Design of Digital Circuits
Lecture 21: Graphics Processing Units

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Spring 2019
10 May 2019

We Are Almost Done With This...

Single-cycle Microarchitectures
Multi-cycle and Microprogrammed Microarchitectures
Pipelining

Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

Out-of-Order Execution

Other Execution Paradigms

Approaches to (Instruction-Level) Concurrency

= Pipelining

= QOut-of-order execution

= Dataflow (at the ISA level)

= Superscalar Execution

s VLIW

= Fine-Grained Multithreading

= Systolic Arrays

s Decoupled Access Execute

= SIMD Processing (Vector and array processors, GPUs)

Readings for this Week

Required

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

Recommended

o Peleg and Weiser, "MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.

SIMD Processing:
Exploiting Regular (Data) Parallelism

Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor

o Multithreaded processor

Recall: SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces

a Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space

Recall: Array vs. Vector Processors

Instruction Stream

LD VR < A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR

Same op @ same time

[LDO

LD1

LD2

LD3|

ADO
MUO
STO

Time

<——Space

AD1
MU1
ST1

N—

AD2
MU2
ST2

AD3
MU3
ST3

Different ops @ same space

VECTOR PROCESSOR

Different ops @ time

LDO
Y
LD1 | ADO

LD2 | AD1 |MUO
LD3 | AD2 [MU1 STO|
AD3 [MU2 ST1

MU3 ST2

Same op @ space ST3

<——Space >

Recall: Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N parallel accesses if all N go to different banks

Bank Bank Bank |asssssssssssssssssssssns Bank

0 1 2 15

MDR| | MAR || MDR| | MAR || MDR| | MAR MDR| | MAR
Data bus

Address bus

CPU

Picture credit: Derek Chiou

Recall: Vector Instruction Execution

VADD A,B > C

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[6] B[6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A[5] B[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[4] B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[3] B[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
o o o o o

] T]]] [

\ C[2] / \ C[8] / \ C[9] / \C[lO] / \C[ll] /

| Taog @] @] @] an]
C[O] C[O] C[1] C[2] C[3]

<€ Space >

Slide credit: Krste Asanovic

Recall: Vector Unit Structure

Functional Unit
/

KKIAT\' = L L

<} I < | <

T [T v T
| | | L

Partitiondd\. [/~__1 /1 N T\
Vector ¥ I 1% 1
Registers
~L_ Elements O, Elements 1, Elements 2, Elements 3,
4,8, .. 5,09, .. 6, 10, ... 7,11, ..
\ \/ / \ \/ / \ \/ \ \/

Lane

Memory Subsystem

Slide credit: Krste Asanovic

Recall: Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o Example machine has 32 elements per vector register and 8 lanes
o Completes 24 operations/cycle while issuing 1 vector instruction/cycle

Load Unit Multiply Unit Add Unit
oooooqﬂ-ﬂjﬁl

oooooé—”—é‘f'-g'AAAAAp.A.Ja

time olo|o|o|o|o]e|b|alalalalalladd [a[m/E]m[E[E[E]E

ooooooo Alalalalalalall|m|me|n|e(m|E]m

olojo[ofo[¢=Nalalalalalala|alm|m|m|e|n|em|m

oooooé—”—é‘ﬂg'AAAAA4..A. CIOCC0ECE

olo|o]o|o]o]o]b]alalalalalladd [e(mm[E/m]EE]D

olololololololojalalalalalalall|mmm|em|e|m|m

NARARARNACGEEEEEEE

Instruction mEmmmaae

issue

Slide credit: Krste Asanovic

Automatic Code Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + B[i]~;
Scalar Sequential Code Vectorized Code

Vector Instruction

: Vectorization is a compile-time reordering of
: operation sequencing
: = requires extensive loop dependence analysis

Slide credit: Krste Asanovic 13

Vector/SIMD Processing Summary

Vector/SIMD machines are good at exploiting regular data-
level parallelism
o Same operation performed on many data elements

o Improve performance, simplify design (no intra-vector
dependencies)

Performance improvement limited by vectorizability of code
o Scalar operations limit vector machine performance

o Remember Amdahl’s Law

o CRAY-1 was the fastest SCALAR machine at its time!

