri-State Buffer

- A tri-state buffer enables gating of different signals onto a wire

Figure 2.40 Tristate buffer

- Floating signal (Z): Signal that is not driven by any circuit
- Open circuit, floating wire

Example: Use of Tri-State Buffers

- Imagine a wire connecting the CPU and memory
- At any time only the CPU or the memory can place a value on the wire, both not both
- You can have two tri-state buffers: one driven by CPU, the other memory; and ensure at most one is enabled at any time

Example Design with Tri-State Buffers

Logic Simplification:

Karnaugh Maps (K-Maps)

Recall: Full Adder in SOP Form Logic

$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{b}_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}}$	carry $_{\boldsymbol{i + 1}}$	$\boldsymbol{S}_{\boldsymbol{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Goal: Simplified Full Adder

Full

Adder

$C_{\text {in }}$	A	B	$C_{\text {out }}$	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
S & =A \oplus B \oplus C_{\mathrm{in}} \\
C_{\mathrm{out}} & =A B+A C_{\mathrm{in}}+B C_{\mathrm{in}}
\end{aligned}
$$

How do we simplify Boolean logic?

Quick Recap on Logic Simplification

- The original Boolean expression (i.e., logic circuit) may not be optimal

$$
F=\sim A(A+B)+(B+A A)(A+\sim B)
$$

- Can we reduce a given Boolean expression to an equivalent expression with fewer terms?

$$
F=A+B
$$

- The goal of logic simplification:
- Reduce the number of gates/inputs
- Reduce implementation cost

A basis for what the automated design tools are doing today

Logic Simplification

- Systematic techniques for simplifications
- amenable to automation

Key Tool: The Uniting Theorem -F $=A \bar{B}+A B$

Complex Cases

- One example

$$
\text { Cout }=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C
$$

- Problem
- Easy to see how to apply Uniting Theorem...
- Hard to know if you applied it in all the right places...
- ...especially in a function of many more variables
- Question
- Is there an easier way to find potential simplifications?
- i.e., potential applications of Uniting Theorem...?
- Answer
- Need an intrinsically geometric representation for Boolean f()
- Something we can draw, see...

Karnaugh Map

- Karnaugh Map (K-map) method
- K-map is an alternative method of representing the truth table that helps visualize adjacencies in up to 6 dimensions
- Physical adjacency \leftrightarrow Logical adjacency

2-variable K-map

3-variable K-map

4-variable K-map

$C D$					
$A B$	00	01	11	10	
$A B$	00	010			
00	0000	0001	0011	0010	
01	0100	0101	0111	0110	
11	1100	1101	1111	1110	
10	1000	1001	1011	1010	

Karnaugh Map Methods

K-map adjacencies go "around the edges"
 Wrap around from first to last column
 Wrap around from top row to bottom row

K-map Cover - 4 Input Variables

Logic Minimization Using K-Maps

- Very simple guideline:
- Circle all the rectangular blocks of 1's in the map, using the fewest possible number of circles
- Each circle should be as large as possible
- Read off the implicants that were circled
- More formally:
- A Boolean equation is minimized when it is written as a sum of the fewest number of prime implicants
- Each circle on the K-map represents an implicant
- The largest possible circles are prime implicants

K-map Rules

- What can be legally combined (circled) in the K-map?
- Rectangular groups of size 2^{k} for any integer k
- Each cell has the same value (1, for now)
- All values must be adjacent
- Wrap-around edge is okay
- How does a group become a term in an expression?
- Determine which literals are constant, and which vary across group
- Eliminate varying literals, then AND the constant literals
- constant $1 \rightarrow$ use \mathbf{X}, constant $0 \rightarrow$ use \bar{X}
- What is a good solution?
- Biggest groupings \rightarrow eliminate more variables (literals) in each term
- Fewest groupings \rightarrow fewer terms (gates) all together
- OR together all AND terms you create from individual groups

K-map Example: Two-bit Comparator

Design Approach:
Write a 4-Variable K-map for each of the 3 output functions

A	B	C	D	F1	F2	F3
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	1	0	0

K-map Example: Two-bit Comparator (2)

F1 =

| A | B | C | D | $F 1$ | $F 2$ | $F 3$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 |

K-map Example: Two-bit Comparator (3)

F2 $=$
F3 $=$? (Exercise for you)

A	B	C	D	F	$F 2$	$F 3$
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	1	0	0

