
Digital Design & Computer Arch.
Lecture 10a: Instruction Set Architecture

Prof. Onur Mutlu

ETH Zürich
Spring 2020

20 March 2020

Assignment: Required Lecture Video
n Why study computer architecture?
n Why is it important?
n Future Computing Architectures

n Required Assignment
q Watch Prof. Mutlu’s inaugural lecture at ETH and understand it
q https://www.youtube.com/watch?v=kgiZlSOcGFM

n Optional Assignment – for 1% extra credit
q Write a 1-page summary of the lecture and email us

n What are your key takeaways?
n What did you learn?
n What did you like or dislike?
n Submit your summary to Moodle – Deadline: March 25

2

https://www.youtube.com/watch?v=kgiZlSOcGFM
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=421558

Extra Assignment: Moore’s Law (I)
n Paper review
n G.E. Moore. "Cramming more components onto integrated

circuits," Electronics magazine, 1965

n Optional Assignment – for 1% extra credit
q Write a 1-page review
q Upload PDF file to Moodle – Deadline: April 1

n I strongly recommend that you follow my guidelines for
(paper) review (see next slide)

3

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=gordon_moore_1965_article.pdf

Extra Assignment: Moore’s Law (II)
n Guidelines on how to review papers critically

q Guideline slides: pdf ppt
q Video: https://www.youtube.com/watch?v=tOL6FANAJ8c

q Example reviews on “Main Memory Scaling: Challenges and
Solution Directions” (link to the paper)
n Review 1
n Review 2

q Example review on “Staged memory scheduling: Achieving
high performance and scalability in heterogeneous
systems” (link to the paper)
n Review 1

4

https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=onur-digitaldesign-s19-how-to-do-the-paper-reviews.ppt
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://people.inf.ethz.ch/omutlu/pub/main-memory-scaling_springer15.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-chapter-om-2.pdf
https://people.inf.ethz.ch/omutlu/pub/staged-memory-scheduling_isca12.pdf
https://safari.ethz.ch/digitaltechnik/spring2019/lib/exe/fetch.php?media=review-sms.pdf

Agenda for Today & Next Few Lectures

n LC-3 and MIPS Instruction Set Architectures

n LC-3 and MIPS assembly and programming

n Introduction to microarchitecture and single-cycle
microarchitecture

n Multi-cycle microarchitecture

5

Required Readings
n This week

q Von Neumann Model, LC-3, and MIPS
n P&P, Chapters 4, 5
n H&H, Chapter 6
n P&P, Appendices A and C (ISA and microarchitecture of LC-3)
n H&H, Appendix B (MIPS instructions)

q Programming
n P&P, Chapter 6

q Recommended: H&H Chapter 5, especially 5.1, 5.2, 5.4, 5.5

n Next week
q Introduction to microarchitecture and single-cycle microarchitecture

n H&H, Chapter 7.1-7.3
n P&P, Appendices A and C

q Multi-cycle microarchitecture
n H&H, Chapter 7.4
n P&P, Appendices A and C

6

Recall: The Instruction Cycle

q FETCH
q DECODE

q EVALUATE ADDRESS
q FETCH OPERANDS

q EXECUTE
q STORE RESULT

7

Instruction Set Architectures

8

Recall: The Instruction Set Architecture
n The ISA is the interface between what the software commands

and what the hardware carries out

n The ISA specifies
q The memory organization

n Address space (LC-3: 216, MIPS: 232)
n Addressability (LC-3: 16 bits, MIPS: 32 bits)
n Word- or Byte-addressable

q The register set
n R0 to R7 in LC-3
n 32 registers in MIPS

q The instruction set
n Opcodes
n Data types
n Addressing modes

9

Microarchitecture
ISA
Program
Algorithm
Problem

Circuits
Electrons

Recall: Opcodes in LC-3

10

5.1 The ISA: Overview 119

BaseR� 000000�

DR�

DR� SR� 111111�

000000000000�

SR�

BaseR� offset6�

0000� trapvect8�

0 0 �0� BaseR� 000000�

1� PCoffset11�

PCoffset9�

PCoffset9�

PCoffset9�

PCoffset9�STI�

STR�

TRAP�

reserved�

0�1�2�3�4�5�6�7�8�9�10�11�12�13�14�15�

z�n p �

DR� SR1� 1� imm5�0101�

0000�

000�

DR� SR1� 0 0 �0� SR2�0101�

0001� DR� SR1� 1� imm5�

0001� DR� SR1� 0 0 �0� SR2�

DR�

DR�

1100�

1010�

0110�

1110�

1001�

1100�

1000�

0011�

BaseR� offset6�

000� 111� 000000�

SR�1011�

0111�

1111�

1101�

SR�

0100�

DR�0010�

0100�

PCoffset9�

PCoffset9�

BR�

AND+�

ADD+�

ADD+�

AND+�

JMP�

LD+�

LDI+�

LDR+�

LEA+�

NOT+�

RET�

RTI�

ST�

JSRR�

JSR�

Figure 5.3 Formats of the entire LC-3 instruction set. NOTE: + indicates instructions
that modify condition codes