Many existing ISAs include (vector-like) SIMD operations
a Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

14

SIMD Operations in Modern ISAs

SIMD ISA Extensions

Single Instruction Multiple Data (SIMD) extension

Instructions

o Single instruction acts on multiple pieces of data at once
o Common application: graphics
o Perform short arithmetic operations (also called packed

arithmetic)

For example: add four 8-bit numbers
Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, S$sl

32

24 23

16 15

8 7

0 Bit position

$s0

$s1

$s2

16

Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

2 A /a array processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

63

8

7

0

(a)

63

16 15

(b)

63

32 31

(c)
63

(d)

Figure 1. MMX technology data types: packed byte (a),
packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
|[EEE Micro, 1996.

17

MMX Example: Image Overlaying (1)

= Goal: Overlay the human in image 1 on top of the background in image 2

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

for (i=0; i<image_size; i++) {

if (x[i] == Blue) new_imageli] =ylil;

else new_imagelil = xlil;

MM1 Blue Blue Blue Blue Blue Biue Blue Blue
MM3 | X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue|X2!=blue | X1=blue | XO=blue
MM1 | 0x0000 | 0x0000 | OxFFFF | OxFFFF | Ox0000 | Ox0000 | OXFFFF | OXFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 18

MMX Example: Image Overlaying (1)

PAND MM4, MM1 ‘ Y = Blossom image PANDN MM1, MM3 X =Woman'’s image
Mval Y, [Ye | Ys | Yol Yo [Yo [Yy [Yy | MM1[0x0000]0x0000[0xFFFF [0xFFFF [0x0000]0x0000|0xFFFF J0xFFFF |
MM1 [0x0000] 00000 [0xFFFF [OxFFFF [0x0000]0x0000 OxFFFF[OXFFFF] MM3[X, [Xg [Xs | X, [X3 [X | X | Xo |
MM4 [0x0000[0x0000] Y5 | Y. [0x0000[0x0000] Yy | Yo [MM1[X; | X; [0x0000[0x0000] X5 [X, |0x0000|0x0000|

\ POR MM4. MM1 / ?
#

MMal X, | Xe | Yo | Yal X | X | Vo] Yo G

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.

Movg- B -mm3, memt. - /"' Load _éight pixels from
e PR woman’s image - -
Movg ~~ mm4, mem2 /" Load eight pixels from the

- . blossom image
Pcmpegb. mm1, mm3- '

Pand mm4, mmi.
Pandn mmi, mm3

Por ~ mmd, mmt -

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 19

Fine-Grained Multithreading

Recall: Fine-Grained Multithreading

= Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

¥

Stream 3 Instruction

+ No logic needed for handling control and [struction Fetch

Stream 2 Instruction

data dependences within a thread Stren 1 Instr uetion
-- Single thread performance suffers ocudlon Thass

Execution Phase

-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough —
Stream 4 Instruction
threads to cover the whole pipeline Result Store

21

Recall: Fine-Grained Multithreading (II)

Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

22

Recall: Multithreaded Pipeline Example

select

Slide credit: Joel Emer

:x >]
15 —IRI—| gPR1 =
N [1.
,Y > é
IAI > >
W
I [
N 2 W

D$

23

Recall: Fine-grained Multithreading

Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, ...), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
24

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath

= The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

= However, the programming is done using threads, NOT
SIMD instructions

= To understand this, let's go back to our parallelizable code
example

= But, before that, let’s distinguish between
o Programming Model (Software)
VS.
a Execution Model (Hardware)

26

Programming Model vs. Hardware Execution Model

Programming Model refers to how the programmer expresses
the code

o E.qg., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), ...

Execution Model refers to how the hardware executes the
code underneath

o E.qg., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, ...

Execution Model can be very different from the Programming
Model

o E.g., von Neumann model implemented by an OoO processor

o E.g., SPMD model implemented by a SIMD processor (a GPU)

27

How Can You Exploit Parallelism Here?

for (i=0; i < N; i++)
Scalar Sequential Code €[i] = A[1] + Bl[1];

Let's examine three programming
options to exploit instruction-level
parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

28

Prog. Model 1: Sequential (SISD) O el e At e

Scalar Sequential Code

Can be executed on a:

Pipelined processor

Out-of-order execution processor

o Independent instructions executed
when ready

a Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

o In other words, the loop is dynamically
unrolled by the hardware

Superscalar or VLIW processor

o Can fetch and execute multiple
instructions per cycle

29

or (i=0; i < N; i++)

Prog. Model 2: Data Parallel (SIMD)f Cli] = A[i] 4+ B[i];

Vectorized Code

Scalar Sequential Code

VLD A-> V1

VLD B->V2

VADD V1+V2->V3

VST V3->C

" Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)
30

for (i=0; i < N; i++)

PI‘Og. M()dfil 3: Multithreaded C[i] = A[i] + B[i];

Scalar Sequential Code

" Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

31

for (i=0; i < N; i++)

PI‘Og. M()dfil 3: Multithreaded C[i] = A[i] + B[i];

1 > Realization: Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine

Single Instruction Multiple Thread

A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

o A warp is essentially a SIMD operation formed by hardware!

