Design of Digital Circuits
 Lecture 7.1: Sequential Logic Design II

Prof. Onur Mutlu
ETH Zurich
Spring 2019
14 March 2019

Agenda for This Week

- Today
- Wrap up Sequential Logic
- Hardware Description Languages and Verilog
- Combinational Logic
- Sequential Logic
- Tomorrow
- Timing and Verification

Agenda for Next Week

- Thursday
- Von Neumann Model of Execution
- Instruction Set Architecture
- LC-3 and MIPS
- Friday
- ISA and Assembly Programming

Extra Assignment 1: Lecture Video

- Why study computer architecture?
- Why is it important?
- Future Computing Architectures
- Required Assignment
- Watch my inaugural lecture at ETH and understand it
- https://www.youtube.com/watch?v=kgiZISOcGFM
- Optional Assignment - for 1\% extra credit
- Write a 1-page summary of the lecture
- What are your key takeaways?
- What did you learn?
- What did you like or dislike?
- Upload PDF file to Moodle - Deadline: Friday, March 15.

Extra Assignment 2: Moore's Law (I)

- Paper review
- G.E. Moore. "Cramming more components onto integrated circuits," Electronics magazine, 1965
- Optional Assignment - for 1\% extra credit
- Write a 1-page review
- Upload PDF file to Moodle - Deadline: Friday, March 22
- I strongly recommend that you follow my guidelines for (paper) review (see next slide)

Extra Assignment 2: Moore's Law (II)

- Guidelines on how to review papers critically
- Guideline slides: pdf ppt
- Video: https://www.youtube.com/watch?v=tOL6FANAJ8c
- Example reviews on "Main Memory Scaling: Challenges and Solution Directions" (link to the paper)
- Review 1
- Review 2
- Example review on "Staged memory scheduling: Achieving high performance and scalability in heterogeneous systems" (link to the paper)
- Review 1

Required Readings (This Week)

- Hardware Description Languages and Verilog
- H\&H Chapter 4 in full
- Timing and Verification
- H\&H Chapters 2.9 and $3.5+$ (start Chapter 5)
- By tomorrow, make sure you are done with
- P\&P Chapters 1-3 + H\&H Chapters 1-4

Required Readings (Next Week)

- Von Neumann Model, LC-3, and MIPS
- P\&P, Chapters 4, 5
- H\&H, Chapter 6
- P\&P, Appendices A and C (ISA and microarchitecture of LC-3)
- H\&H, Appendix B (MIPS instructions)
- Programming
- P\&P, Chapter 6
- Recommended: Digital Building Blocks
- H\&H, Chapter 5

Wrap-Up Sequential Logic Circuits and Design

Circuits that Can

Store Information

The Gated D Latch

Sequential Logic Circuits

Review: Finite State Machines

Recall: Finite State Machines (FSMs)

- Each FSM consists of three separate parts:
- next state logic
- state register
- output logic

At the beginning of the clock cycle, next state is latched into the state register

Recall: Finite State Machine Example

- "Smart" traffic light controller
- 2 inputs:
- Traffic sensors: T_{A}, T_{B} (TRUE when there's traffic)
- 2 outputs:
- Lights: L_{A}, L_{B} (Red, Yellow, Green)
- State can change every 5 seconds
- Except if green and traffic, stay green

From H\&H Section 3.4.1

Recall: FSM Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

Recall: Finite State Machine: State Transition Table

Recall: FSM State Transition Table

Current State		Inputs		Next State	
S_{1}	S_{0}	T_{A}	T_{B}	S_{1}^{\prime}	S_{0}
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0
			te	Enc	
			0		
			1		
			2		
			3		

Recall: FSM State Transition Table

Current State		Inputs		Next State	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	S_{1}^{\prime}	S_{0}^{\prime}
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

Recall: Finite State Machine: Output Table

Recall: FSM Output Table

Current State		Outputs	
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A}}$	L_{B}
0	0	green	red
0	1	yellow	red
1	0	red	green
1	1	red	yellow

