Design of Digital Circuits
Lecture 10a: Instruction Set Architecture

Prof. Onur Mutlu
ETH Zurich
Spring 2019

22 March 2019

Talk Announcement (Today)

22 March 2019, Friday, 16:00-17:00, CAB G51
Cross-Layer Architecture for Deep Learning
Prof. Mattan Erez, University of Texas at Austin

High-performance DNN inference and training is essential for the ongoing ML
revolution. Training of DNNs requires massive memory capacity and bandwidth,
and is generally a huge pain, especially for researchers. While significant
research effort has been dedicated to inference accelerator, less work has been
done on training, especially work that crosses the algorithmic and
implementation layers. The result is a very limited number of high-cost
accelerators available, in particular, with very expensive high-bandwidth
memories. I will motivate and discuss some of our recent work on accelerating
training (of CNNs) that combines understanding of and changes to the
algorithm with matching hardware architecture modifications.

Optional Review

Extra Assignment 2: Moore’s Law (I)

= Paper review
= G.E. Moore. "Cramming more components onto integrated

circuits,” Electronics magazine, 1965

= Optional Assignment — for 1% extra credit
o Write a 1-page review
o Upload PDF file to Moodle — Deadline: Friday, March 22

= I strongly recommend that you follow my guidelines for
(paper) review (see next slide)

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment 2: Moore’s Law (11)

= Guidelines on how to review papers critically

a Guideline slides: pdf ppt
a Video: https://www.youtube.com/watch?v=tOL6FANAJSC

o Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)

= Review 1
= Review 2

o Example review on "“Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
= Review 1

https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=review-chapter.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=review-chapter-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=review-sms.pdf

Agenda for Today & Next Few Lectures

= LC-3 and MIPS Instruction Set Architectures
= LC-3 and MIPS assembly and programming

= Introduction to microarchitecture and single-cycle
microarchitecture

= Multi-cycle microarchitecture

Required Readings

This week

o Von Neumann Model, LC-3, and MIPS
P&P, Chapters 4, 5
H&H, Chapter 6

P&P, Appendices A and C (ISA and microarchitecture of LC-3)
H&H, Appendix B (MIPS instructions)

o Programming
P&P, Chapter 6
o Recommended: H&H Chapter 5, especially 5.1, 5.2, 5.4, 5.5

Next week
o Introduction to microarchitecture and single-cycle microarchitecture
H&H, Chapter 7.1-7.3
P&P, Appendices A and C
o Multi-cycle microarchitecture
H&H, Chapter 7.4
P&P, Appendices A and C

Recall: The Instruction Cycle

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O O O 0O DO

Instruction Set Architectures

Recall: The Instruction Set Architecture

= The ISA is the interface between what the software commands
and what the hardware carries out

= The ISA specifies
o The memory organization

Address space (LC-3: 216, MIPS: 232)
Addressability (LC-3: 16 bits, MIPS: 32 bits)
Word- or Byte-addressable

o The register set

RO to R7 in LC-3
32 registers in MIPS

o The instruction set

Opcodes
Data types
Addressing modes

Problem

Algorithm

Program

ISA

Recall: Opcodes in L.C-3

Figure 5.3

1514 1312 11 109 8 7 6 5 4 3 2

0

T T T T T T
DR SR1 0| 00 SR2
1 1 1 1 1 1 1
T T T T T T T
DR SR1 1 imm5
1 1 1 1 1 1 1
T T T T T T
DR SR1 0| 00 SR2
1 1 1 1 1 1
T T T T T T T
DR SR1 1 imm5
1 1 1 1 1 1 1
T T T T T T T
nfz|p PCoffset9
1 1 1 1 1 1 1
T T T T T T T T
000 BaseR 000000
1 1 1 1 1 1 1 1
T T T T T T T T T
1 PCoffset11
1 1 1 1 1 1 1 1 1
T T T T T T T
0| 00 BaseR 000000
1 1 1 1 1 1 1
T T T T T T T T T
DR PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T T
DR i PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T
DR BaseR offset6
1 1 1 1 1 1 1 1
T T T T T T T T T
DR PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T
DR SR 111111
1 1 1 1 1 1 1 1
T T T T T T T T
000 111 000000
1 1 1 1 1 1 1 1
T T T T T T T T T T
000000000000
1 1 1 1 1 1 1 1 1 1
T T T T T T T T T
SR PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T T
SR PCoffset9
1 1 1 1 1 1 1 1 1
T T T T T T T
SR BaseR offset6
1 1 1 1 1 1 1 1
T T T T T T T T T
0000 trapvect8
1 1 1 1 1 1 1 1 1
T T T T T T T T T T
1 1 1 1 1 1 1 1 1 1