33

. for (i=0; i1 < N; i++)
SPMD on SIMT Machme C[i] = A[i] + B[i];

-

~
.

J

Vs

~

-

~

(i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Graphics Processing Units
SIMD not Exposed to Programmer (SIM'T)

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions - each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions =
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently (on any type of scalar pipeline) > MIMD processing

o Can group threads into warps flexibly - I.e., can group threads
that are supposed to fruly execute the same instruction =2

dynamically obtain and maximize benefits of SIMD processing
36

Fine-Grained Multithreading of = cor =05 5 < w; 144
C[i] = A[i] + B[1i];

Warps
= Assume a warp consists of 32 threads

= If you have 32K iterations, and 1 iteration/thread - 1K warps

= Warps can be interleaved on the same pipeline - Fine grained
multithreading of warps

Warp 20 at PC X+2

Iter. Iter:.
23*32 + 1 20*%32 + 2

37

Warps and Warp-Level FGMT

Warp: A set of threads that execute the same instruction
(on different data elements) > SIMT (Nvidia-speak)

All threads run the same code
Warp: The threads that run lengthwise in a woven fabric ...

_.=7| | Thread Warp 3
c 5C - yL_Thread Warp 8
Thread Warp hulirieln 7 :
Scalar| Scalar| Scalar Scalar, ,-/ Thread Warp 7
ThreadThreaqThread® ¢« ¢ [Thread | , v
W X Y Z / i .
/ SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2808.

High-Level View of a GPU

(PC, Mask) H

I-Cache

Shader| Shader| Shader| ,,, | Shader *

Core Core Core Core
Decode

b1 SN o e e
M \ '
Interconnection Network \ :& & & & '
t ¢ t \ | nﬂ) E’l 2 E .
\ |
Memory = | Memory Memory | | :--aq :aq -aq %’- l
Controller' |Controller Controller] '\ | 1| |&| & |2
$ $ 4 31333
1 SIMD Execution !
GDDR3 GDDR3 GDDR3| | -7 ====— - !

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2808.

Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No
interlocking)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

FGMT enables long latency
tolerance

o Millions of pixels

Slide credit: Tor Aamodt

L 2
Thread Warp 3

Thread Warp 8

ThreadI Warp 7

A 4

|-Fetch

A 2

Decode

NV ¢ 2 [«
NV 1€ B [«
NV ¢] [«

D-Cache

Warps available
for scheduling

SIMD Pipeline

Warps accessing

memory hierarchy
Miss?

{[_Thread Warp 1

Al Hit?l | Dats

\T/

Writeback

]\ Thread Warp 2

Thread Warp 6

40

Warp Execution (Recall the Slide)

Execution using
one pipelined
functional unit

A[6] B[6]
A[5] BI[5]
A[4] B[4]
A[3] BI[3]
Vo
v
L cT]
| el

Time

=

C[0]

Slide credit: Krste Asanovic

Execution using
four pipelined
functional units

A[24] B[24] A[25] B[25] A[26]
A[20] B[20] A[21] B[21] A[22]
A[16] B[16] A[17] B[17] A[18]
A[12] B[12] A[13] B[13] A[14]

32-thread warp executing ADD A[tid],B[tid] = C[tid]

B[26] A[27]
B[22] A[23]
B[18] A[19]
B[14] A[15]

'S S SN T
Y/ R VA [S V/

B[27]
B[23]
B[19]
B[15]

I
Y,

|
7

'\ Cr8] f '\ coT |

\ Cr10] f

\C[ll] /

] A

acond

<1

T - 1 T

C[O0] C[1] C[2]

C[3]

<€ Space

SIMD Execution Unit Structure

Registers
for each
Thread

Functional Unit
/

==

7 N

=
T
-

L /\

Lane

Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,4,8, .. 1,5,9, .. 2,6, 10, ... 3,7, 11, ...
Vs § -/ Vo § Y/
A, A A, L]
A A A A
T Yy T T T