Output	Encoding
green	00
yellow	01
red	10

Recall: FSM Output Table

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{A} 1}=\mathrm{S}_{1} \\
& \mathrm{~L}_{\mathrm{A} 0}=\overline{\mathrm{S}_{1}} \cdot \mathrm{~S}_{0} \\
& \mathrm{~L}_{\mathrm{B} 1}=\overline{\mathrm{S}_{1}} \\
& \mathrm{~L}_{\mathrm{B} 0}=\mathrm{S}_{1} \cdot \mathrm{~S}_{0}
\end{aligned}
$$

Current State		Outputs			
S_{1}	$\mathrm{~S}_{0}$	$\mathrm{~L}_{\mathrm{A} 1}$	$\mathrm{~L}_{\mathrm{A} 0}$	$\mathrm{~L}_{\mathrm{B} 1}$	$\mathrm{~L}_{\mathrm{B} 0}$
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

Recall: Finite State Machine: Schematic

Recall: FSM Schematic: State Register

Recall: FSM Schematic: State Register

Recall: FSM Schematic: Next State Logic

inputs

$$
\begin{aligned}
& \mathrm{S}_{1}^{\prime}=\mathrm{S}_{1} \text { xor } \mathrm{S}_{0} \\
& \mathrm{~S}_{0}^{\prime}=\left(\overline{\mathrm{S}}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~T}}_{\mathrm{A}}\right)+\left(\mathrm{S}_{1} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~T}}_{\mathrm{B}}\right)
\end{aligned}
$$

Recall: FSM Schematic: Output Logic

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{A} 1}=\mathrm{S}_{1} \\
& \mathrm{~L}_{\mathrm{A} 0}=\overline{\mathrm{S}_{1}} \cdot \mathrm{~S}_{0} \\
& \mathrm{~L}_{\mathrm{B} 1}=\overline{\mathrm{S}_{1}} \\
& \mathrm{~L}_{\mathrm{B} 0}=\mathrm{S}_{1} \cdot \mathrm{~S}_{0}
\end{aligned}
$$

Recall: FSM Timing

See H\&H Chapter 3.4

Finite State Machine: State Encoding

FSM State Encoding

- How do we encode the state bits?
- Three common state binary encodings with different tradeoffs

1. Fully Encoded
2. 1-Hot Encoded
3. Output Encoded

- Let's see an example Swiss traffic light with 4 states
- Green, Yellow, Red, Yellow+Red

FSM State Encoding (II)

1. Binary Encoding (Full Encoding):

- Use the minimum number of bits used to encode all states
- Use $\log _{2}$ (num_states) bits to represent the states
- Example states: 00, 01, 10, 11
- Minimizes \# flip-flops, but not necessarily output logic or next state logic

2. One-Hot Encoding:

- Each bit encodes a different state
- Uses num_states bits to represent the states
- Exactly 1 bit is "hot" for a given state
- Example states: 0001, 0010, 0100, 1000
- Simplest design process - very automatable
- Maximizes \# flip-flops, minimizes next state logic

FSM State Encoding (III)

3. Output Encoding:

- Outputs are directly accessible in the state encoding
- For example, since we have 3 outputs (light color), encode state with 3 bits, where each bit represents a color
- Example states: 001, 010, 100, 110
- Bit_{0} encodes green light output,
- Bit_{1} encodes yellow light output
- Bit_{2} encodes red light output
- Minimizes output logic
- Only works for Moore Machines (output function of state)

FSM State Encoding (III)

3. Output Encoding:

- Outputs are directly accessible in the state encoding

The designer must carefully choose an encoding scheme to optimize the design under given constraints

- Minimizes output logic
- Only works for Moore Machines (output function of state)

Moore vs. Mealy Machines

Recall: Moore vs. Mealy FSMs

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
- Moore FSM: outputs depend only on the current state
- Mealy FSM: outputs depend on the current state and the inputs