Formats of the entire LC-3 instruction set. NOTE: * indicates instructions

that modify condition codes

10

Recall: Opcodes in .LC-3b

ADD'

AND
BR

+

15 14 13 12 11 1a 7 é 5 4 3 2 1 a
T T T T T T T T T T T
0001 DR SR1 A op.spec
| | | | | | | | | | |
I I I I I I 1 I I 1 I
0101 DR SR1 A op.spec
1 1 1 1 1 1 1 1 1 1 1
T T T T T T I T T T T

0000 n|z PCoftset?
| | 1 1 1 | | | 1 1 |
T T T T T T T T T T T T
1100 000 BaseR 000000

0010 DR BaseR boffseté

] [1] 1 1 [[1

I I I ! I I ! I I I ! !
o110 DR BaseR offseté

| | | | | | | | | | | |

T 1 T T T 1 T I [
1110 DR PCoffse

1 L1 L1 [TR N SR R N

| — T T T T t+ 1 | I R |
1000 000000000000

| | 1 1 | 1 1 1 | | | 1 1 |

I I ! ! I ! ! I ! !
1101 DR SR A |D| amount4

1 L1 1 L1 L1

T 1 T T [T I [
0011 SR BaseR boffseté

1 L1 1 1 1 1 [11 1

T T T T T T T T T T T T
o011 SR BaseR offseté

| | 1 | | 1 1 | | 1 1 |

frapvect8

11

Recall: Funct in MIPS R-Type Instructions (I)

Opcode is 0
in MIPS R-
Type
instructions.
Funct defines
the operation

Table B.2 R-type instructions, sorted by funct field

Description Operation
000000 (0) s11 rd, rt, shamt shift left logical [rd]=1[rt] << shamt
000010 (2) srl rd, rt, shamt shift right logical [rd]l=10[rt]>> shamt
000011 (3) sra rd, rt, shamt shift right arithmetic [rd]=1[rtl>>> shamt
000100 (4) s1lv rd, rt, rs shift left logical variable [rd]l=[rt] << [rsls.o
000110 (6) srlv rd, rt, rs shift right logical variable [rdl=1[rt]l > [rsls.o
000111 (7) srav rd, rt, rs shift right arithmetic variable [rdl=1L[rtl>> [rsls.o
001000 (8) jrrs jump register PC=[rs]
001001 (9) jalr rs jump and link register $ra=PC+4, PC=[rs]
001100 (12) syscall system call systemcall exception
001101 (13) break break break exception
010000 (16) mfhi rd move from hi [rd]=T[hil
010001 (17) mthi rs move to hi [hil=1[rs]
010010 (18) mflo rd move from lo [rdl=1[To]
010011 (19) mtlo rs move to lo [1ol=1[rs]
011000 (24) mult rs, rt multiply {Chil, [Tol} =[rsIx[rt]

011001 (25)

multurs, rt

multiply unsigned

{Chil, [Tol} =[rs]x[rt]

011010 (26) divrs, rt divide [Tol=10[rsl/[rt],
[hil=1[rs]%lrt]
011011 (27) divurs, rt divide unsigned [lTol=1[rsl/[rtl,

[hil=T[rs]%lrt]

(continued)

Harris and Harris, Appendix B: MIPS Instructions

12

Recall: Funct in MIPS R-Type Instructions (II)

Table B.2 R-type instructions, sorted by funct field—Cont’d

Description Operation

100000 (32) add rd, rs, rt add [rdl=1[rsl+[rt]

100001 (33) addu rd, rs, rt add unsigned [rd]l=[rs]+I[rt]

100010 (34) sub rd, rs, rt subtract [rdl=1[rs]-I[rt]

100011 (35) subu rd, rs, rt subtract unsigned [rdl=10[rs]-[rt]

100100 (36) and rd, rs, rt and [rd]=1[rs]&[rt]