Memory Subsystem

Slide credit: Krste Asanovic

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
oooooq“v-v-;N
OOOOO(L-V-KAAAAAH-A-
time ololo|lolo|e]e AAAAALVV_ZﬂIIIIIIII
ololo|lo|o|o|o|plalalalalalalaAlAlmmimm|m|m|m|m
OlO|O[O[O[q=""NA|A|A|A|A[A A AlEE EEE D @@
OOOOO(L—-G-KAAAAAQ--A- CIEIEIEIEIEIEIE
o|o|o|o]o|olo|blalalalalaldV> AnE(E|E|E|E|m|m
ololololololololalalalalalalalAlmmim|m|m|m|m|m
AlalalalalalalalmE|m|m|imim|E|m
CIFIEIEIEIEIEIE

| Warp issue >

Slide credit: Krste Asanovic 43

SIMT Memory Access

= Same instruction in different threads uses thread id to
index and access different data elements

Let’s assume N=16, 4 threads per warp > 4 warps

10 11 12 13 14 15 EELIGCELRE

10 11 12 13 14 15 Data elements

Slide credit: Hyesoon Kim 44

Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels
o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

SIS

Slide credit: Hwu & Kirk

45

Sample GPU SIMT Code (Simplified)

CPU code
[for (i = 0; ii < 100000; +-+ii) {

Clii] = A[ii] + B[ii];
¥

CUDA code ;

// there are 100000 threads
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockIdx.x + threadldx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;
by

—/

Slide credit: Hyesoon Kim

46

Sample GPU Program (Less Simplitied)

CPU Program GPU Program

__global _ add_matrix

(float *a, float *b, float *c, int N) {
Int 1 = blockldx.x * blockDim.x + threadldx.x;
Intj = blockldx.y * blockDim.y + threadldx.y;
intindex =1+ J*N;
if(i<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock(blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(a, b, ¢, N);

}

Slide credit: Hyesoon Kim 47

From Blocks to Warps

GPU cores: SIMD pipelines
o Streaming Multiprocessors (SM)
o Streaming Processors (SP)

Blocks are divided into warps
o SIMD unit (32 threads)

Block O’s warps Block 1's warps Block 2’'s warps

totlt2..t31 totlt2...t31 tot1t2...t31
IR NONANNNRN NN
S S5 S
- < 4 - < < - &< 4
> > 4 > > >4

Streaming Multiprocessor

Instruction Cache

| Warp Scheduler || Warp Scheduler |
| Dispatch Unit || Dispatch Unit |
Register File
LD/ST
SP SP SP SP
LD/ST
SFU
LD/ST
SP SP SP SP
LD/ST
LD/ST
SP SP SP SP
LD/ST
SFU
LD/ST
SP SP SP SP
LD/ST
LD/ST
SP SP SP SP
LD/ST
SFU
LD/ST
SP SP SP SP
LD/ST
LD/ST
SP SP SP SP
LD/ST
SFU
LD/ST
SP SP SP SP
LD/ST

Shared Memory / L1 Cache

Constant Cache

NVIDIA Fermi architecture

48

Warp-based SIMD vs. Traditional SIMD

Traditional SIMD contains a single thread

o Sequential instruction execution; lock-step operations in a SIMD instruction

o Programming model is SIMD (no extra threads) - SW needs to know
vector length

o ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)
o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different warp)
- programming model not SIMD

SW does not need to know vector length
Enables multithreading and flexible dynamic grouping of threads
o ISA is scalar > SIMD operations can be formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD

hardware
49

SPMD

Single procedure/program, multiple data
a This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same

program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

50

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions - each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions =
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction =2

dynamically obtain and maximize benefits of SIMD processing

Threads Can Take Different Paths in Warp-based SI

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Thread Warp Common PC
Thread|Thread | Thread | Thread
1 2 3 4

Slide credit: Tor Aamodt

52

Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1 1 1

o Groups scalar threads 1

into warps SlEE 1 1 1 1 1 1 1 1
Path A
Branch divergence ; 1 1 1 1
occurs when threads Path\EJ 1 1 1 1

inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

Slide credit: Tor Aamodt 53

Remember: FEach Thread Is Independent

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction =2

dynamically obtain and maximize benefits of SIMD processing

If we have many threads
We can find individual threads that are at the same PC

And, group them together into a single warp dynamically
This reduces “divergence” - improves SIMD utilization

o SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)
54

Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

Form new warps from warps that are waiting

o Enough threads branching to each path enables the creation
of full new warps

Warp X § § ¢ ¥ - vy 4l) wapz
Warp Y ! I

-~ -
- <
- -
- -

55

Dynamic Warp Formation/Merging

= Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

RN REY
EERERRY
RN
IR
v A
e by 7 ' !