Moore FSM

Mealy FSM

Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

Moore FSM

Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

Moore FSM

Mealy FSM

State Transition Diagrams

FSM Design Procedure

- Determine all possible states of your machine
- Develop a state transition diagram
- Generally this is done from a textual description
- You need to 1) determine the inputs and outputs for each state and 2) figure out how to get from one state to another
- Approach
- Start by defining the reset state and what happens from it - this is typically an easy point to start from
- Then continue to add transitions and states
- Picking good state names is very important
- Building an FSM is like programming (but it is not programming!)
- An FSM has a sequential "control-flow" like a program with conditionals and goto's
- The if-then-else construct is controlled by one or more inputs
- The outputs are controlled by the state or the inputs
- In hardware, we typically have many concurrent FSMs

What is to Come: LC-3 Processor

Figure 4.3 The LC-3 as an example of the von Neumann model

What is to Come: LC-3 Datapath

Design of Digital Circuits
 Lecture 7.1: Sequential Logic Design II

Prof. Onur Mutlu
ETH Zurich
Spring 2019
14 March 2019

Backup Slides:
 Different Types of Flip Flops

Enabled Flip-Flops

- Inputs: CLK, D, EN
- The enable input (EN) controls when new data (D) is stored
- Function:
- EN = 1: D passes through to Q on the clock edge
- EN = 0: the flip-flop retains its previous state

Internal
Circuit

Resettable Flip-Flop

- Inputs: CLK, D, Reset
- The Reset is used to set the output to 0.
- Function:
- Reset $=1: \mathrm{Q}$ is forced to 0
\square Reset $=0$: the flip-flop behaves like an ordinary D flip-flop

Symbols

Resettable Flip-Flops

- Two types:
- Synchronous: resets at the clock edge only
- Asynchronous: resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop (see Exercise 3.10)
- Synchronously resettable flip-flop?

Settable Flip-Flop

- Inputs: CLK, D, Set
- Function:
- Set = 1: Q is set to 1
- Set $=\mathbf{0}$: the flip-flop behaves like an ordinary D flip-flop

Symbols

Recall:
Combinational Logic Blocks

Recall: Combinational Building Blocks

- Combinational logic is often grouped into larger building blocks to build more complex systems
- Hides the unnecessary gate-level details to emphasize the function of the building block
- We now look at:
- Decoders
- Multiplexers
- Full adder
- PLA (Programmable Logic Array)

Recall: Decoder

- n inputs and 2^{n} outputs
- Exactly one of the outputs is 1 and all the rest are $0 s$
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect

Recall: Multiplexer (MUX), or Selector

- Selects one of the N inputs to connect it to the output
- Needs $\log _{2} N$-bit control input
- 2:1 MUX

Recall: Multiplexer (MUX)

- The output C is always connected to either the input A or the input B
- Output value depends on the value of the select line S

- Your task: Draw the schematic for an 8-input (8:1) MUX
- Gate level: as a combination of basic AND, OR, NOT gates
- Module level: As a combination of 2-input (2:1) MUXes

Recall:
Sequential Logic Blocks

Recall: An FSM Consists of:

- Sequential circuits

- State register(s)
- Store the current state and
- Load the next state at the clock edge

- Combinational Circuits
- Next state logic
- Determines what the next state will be

- Output logic
- Generates the outputs

Recall: The Problem with Latches

Recall the
Gated D Latch

How can we change the latch, so that

1) D (input) is observable at \mathbf{Q} (output) only at the beginning of next clock cycle?
2) \mathbf{Q} is available for the full clock cycle

Recall: The D Flip-Flop

- 1) state change on clock edge, 2) data available for full cycle

- When the clock is low, master propagates \mathbf{D} to the input of slave (Q unchanged)
- Only when the clock is high, slave latches D (Q stores \mathbf{D})
- At the rising edge of clock (clock going from $0->1$), Q gets assigned D

Recall: The D Flip-Flop

- 1) state change on clock edge, 2) data available for full cycle

- At the rising edge of clock (clock going from $0->1$), \mathbf{Q} gets assigned \mathbf{D}
- At all other times, Q is unchanged

Recall: The D Flip-Flop

We can use these Flip-Flops to implement the state register!

- At the rising edge of clock (clock going from $0->1$), \mathbf{Q} gets assigned \mathbf{D}
- At all other times, Q is unchanged