100101 (37) or rd, rs, rt or [rdl=10[rs] | [rt]

100110 (38) xor rd, rs, rt xor [rdl="[rs]~[rt]

100111 (39) nor rd, rs, rt nor [rd]l=~([rs] | [rt])

101010 (42) slt rd, rs, rt set less than [rs]<[rt]?[rdl=1:[rdl=0
101011 (43) slturd, rs, rt set less than unsigned [rs]<[rtl?[rdl=1:[rdl=0

= Find the complete list of instructions in the appendix

Harris and Harris, Appendix B: MIPS Instructions

Data Types

= An ISA supports one or several data types
= LC-3 only supports 2's complement integers

= MIPS supports
a 2's complement integers
o Unsigned integers
o Floating point

= Again, tradeoffs are involved

14

Data Type Tradeoffs

What is the benefit of having more or high-level data types
in the ISA?

What is the disadvantage?
Think compiler/programmer vs. microarchitect

Concept of semantic gap

o Data types coupled tightly to the semantic level, or complexity
of instructions

Example: Early RISC architectures vs. Intel 432
o Early RISC (e.g., MIPS): Only integer data type
o Intel 432: Object data type, capability based machine

15

Addressing Modes

An addressing mode is a mechanism for specifying where
an operand is located

There five addressing modes in LC-3
o Immediate or literal (constant)

The operand is in some bits of the instruction
o Register

The operand is in one of RO to R7 registers

o Three of them are memory addressing modes
PC-relative
Indirect
Base+offset

In addition, MIPS has pseudo-direct addressing (for j and
jal), but does not have indirect addressing

16

Operate Instructions

17

Operate Instructions

In LC-3, there are three operate instructions

o NOT is a unary operation (one source operand)
It executes bitwise NOT

o ADD and AND are binary operations (two source operands)
ADD is 2's complement addition
AND is bitwise SR1 & SR2

In MIPS, there are many more
o Most of R-type instructions (they are binary operations)
E.g., add, and, nor, xor...

o I-type versions (i.e., with one immediate operand) of the R-
type operate instructions

o F-type operations, i.e., floating-point operations

18

NOT 1n LC-3

= NOT assembly and machine code

LC-3 assembly

NOT R3, R5

Field Values
OP DR SR
9 3) 111111
Machine Code
OP DR SR
1001 011 001 111111
5 1z 1 s 5 6 5 0

There is no NOT in MIPS. How is it implemented?

Register file

RO

R1

R2

B A
NOT
ALU
From -/

FSM

0101000011110000

1010111100001111

TﬁG 16
Y

DR

SR

19

Operate Instructions

We are already familiar with LC-3’s ADD and AND with
register mode (R-type in MIPS)

Now let us see the versions with one literal (i.e., immediate)
operand

Subtraction is another necessary operation
o How is it implemented in LC-3 and MIPS?

20

Operate Instr. with one Literal in L.C-3
ADD and AND

OP DR SR1 |1 imm3
4 bits 3 bits 3 bits 5 bits

o OP = operation
E.g., ADD = 0001 (same OP as the register-mode ADD)
o DR < SR1 + sign-extend(immb5)

E.g., AND = 0101 (same OP as the register-mode AND)
o DR < SR1 AND sign-extend(immb5)

o SR1 = source register
o DR = destination register

o immb5 = Literal or immediate (sign-extend to 16 bits)

21

ADD with one Literal in 1.C-3

ADD assembly and machine code

LC-3 assembly
ADD R1, R4, #-2

Register file

Instruction register
ADD R1 R4

-2

11110

[sext]

i Sign-
" extend

.