Path B

= Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

56

Dynamic Warp Formation Example

X111
A V111

X110
B V0011

y/0010

&
X71000] [x/0710
C D /0001

/0001
y/1100

x/1111
y/1111

Baseline ®°-°

A
|—b-|
> |
| »
2!

D

Legend
A
Execution of Warp x | _‘:I Execution of Warp y
at Basic Block A | -», at Basic Block A
_)

A new warp created from scalar

threads of both Warp x and y
executing at Basic Block D

Dynamic
Warp
Formation

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

- ~\ / Functional Unit
G L = |

[[[[

[r< [< L

[| [/\;\j /\;\ﬁ

Registers) - Frafr A ——F ||

for each

Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,48, .. 1,5,09, .. 2, 6,10, .. 3,7, 11, ...

] a a] A A L A a i
. AV A VAR \ N/] \

%-(Can you move any thread \é
AUl flexibly to any lane?

Memory Subsystem

Slide credit: Krste Asanovic 58

Large Warps and Two-Level Warp Scheduling

Two main reasons for GPU resources be underutilized

o Branch divergence

o Long latency operations

Core A” Warps Compute} ... [A” Warps Compute]
Req Warp O < >
Memory Req Warp 1+—
System *e
Req Warp 15+ > »time

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp
Scheduling,” MICRO 2011. 59

Large Warp Microarchitecture Example

Reduce branch divergence by having large warps
Dynamically break down a large warp into sub-warps

Decode Stage

Sub-warp 0 mask
1({1]11]1

o200 |O0|I0|=2
BIOIB|O0|I0|I0|2|0
OI0OIOIP|IO0|I2|0 |0
o200 |I0|I2 |02

Sub-warp 0 mask
1({1]11]1

Sub-warp 0 mask
1{1(1(1

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

Two-l.evel Round Robin

Scheduling in two levels to deal with long latency operations

.................... [AII Warps Compute]

Core A” Warps Compute} ...
Req Warp 0 « .
Memory Req Warp 1+— >
°
System .
Req Warp 15«

[
»

Round Robin Scheduling, 16 total warps

(Group 0 Group 1

»time

Group O Group 1

Core ComputeICOmpute]. ... [ComputeICOmpute}: >
\ Saved Cycles
Req Warp 0 < >
Req Warp 1 < o >
°
Req Warp 7 < >
Memory
System Req Warp 8 «
Req Warp 9 < o >
°
Reg Warp 15« >

Two Level Round Robin Scheduling, 2

»time
fetch groups, 8 warps each

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

An Example GPU

NVIDIA GeForce GTX 285

NVIDIA-speak:
o 240 stream processors
o “SIMT execution”

Generic speak:
o 30 cores
o 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian

63

NVIDIA GeForce GTX 285 “core’”

64 KB of storage
for thread contexts

ol = SIMD functional unit, control
shared across 8 units

= multiply-add
B = multiply

(registers)

- = instruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian

64

NVIDIA GeForce GTX 285 “core’”

64 KB of storage
for thread contexts
(registers)

= Groups of 32 threads share instruction stream (each group is

a Warp)

= Up to 32 warps are simultaneously interleaved

= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

65

NVIDIA GeForce GTX 285

 [m]=] | [=]=]{ [=]=]| [=]=]

| [=[=]|[=]=]{ [=]=]|[=I=]

| [=[=] | [=]=] | [=]=] | [==]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

 [m]=] | [m=] | [w]=] | [=]=]|

| [m]=] | [m=] | [w]=] | [=]=]|

 [m]=] | [w]=]{ [=]=]{ [=]=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=]=] | [=[=] | [=]=]| [=[=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=[=]|[=]=]{ [=]=]|[=I=]

| [=[=]|[=]=]{ [=]=]{[=I=]

| [=[=] | [=]=] | [=]=] | [==]|

[SI=]] [ST=]| [S[=]| [STS]

[T=] | (<[=]| (<T=]} [ST]

[T] | [wT=] | I<[=] | (=[=])

[ST=]] [ST=]} [S[=]] [STS)

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=[=]|[=]=]{ [=]=]|[=I=]

| [=]=] | [=[=] | [=]=]| [=[=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

 [m]=] | [w]=] | [=]=]{ [=]=]|

| [m]=] | [m=] | [m]=] | [m]=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=[=] | [=[=] | [(=]=] | [=]=]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