K-maps with "Don't Care"

- Don't Care really means I don't care what my circuit outputs if this appears as input
- You have an engineering choice to use DON'T CARE patterns intelligently as 1 or 0 to better simplify the circuit

Example: BCD Increment Function

BCD (Binary Coded Decimal) digits

- Encode decimal digits 0-9 with bit patterns $0000_{2}-1001_{2}$
- When incremented, the decimal sequence is $0,1, \ldots, 8,9,0,1$

A	B	C	D	W	X	Y	Z
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

These input patterns should never be encountered in practice (hey -- it's a BCD number!) So, associated output values are
"Don't Cares"

K-map for BCD Increment Function

K-map Summary

- Karnaugh maps as a formal systematic approach for logic simplification
- 2-, 3-, 4-variable K-maps
- K-maps with "Don't Care" outputs
- H\&H Section 2.7

Hardware Description Languages \& Verilog (Combinational Logic)

- Implementing Combinational Logic
- Hardware Description Languages
- Hardware Design Methodologies
- Verilog

2017: Intel Kaby Lake

- 64-bit processor
- 4 cores, 8 threads
- 14-19 stage pipeline
- 3.9 GHz clock
- 1.75B transistors
- In ~47 years, about 1,000,000fold growth in transistor count and performance!

How to Deal with This Complexity?

- Hardware Description Languages!
- A fact of life in computer engineering
- Need to be able to specify complex designs
- communicate with others in your design group
- ... and to simulate their behavior
- yes, it's what I want to build
- ... and to synthesize (automatically design) portions of it
- have an error-free path to implementation
- Hardware Description Languages
- Many similarly featured HDLs (e.g., Verilog, VHDL, ...)
- if you learn one, it is not hard to learn another
- mapping between languages is typically mechanical, especially for the commonly used subset

Hardware Description Languages

- Two well-known hardware description languages
- Verilog
- Developed in 1984 by Gateway Design Automation
- Became an IEEE standard (1364) in 1995
- More popular in US
- VHDL (VHSIC Hardware Description Language)
- Developed in 1981 by the Department of Defense
- Became an IEEE standard (1076) in 1987
- More popular in Europe
- In this course we will use Verilog

Hardware Design Using Verilog

Hierarchical Design

- Design hierarchy of modules is built
https://techreport.com/review/21987/intel using instantiation
- Predefined "primitive" gates (AND, OR, ...)
- Simple modules are built by instantiating these gates (components like MUXes)
- Other modules are built by instantiating simple components, ...
- Hierarchy controls complexity
- Analogous to the use of function abstraction in SW
- Complexity is a BIG deal
- In real world how big is size of one "blob" of random logic that we would describe as an HDL, then synthesize to gates?

-core-i7-3960x-processor

Top-Down Design Methodology

- We define the top-level module and identify the sub-modules necessary to build the top-level module
- Subdivide the sub-modules until we come to leaf cells
- Leaf cell: circuit components that cannot further be divided (e.g., logic gates, cell libraries)

Bottom-Up Design Methodology

- We first identify the building blocks that are available to us
- Build bigger modules, using these building blocks
- These modules are then used for higher-level modules until we build the top-level module in the design

Defining a Module in Verilog

- A module is the main building block in Verilog
- We first need to define:
- Name of the module
- Directions of its ports (e.g., input, output)
- Names of its ports
- Then:
- Describe the functionality of the module

Implementing a Module in Verilog

A Question of Style

- The following two codes are functionally identical

```
module test ( a, b, y );
    input a;
    input b;
    output y;
endmodule
```


port name and direction declaration can be combined

What If We Have Multi-bit Input/Output?

- You can also define multi-bit Input/Output (Bus)
- [range_end : range_start]
- Number of bits: range_end - range_start + 1
- Example:

| input $[31: 0]$ | a; | // a[31], | a[30] .. a[0] |
| :--- | :--- | :--- | :--- | :--- |
| output [15:8] | b1; | // b1[15], b1[14] | b1[8] |
| output [7:0] | b2; | // b2[7], b2[6]... b2[0] | |
| input | c; | // single signal | |

- a represents a 32-bit value, so we prefer to define it as: [31:0] a
- It is preferred over [0:31] a which resembles arraydefinition
- It is a good practice to be consistent with the representation of multi-bit signals, i.e., always [31:0] or always [0:31]