1111111111111110
I

RO
R1
R2
R3
R4
R5
R6
R7

0000000000000100

0000000000000110

Field Values
OP DR SR imm5
1 1 4 |1 -2
Machine Code
OP DR SR imm5
0001 001 100 |1 11110
15 12 11 9 8 6 5 4 0

Bit[5]

ADD

From
FSM

DR

SR

Instructions with one Literal in MIPS

I-type
o 2 register operands and immediate
Some operate and data movement instructions

opcode rs rt imm
6 bits 5 bits 5 bits 16 bits

o opcode = operation
o s = source register

o rt=
destination register in some instructions (e.g., addi, 1w)
source register in others (e.qg., sw)

o imm = Literal or immediate

Add with one lLiteral in MIPS

Add immediate

MIPS assembly
addi S$s0, S$sl1, 5
Field Values
op rs rt imm
0 17 16 5

Machine Code

op

rs

rt

t <— rs + sign-extend(imm)

imm

001000

10001

10010

0000 0000 0000 0101

0x22300005

24

Subtract in [.C-3

= MIPS assembly

High-level code

MIPS assembly

a=>b+ c - d;

= LC-3 assembly

High-level code

add $t0, $s0, S$sl
sub $s3, $t0, $s2

LC-3 assembly

a=>b+ c - d;

= Tradeoff in LC-3
o More instructions
o But, simpler control logic

R1

ADD R2, RO,
NOT R4, R3
ADD R5, R4,
ADD R6, R2,

2’s
complement
#1] of R4

R5

Subtract Immediate

= MIPS assembly

High-level code MIPS assem

a =>b - 3; subi S$s1l,

Is subi necessary in MIPS?

MIPS assembly

addi $sl1l, $s0, -3

= LC-3
High-level code LC-3 assembly

a =>b - 3; ADD R1l, RO, #-3

Data Movement Instructions

and Addressing Modes

27

Data Movement Instructions

In LC-3, there are seven data movement instructions
o LD, LDR, LDI, LEA, ST, STR, STI

Format of load and store instructions
o Opcode (bits [15:12])

o DR or SR (bits [11:9])

o Address generation bits (bits [8:0])

a

Four ways to interpret bits, called addressing modes
= PC-Relative Mode

= Indirect Mode

= Base+offset Mode

= Immediate Mode

In MIPS, there are only Base+offset and immediate modes
for load and store instructions

28

PC-Relative Addressing Mode

= LD (Load) and ST (Store)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR/SR PCoffset9

4 bits 3 bits 9 bits

o OP = opcode
= E.g., LD =0010
= E.g., ST = 0011

o DR = destination register in LD
o SR = source register in ST

a LD: DR «— Memory[PCT + sign-extend(PCoffset9)]

a ST: Memory[PC" + sign-extend(PCoffset9)] «— SR

"This is the incremented PC

LD in LLC-3

= LD assembly and machine code

: - Register file
Instruction register
LC-3 assembly 5 o o
IR |0010{010{ 110101111 R1
LD R2, Ox1AF LD Rz xIAF R2 | 0000000000000101 |DR
Incremented PC 'Riggol Ao
. PC 0100 0000 0001 1001| [SEXT] 9N Rd
Field Values s
OP DR PCoffset9 1111111110101111 23
16
2 2 Ox1AF ori
b/ loaded
. 1. Address 1 15 16 ©
Machine Code calculation | D
OP DR PCoffset9 MAR MEMORY -
0010|010 110101111 .
. Memory
15 12 11 9 8 0 read
: Limitation: The PC-relative addressing mode
The memory address is only +256 to -255 cannot address far away from the
locations away of the LD or ST instruction instruction

30

Indirect Addressing Mode

= LDI (Load Indirect) and STI (Store Indirect)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

o OP = opcode
= E.g., LDI = 1010
= E.g., STI = 1011

o DR = destination register in LDI
o SR = source register in STI

a LDI: DR «— Memory[Memory[PC" + sign-extend(PCoffset9)]]

a STI: Memory[Memory[PC" + sign-extend(PCoffset9)]] — SR

"This is the incremented PC

LLDI in I.C-3

= LDI assembly and machine code

LC-3 assembly Instruction register ReF?Oister file
IR|1010{ 011] 111001100 | R1
LDI R3, 0x1CC LDI R3 xiCC Ro
Incremented PC IR[g:0] R3 [1111111111111111| DR
Sign- R4
. PC|0100 1010 0001 1100| [SEXT|oyten
Field Values . EZ
OP DR PCoffset9 xFFCC R7
16
A 3 0x1CC .
\ ADD / IoadedIS
1. Address 118 16 ®©
Machine Code calculation | D
[MAR | MEMORY [MDR]
OP DR PCoffset9
3. LoadeCc:Is) o
dd X
1010 011 111001100 o MDR
to MAR 2. Memory 4. Memory
15 2 11 9 8 0 read read