Recall: Opcodes in LC-3b

11

Recall: Funct in MIPS R-Type Instructions (I)

12

Table B.1 Instructions, sorted by opcode—Cont’d

Opcode Name Description Operation

101000 (40) sb rt, imm(rs) store byte [Address]7:0 = [rt]7:0

101001 (41) sh rt, imm(rs) store halfword [Address]15:0 = [rt]15:0

101011 (43) sw rt, imm(rs) store word [Address] = [rt]

110001 (49) lwc1 ft, imm(rs) load word to FP coprocessor 1 [ft] = [Address]

111001 (56) swc1 ft, imm(rs) store word to FP coprocessor 1 [Address] = [ft]

Table B.2 R-type instructions, sorted by funct field

Funct Name Description Operation

000000 (0) sll rd, rt, shamt shift left logical [rd] = [rt] << shamt

000010 (2) srl rd, rt, shamt shift right logical [rd] = [rt] >> shamt

000011 (3) sra rd, rt, shamt shift right arithmetic [rd] = [rt] >>> shamt

000100 (4) sllv rd, rt, rs shift left logical variable [rd] = [rt] << [rs]4:0

000110 (6) srlv rd, rt, rs shift right logical variable [rd] = [rt] >> [rs]4:0

000111 (7) srav rd, rt, rs shift right arithmetic variable [rd] = [rt] >>> [rs]4:0

001000 (8) jr rs jump register PC = [rs]

001001 (9) jalr rs jump and link register $ra = PC + 4, PC = [rs]

001100 (12) syscall system call system call exception

001101 (13) break break break exception

010000 (16) mfhi rd move from hi [rd] = [hi]

010001 (17) mthi rs move to hi [hi] = [rs]

010010 (18) mflo rd move from lo [rd] = [lo]

010011 (19) mtlo rs move to lo [lo] = [rs]

011000 (24) mult rs, rt multiply {[hi], [lo]} = [rs] × [rt]

011001 (25) multu rs, rt multiply unsigned {[hi], [lo]} = [rs] × [rt]

011010 (26) div rs, rt divide [lo] = [rs]/[rt],
[hi] = [rs]%[rt]

011011 (27) divu rs, rt divide unsigned [lo] = [rs]/[rt],
[hi] = [rs]%[rt]

(continued)

APPENDIX B 621

Harris and Harris, Appendix B: MIPS Instructions

Opcode is 0
in MIPS R-

Type
instructions.
Funct defines
the operation

Recall: Funct in MIPS R-Type Instructions (II)

13Harris and Harris, Appendix B: MIPS Instructions

Table B.2 R-type instructions, sorted by funct field—Cont’d

Funct Name Description Operation

100000 (32) add rd, rs, rt add [rd] = [rs] + [rt]

100001 (33) addu rd, rs, rt add unsigned [rd] = [rs] + [rt]

100010 (34) sub rd, rs, rt subtract [rd] = [rs] – [rt]

100011 (35) subu rd, rs, rt subtract unsigned [rd] = [rs] – [rt]

100100 (36) and rd, rs, rt and [rd] = [rs] & [rt]

100101 (37) or rd, rs, rt or [rd] = [rs] | [rt]

100110 (38) xor rd, rs, rt xor [rd] = [rs] ^ [rt]

100111 (39) nor rd, rs, rt nor [rd] = ~([rs] | [rt])

101010 (42) slt rd, rs, rt set less than [rs] < [rt] ? [rd] = 1 : [rd] = 0

101011 (43) sltu rd, rs, rt set less than unsigned [rs] < [rt] ? [rd] = 1 : [rd] = 0

Table B.3 F-type instructions (fop = 16/17)

Funct Name Description Operation

000000 (0) add.s fd, fs, ft /
add.d fd, fs, ft

FP add [fd] = [fs] + [ft]

000001 (1) sub.s fd, fs, ft /
sub.d fd, fs, ft

FP subtract [fd] = [fs] – [ft]

000010 (2) mul.s fd, fs, ft /
mul.d fd, fs, ft

FP multiply [fd] = [fs] × [ft]