 [m]=] | [w]=] | [=]=]{ [=]=]|

| [m]=] | [m=] | [m]=] | [m]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=]=] | [=[=] | [=]=]| [=[=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=[=] | [=[=] | [(=]=] | [=]=]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

(=11 [S[=] | T=]] [ST=])

| [=]=]{[=]=] | [=]=]|[=[=]|

[=[=]| [==]{ [wT=]}| [=[=]

| [=[=]|[=]=]{ [=]=]{[=I=]

| [=[=] | [=]=] | [=]=] | [==]|

| [=]=]{[=]=] | [=]=]|[=[=]|

| [=]=]|[=[=] | [=]=]|[=]=]|

| [=]=]| [=[=]| [=]=]| [=[=]|

[=[=]} [=T=]] [wT=]| [<[=]

| [=]=] | [=]=] | [=]=] | [=[=]|

| [=[=]|[=]=]{ [=]=]|[=I=]

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

66

Evolution of NVIDIA GPUs

#Stream Processors

6000

5000

4000

3000

2000

1000

GTX285 GTX480 GTX780 GTX980

(2009)

(2010)

(2013)

(2014)

P100
(2016)

V100
(2017)

16000

14000

12000

10000

8000

6000

4000

2000

GFLOPS

=f=Stream Processors

=@-GFLOPS

67

NVIDIA V100

NVIDIA-speak:

o 5120 stream processors
o “SIMT execution”

Generic speak:
o 80 cores
o 64 SIMD functional units per core

o Tensor cores for Machine Learning

NVIDIA, "NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.

68

NVIDIA V100 Block Diagram

PCI Express 3.0 Host Interface

Memory Controller
J01100u05 Asoluaw

i

Memory Controller
Jonenuol Alowew

Memory Controller
1of10u00 Lowsy

H

Memory Controlier
Jojjonuon Aowow

i
NVLink NVLink t NVLionk NViink

80 cores on the V100

https://devblogs.nvidia.com/inside-volta/

NVIDIA V100 Core

4 157 TFLOPS Single Precision

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) 7-8 TFLOPS DOUble PreCiSion
o v R L | 125 TFLOPS for Deep Learning (Tensor cores)

INT INT FP23 FP32 INT INT FPeQ PP
INT FP32 FPR2 INT INT FPa2 PR
T T FPAFRS rensOR TENSOR T PP yensoR| TensOR
INT Fisa Fpaj | CORE | CORE wr o phj CORE | | CORE
INT FPI2 PR32 INT P32 PPN2
FPO2 FPY INT PR PPN
FP3d PRS2 Sum with
ST Yeart i s : FP16 Full precision FP32 Convert to
$T ST ST ST storage/input product accumulator FP32 result
i;"*-‘ ﬁ-. A>,-. i""’ : -, 0 7 . : more pl’DdI.ICtS
Dispateh Uit (32 threadlclk) Dispatch Unit {32 thread/cik) -_l_.. ‘ -
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) -I I

INT INT FPas Pesd ! INT | INT FPa2 PR -
INT FPA2 FPRR INT T EPa2 Fpad

INT FRaz FrRas T T P PR

e FRIZFER TENSOR TENSOR INT| FS33 FPEE ENSOR TENSOR

P CORE CORE P12 PR CORE CORE

Pl FrRd D:

P2 rpx2

FP16 or FP32 FP16 or FP32

Lor W L
ST ST §

https://devblogs.nvidia.com/inside-volta/

70

Food for Thought

Compare and contrast GPUs vs Systolic Arrays

o Which one is better for machine learning?
o Which one is better for image/vision processing?
o What types of parallelism each one exploits?

o What are the tradeoffs?

If you are interested in such questions and more...

o Bachelor’s Seminar in Computer Architecture (HS2019,
FS2020)

o Computer Architecture Master’s Course (HS2019)

71

Design of Digital Circuits
Lecture 21: Graphics Processing Units

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Spring 2019
10 May 2019

Clarification of some GPU Terms

Vector length

Pipelined
functional unit /
Scalar pipeline

SIMD functional
unit /
SIMD pipeline

GPU core

Warp size

Streaming
processor /
CUDA core

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Streaming
multiprocessor

Wavefront size

Vector ALU

Compute unit

Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Functional unit that executes instructions for one
GPU thread

SIMD functional unit that executes instructions for
an entire warp

It contains one or more warp schedulers and one
or several SIMD pipelines

73