[Now the address of the operand can be anywhere in the memory]

32

Base+Oftfset Addressing Mode

= LDR (Load Register) and STR (Store Register)

15 14 13 12 11 10 9

8 7 6

5 4 3 2 1 0

OP DR/SR

BaseR

offsetb

4 bits 3 bits

o OP = opcode
= E.g., LDR = 0110
= E.g., STR = 0111

3 bits

o DR = destination register in LDR

o SR = source register in STR

6 bits

o LDR: DR < Memory[BaseR + sign-extend(offset6)]

o STR: Memory[BaseR + sign-extend(offset6)] « SR

33

LLDR in LLC-3

= LDR assembly and machine code

Instruction register Register file
LC-3 assembly 15 0 Ro
IR {0110]001|010| 011101 R1| 0000111100001111 | DR
LDR R1, R2, 0x1D LDR R1 Rz xiD R2 | 0010001101000101 |BaseR
IR[5:0] R3
. [SExT] Sign- R4
Field Values e As
R6
OP DR BaseR offset6 x001D R
6 1 2 0x1D s o
\ ADD / loaded
. 1. Address 116 16 ®
MaCh|ne COde calculation @
OP DR BaseR offset6 MAR MEMORY MDR
0110, 001010011101 T
. Memory
15 12 11 9 8 6 5 0 @ read

[Again, the address of the operand can be anywhere in the memory]

34

Base+Ottset Addressing Mode in MIPS

= In MIPS, Iw and sw use base+offset mode (or base

addressing mode)

High-level code MIPS assembly
A[2] = a; SW Ss3, 8(S$s0)
Memory[$s0 + 8] «— $s3
Field Values
op rs rt imm
43 16 19 8

= imm is the 16-bit offset, which is sign-extended to 32 bits

35

An Example Program in MIPS and 1.C-3

High-level code

a = A[0];

C = a + b - 5;
B[O0] = c;

MIPS assembly

lw $t0, 0($s0)
add $tl, $t0, $s2
addi $t2, S$tl1l, -5
SW St2, 0(S$sl)

MIPS registers

A = S$s0
b = S$Ss2
B = Ssl

LC-3 assembly

LDR R5, RO,
ADD R6, R5,
ADD R7, R6,
STR R7, R1,

LC-3 registers
A = RO
b = R2
B = R1

7#0
R2
#-5
7#0

36

Immediate Addressing Mode

= LEA (Load Effective Address)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP DR PCoffset9
4 bits 3 bits 9 bits

o OP =1110
o DR = destination register

o LEA: DR <« PC' + sign-extend(PCoffset9)

What is the difference from PC-Relative addressing mode?

()
Answer: Instructions with PC-Relative mode access memory,
but LEA does not > Hence the name Load Effective Address

\. J

"This is the incremented PC

LEA in L.C-3

LEA assembly and machine code

LC-3 assembly

LEA R5, #-3
Field Values

OP DR PCoffset9

E 5 Ox1FD
Machine Code

OP DR PCoffset9
17110 101 17111111101
15 12 11 9 8 0

IR

PC

Instruction register Register file
15 0 RO
1110{101| 111111101 R1
LEA R5 x1FD R2
Incremented PC IRB:0] RS
Sign- R4
0100 0000 0001 1001 | [SEXT]
16extend R5 | 0100000000010110
R6
(RRRRRRRRRRRERI I
16

ADD

16

DR

38

Immediate Addressing Mode in MIPS

= In MIPS, lui (load upper immediate) loads a 16-bit
immediate into the upper half of a register and sets the
lower half to 0

= It is used to assign 32-bit constants to a register

High-level code MIPS assembly

a = 0x6d5edf3c;

lui $s0, 0x6db5e
ori $s0, 0x4f3c

Addressing Example in L.C-3
What is the final value of R3?

Address 15 14 13

x30F6
x30F7
x30F8
x30F9
x30FA
x30FB
x30FC

12 11 10 9 8 76 543210
I 1.1 0|0 O 1|11 11111O01
O 0 0 110 1 0j0O0T1}]1{j0 1110
o 0o 1 10 1 0O0j11111T1O0T11
O 1 0 110 1 0|01 0|1{00O0O0O
O 0 0 110 1 0j0O10(1{0OO0T1O01
o 1 1 170 1 0j001{]0OO011T1O0
I 01 0|0 1T 1|1 111 101T11

P&P, Chapter 5.3.5

R1<- PC-3

R2<- R1+14
M[x30F4]<- R2
R2<- 0

R2<- R2+5
M[R1+14]<- R2
R3<- M[M[x30F4]]

40

Addressing Example in L.C-3
= What is the final value of R3?