Manipulating Bits

- Bit Slicing
- Concatenation
- Duplication

Basic Syntax

- Verilog is case sensitive
- SomeName and somename are not the same!
- Names cannot start with numbers:
- 2 good is not a valid name
- Whitespaces are ignored

```
// Single line comments start with a //
/* Multiline comments
    are defined like this */
```


Two Main Styles of HDL Implementation

- Structural (Gate-Level)
- The module body contains gate-level description of the circuit
- Describe how modules are interconnected
- Each module contains other modules (instances)
- ... and interconnections between these modules
- Describes a hierarchy
- Behavioral
- The module body contains functional description of the circuit
- Contains logical and mathematical operators
- Level of abstraction is higher than gate-level
- Many possible gate-level realizations of a behavioral description
- Practical circuits would use a combination of both

Structural HDL

Structural HDL: Instantiating a Module

Schematic of module "top" that is built from two instances of module "small"

Structural HDL Example

- Module Definitions in Verilog

Structural HDL Example

- Defining wires (module interconnections)

Structural HDL Example

- The first instantiation of the "small" module

Structural HDL Example

- The second instantiation of the "small" module

Structural HDL Example

- Short form of module instantiation

```
module top (A, SEL, C, Y);
    input A, SEL, C;
    output Y;
    wire n1;
// alternative
small i_first ( A, SEL, n1 );
/* Shorter instantiation,
    pin order very important */
// any pin order, safer choice
small i_second ( . B(C),
    . Y(Y),
    .A(n1) );
```

endmodule


```
module small (A, B, Y);
        input A;
        input B;
        output Y;
    // description of small
endmodule
```


Structural HDL Example 2

- Verilog supports basic logic gates as predefined primitives
- These primitives are instantiated like modules except that they are predefined in Verilog and do not need a module definition

```
module mux2(input [3:0] d0, d1,
    input s,
    output [3:0] y);
    and g1 (y1, d0, ns);
    and g2 (y2, d1, s);
    or g3 (y, y1, y2);
    not g4 (ns, s);
endmodule
```

Behavioral HDL

Behavioral HDL: Defining Functionality

```
module example (a, b, c, y);
        input a;
    input b;
    input c;
    output y;
// here comes the circuit description
assign y = ~a & ~b & ~c |
```

endmodule

Behavioral HDL: Schematic View

A behavioral implementation still models a hardware circuit!

Bitwise Operators in Behavioral Verilog

```
module gates(input [3:0] a, b,
    output [3:0] y1, y2, y3, y4, y5);
    /* Five different two-input logic
        gates acting on 4 bit buses */
    assign y1 = a & b; // AND
    assign y2 = a | b; // OR
    assign y3 = a ^ b; // XOR
    assign y4 = ~(a & b); // NAND
    assign y5 = ~(a | b); // NOR
```

endmodule

Bitwise Operators: Schematic View

Reduction Operators in Behavioral Verilog

```
module and8(input [7:0] a,
                output y);
    assign y = &a;
    // &a is much easier to write than
    // assign y = a[7] & a[6] & a[5] & a[4] &
    // a[3] & a[2] & a[1] & a[0];
```

endmodule

Reduction Operators: Schematic View

Conditional Assignment in Behavioral Verilog

```
module mux2(input [3:0] d0, d1,
    input s,
    output [3:0] y);
    assign y = s ? d1 : d0;
    // if (s) then y=d1 else y=d0;
```

endmodule

- ? : is also called a ternary operator as it operates on three inputs:
- S
- d 1
- dO

Conditional Assignment: Schematic View

More Complex Conditional Assignments

```
module mux4(input [3:0] d0, d1, d2, d3
    input [1:0] s,
    output [3:0] y);
    assign y = s[1] ? ( s[0] ? d3 : d2)
        : ( s[0] ? d1 : d0);
    // if (s1) then
    // if (s0) then y=d3 else y=d2
// else
// if (s0) then y=d1 else y=d0
```

endmodule

Even More Complex Conditional Assignments

```
module mux4(input [3:0] d0, d1, d2, d3
                input [1:0] s,
                output [3:0] y);
    assign y = (s == 2'b11) ? d3 :
        (s == 2'b10) ? d2 :
        (s == 2'b01) ? d1 :
        d0;
// if (s = "11") then y= d3
// else if (s = "10") then y= d2
// else if (s = "01") then y= d1
// else y= d0
endmodule
```


Precedence of Operations in Verilog

Highest

How to Express Numbers ?