P&P, Chapter 5.3.5

Address 15 14 13 12 11 10 9 8 76 5 43 2 1 0
x30F6 0 1% R1 = PC — 3 = 0x30F7 — 3 = 0x30F4
x30F7 0 01C 14 R2=R1+ 14 = 0x30F4 + 14 = 0x3102
x30F8 0 0k M[PC - 5] = M[0x030F4] = 0x3102
x30F9 0 0[0 R2 = 0
x30FA 0 010 R2=R2+5=5
x30FB 0 00 1 + 14] = M[0x30F4 + 14] = M[0x3102] = 5
x30FC 0 1 B R3 = M[M[PC - 9]] = M[M[0x30FD - 9]] =

M[M[0x30F4]] = M[0x3102] =5

= The final value of R3 is 5

41

Control Flow Instructions

42

Control Flow Instructions

= Allow a program to execute out of sequence

= Conditional branches and jumps

Q

Q

Q

Q

Conditional branches are used to make decisions
= E.qg., if-else statement

In LC-3, three condition codes are used

Jumps are used to implement
= Loops

= Function calls

JMP in LC-3 and j in MIPS

43

Condition Codes in L.C-3

Each time one GPR (R0-R7) is written, three single-bit registers
are updated

Each of these condition codes are either set (set to 1) or cleared
(set to 0)

o If the written value is negative
N is set, Z and P are cleared

o If the written value is zero
Z is set, N and P are cleared

o If the written value is positive
P is set, N and P are cleared

SPARC and x86 are examples of ISAs that use condition codes

44

Conditional Branches in 1.C-3
BRz (Branch if Zero)

Q

Q

Q

BRz PCoffset9
0000 |niz|p PCoffset9
4 bits 9 bits
n, z, p = which condition code is tested (N, Z, and/or P)
n, z

N, Z,

: values of the corresponding condition codes

PCoffset9 = immediate or constant value

if (n AND N) OR (p AND P) OR (z AND Z))

then PC — PC' + sign-extend(PCoffset9)

Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp

"This is the incremented PC

, p: instruction bits to identify the condition codes to be tested
P

45

Conditional Branches in 1.C-3

= BRz

BRz 0x0D9

Program ‘

0100 0001 0000 0001

Counter |

PC | 0100 0000 0010 1000

Instruction

register BR N z P PCoffset9

IR | 0000|{0(1|0|{01101100

1

Condition
registers
N
0
()
Whatifn=z=p = 1?* H) 4
L (i.e., BRnzp))
()
And whatifn=z=p = 0?
L J

[sExT]

16

7 P 0000000011011001

16

Y

v

Y4

® \wo /

16

Yes!

'n, z, p are the instruction bits to identify the condition codes to be tested

46

Conditional Branches in MIPS

= beq (Branch if Equal)

Q

beg $s0, Ssl, offset

4 rs rt offset
6 bits 5bits 5 bits 16 bits
4 = opcode

rs, rt = source registers
offset = immediate or constant value

if rs ==rt
= then PC «— PCT + sign-extend(offset) * 4

Variations: beq, bne, blez, bgtz

"This is the incremented PC

47

Branch If Equal in MIPS and 1.C-3

MIPS assembly LC-3 assembly

beg $s0, Ssl, offset

Subtract
(RO - R1)

offset

= This is an example of tradeoff in the instruction set
o The same functionality requires more instructions in LC-3

a But, the control logic requires more complexity in MIPS

48

Lecture Summary

The von Neumann model
a LC-3: An example of von Neumann machine

Instruction Set Architectures: LC-3 and MIPS
o Operate instructions

o Data movement instructions

o Control instructions

Instruction formats

Addressing modes

49

Design of Digital Circuits
Lecture 10a: Instruction Set Architecture

Prof. Onur Mutlu
ETH Zurich
Spring 2019

22 March 2019