N'BXX
 8' b0000_0001

- (N) Number of bits
- Expresses how many bits will be used to store the value
- (B) Base
- Can be b (binary), h (hexadecimal), d (decimal), o (octal)
- (xx) Number
- The value expressed in base
- Apart from numbers, it can also have X and Z as values
- Underscore _ can be used to improve readability

Number Representation in Verilog

Verilog	Stored Number	Verilog	Stored Number
4'b1001	1001	4'd5	0101
8'b1001	00001001	12'hFA3	111110100011
8'b0000_1001	00001001	8'012	00001010
8'bxX0X1zZ1	XXOX 1 ZZ1	4'h7	0111
'b01	0000 .. 0001	12'h0	000000000000
	32 bits (default)		

Floating Signals (Z)

- Floating signal: Signal that is not driven by any circuit
- Open circuit, floating wire
- Also known as: high impedance, hi-Z, tri-stated signals

```
module tristate_buffer(input [3:0] a,
                        input en,
    output [3:0] y);
    assign y = en ? a : 4'bz;
endmodule
```


Aside: Tri-State Buffer

- A tri-state buffer enables gating of different signals onto a wire

Tristate
Buffer

E	A	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Figure 2.40 Tristate buffer

Example: Use of Tri-State Buffers

- Imagine a wire connecting the CPU and memory
- At any time only the CPU or the memory can place a value on the wire, both not both
- You can have two tri-state buffers: one driven by CPU, the other memory; and ensure at most one is enabled at any time

Example Design with Tri-State Buffers

Truth Table for AND with Z and X

AND		A			
		0	1	z	x
	0	0	0	0	0
	1	0	1	X	x
B	z	0	x	X	X
	x	0	x	X	x

What Happens with HDL Code?

- Synthesis
- Modern tools are able to map a HDL code into low-level cel/ libraries
- They can perform many optimizations
- ... however they can not guarantee that a solution is optimal
- Mainly due to computationally expensive placement and routing algorithms
- Most common way of Digital Design these days
- Simulation
- Allows the behavior of the circuit to be verified without actually manufacturing the circuit
- Simulators can work on structural or behavioral HDL

Recall This "example"

```
module example (a, b, c, y);
        input a;
    input b;
    input c;
    output y;
// here comes the circuit description
assign y = ~a & ~b & ~c |
    a & ~b & ~c |
    a & ~b & c;
endmodule
```


Synthesizing the "example"

Simulating the "example"

Now:

800 ns

What We Have Seen So Far

- Describing structural hierarchy with Verilog
- Instantiate modules in an other module
- Describing functionality using behavioral modeling
- Writing simple logic equations
- We can write AND, OR, XOR, ...
- Multiplexer functionality
- If ... then ... else
- We can describe constants
- But there is more...

```
More Verilog Examples
```

- We can write Verilog code in many different ways
- Let's see how we can express the same functionality by developing Verilog code
- At low-level
- Poor readability
- More optimization opportunities
- At a higher-level of abstraction
- Better readability
- Limited optimization

Comparing Two Numbers

- Defining your own gates as new modules
- We will use our gates to show the different ways of implementing a 4-bit comparator (equality checker)

An XNOR gate

```
module MyXnor (input a, b,
    output z);
    assign z = ~(a ^ b); //not XOR
endmodule
```


An AND gate

```
module MyAnd (input a, b,
                        output z);
    assign z = a & b; // AND
endmodule
```


Gate-Level Implementation

```
module compare (input a0, a1, a2, a3, b0, b1, b2, b3,
    output eq);
    wire c0, c1, c2, c3, c01, c23;
MyXnor i0 (.A(a0), .B(b0), .Z(c0) ); // XNOR
MyXnor i1 (.A(a1), .B(b1), .Z(c1) ); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2) ); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3) ); // XNOR
MyAnd haha (.A(c0), .B(c1), .Z(c01) ); // AND
MyAnd hoho (.A(c2), .B(c3), .Z(c23) ); // AND
MyAnd bubu (.A(c01), .B(c23), .Z(eq) ); // AND
endmodule
```


Using Logical Operators

```
module compare (input a0, a1, a2, a3, b0, b1, b2, b3,
    output eq);
    wire c0, c1, c2, c3, c01, c23;
MyXnor i0 (.A(a0), .B(b0), .Z(c0) ); // XNOR
MyXnor i1 (.A(a1), .B(b1), .Z(c1) ); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2) ); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3) ); // XNOR
assign c01 = c0 & c1;
assign c23 = c2 & c3;
assign eq = c01 & c23;
endmodule
```


Eliminating Intermediate Signals

```
module compare (input a0, a1, a2, a3, b0, b1, b2, b3,
    output eq);
    wire c0, c1, c2, c3;
MyXnor i0 (.A(a0), .B(b0), .Z(c0) ); // XNOR
MyXnor i1 (.A(a1), .B(b1), .Z(c1) ); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2) ); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3) ); // XNOR
// assign c01 = c0 & c1;
// assign c23 = c2 & c3;
// assign eq = c01 & c23;
assign eq = c0 & c1 & c2 & c3;
```

endmodule

Multi-Bit Signals (Bus)

```
module compare (input [3:0] a, input [3:0] b,
    output eq);
    wire [3:0] c; // bus definition
MyXnor i0 (.A(a[0]), .B(b[0]), .Z(c[0]) ); // XNOR
MyXnor i1 (.A(a[1]), .B(b[1]), .Z(c[1]) ); // XNOR
MyXnor i2 (.A(a[2]), .B(b[2]), .Z(c[2]) ); // XNOR
MyXnor i3 (.A(a[3]), .B(b[3]), .Z(c[3]) ); // XNOR
assign eq = &c; // short format
```

endmodule

Bitwise Operations

```
module compare (input [3:0] a, input [3:0] b,
    output eq);
    wire [3:0] c; // bus definition
// MyXnor i0 (.A(a[0]), .B(b[0]), .Z(c[0]) );
// MyXnor i1 (.A(a[1]), .B(b[1]), .Z(c[1]) );
// MyXnor i2 (.A(a[2]), .B(b[2]), .Z(c[2]) );
// MyXnor i3 (.A(a[3]), .B(b[3]), .Z(c[3]) );
assign c = ~(a ^ b); // XNOR
assign eq = &c; // short format
endmodule
```


Highest Abstraction Level: Comparing Two Numbers

```
module compare (input [3:0] a, input [3:0] b,
output eq);
// assign c = ~(a ^ b); // XNOR
// assign eq = &c; // short format
assign eq = (a == b) ? 1 : 0; // really short
endmodule
```


Writing More Reusable Verilog Code

- We have a module that can compare two 4-bit numbers
- What if in the overall design we need to compare:
- 5-bit numbers?
- 6-bit numbers?
- \mathbf{N}-bit numbers?
- Writing code for each case looks tedious
- What could be a better way?

Parameterized Modules

In Verilog, we can define module parameters

```
module mux2
    #(parameter width = 8) // name and default value
        (input [width-1:0] d0, d1,
        input s,
        output [width-1:0] y);
    assign y = s ? d1 : d0;
endmodule
```

We can set the parameters to different values when instantiating the module

Instantiating Parameterized Modules

```
module mux2
    #(parameter width = 8) // name and default value
        (input [width-1:0] d0, d1,
        input s,
        output [width-1:0] y);
    assign y = s ? d1 : d0;
endmodule
```


What About Timing ?

- It is possible to define timing relations in Verilog. BUT:
- These are ONLY for simulation
- They CAN NOT be synthesized
- They are used for modeling delays in a circuit

```
'timescale 1ns/1ps
module simple (input a, output z1, z2);
assign #5 z1 = ~a; // inverted output after 5ns
assign #9 z2 = a; // output after 9ns
endmodule
```


More to come in later lectures!

Good Practices

- Develop/use a consistent naming style
- Use MSB to LSB ordering for buses
- Use " $a[31: 0]$ ", not " $a[0: 31$]"
- Define one module per file
- Makes managing your design hierarchy easier
- Use a file name that equals module name
- i.e., module TryThis is defined in a file called TryThis.v
- Always keep in mind that Verilog describes hardware

Summary

- We have seen an overview of Verilog
- Discussed structural and behavioral modeling
- Showed combinational logic constructs

Next Lecture: Sequential Logic

Design of Digital Circuits

 Lecture 5: Combinational Logic II \& Hardware Description LanguagesProf. Onur Mutlu

ETH Zurich

Spring 2019
7 March 2019