000011 (3) div.s fd, fs, ft /
div.d fd, fs, ft

FP divide [fd] = [fs]/[ft]

000101 (5) abs.s fd, fs /
abs.d fd, fs

FP absolute value [fd] = ([fs] < 0) ? [–fs]
: [fs]

000111 (7) neg.s fd, fs /
neg.d fd, fs

FP negation [fd] = [–fs]

111010 (58) c.seq.s fs, ft /
c.seq.d fs, ft

FP equality comparison fpcond = ([fs] == [ft])

111100 (60) c.lt.s fs, ft /
c.lt.d fs, ft

FP less than comparison fpcond = ([fs] < [ft])

111110 (62) c.le.s fs, ft /
c.le.d fs, ft

FP less than or equal comparison fpcond = ([fs] ≤ [ft])

622 APPENDIX B MIPS Instructions

n Find the complete list of instructions in the appendix

Data Types
n An ISA supports one or several data types

n LC-3 only supports 2’s complement integers
q Negative of a 2’s complement binary value X = NOT(X) + 1

n MIPS supports
q 2’s complement integers
q Unsigned integers
q Floating point

n Again, tradeoffs are involved
q What data types should be supported and what should not be?

14

Data Type Tradeoffs
n What is the benefit of having more or high-level data types

in the ISA?
n What is the disadvantage?

n Think compiler/programmer vs. microarchitect

n Concept of semantic gap
q Data types coupled tightly to the semantic level, or complexity

of instructions

n Example: Early RISC architectures vs. Intel 432
q Early RISC machines: Only integer data type
q Intel 432: Object data type, capability based machine
q VAX: Complex types, e.g., doubly-linked list

15

Addressing Modes
n An addressing mode is a mechanism for specifying where

an operand is located

n There five addressing modes in LC-3
q Immediate or literal (constant)

n The operand is in some bits of the instruction
q Register

n The operand is in one of R0 to R7 registers
q Three of them are memory addressing modes

n PC-relative
n Indirect
n Base+offset

n In addition, MIPS has pseudo-direct addressing (for j and
jal), but does not have indirect addressing

16

Operate Instructions

17

Operate Instructions
n In LC-3, there are three operate instructions

q NOT is a unary operation (one source operand)
n It executes bitwise NOT

q ADD and AND are binary operations (two source operands)
n ADD is 2’s complement addition
n AND is bitwise SR1 & SR2

n In MIPS, there are many more
q Most of R-type instructions (they are binary operations)

n E.g., add, and, nor, xor…
q I-type versions (i.e., with one immediate operand) of the R-

type operate instructions
q F-type operations, i.e., floating-point operations

18

n NOT assembly and machine code

NOT in LC-3

19

NOT R3, R5

LC-3 assembly

Field Values

Machine Code

9 3 5 1 1 1 1 1 1

OP DR SR

1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1

OP DR SR

15 12 11 9 8 6 05

5.2 Operate Instructions 121

1616

R0

R1

R2

R3

R4

R5

R6

R7

A

ALU
NOT

B

0101000011110000

1010111100001111

Figure 5.4 Data path relevant to the execution of NOT R3, R5

Figure 5.4 shows the key parts of the data path that are used to perform the
NOT instruction shown here. Since NOT is a unary operation, only the A input
of the ALU is relevant. It is sourced from R5. The control signal to the ALU
directs the ALU to perform the bit-wise complement operation. The output of the
ALU (the result of the operation) is stored into R3.

The ADD (opcode = 0001) and AND (opcode = 0101) instructions both
perform binary operations; they require two 16-bit source operands. The ADD
instruction performs a 2’s complement addition of its two source operands. The
AND instruction performs a bit-wise AND of each pair of bits in its two 16-bit
operands. Like the NOT, the ADD and AND use the register addressing mode for
one of the source operands and for the destination operand. Bits [8:6] specify the
source register and bits [11:9] specify the destination register (where the result
will be written).

The second source operand for both ADD and AND instructions can be
specified by either register mode or as an immediate operand. Bit [5] determines
which is used. If bit [5] is 0, then the second source operand uses a register, and
bits [2:0] specify which register. In that case, bits [4:3] are set to 0 to complete
the specification of the instruction.

Register file

SR

DR

From
FSM

There is no NOT in MIPS. How is it implemented?

Operate Instructions
n We are already familiar with LC-3’s ADD and AND with

register mode (R-type in MIPS)

n Now let us see the versions with one literal (i.e., immediate)
operand

n Subtraction is another necessary operation
q How is it implemented in LC-3 and MIPS?

20

Operate Instr. with one Literal in LC-3
n ADD and AND

q OP = operation
n E.g., ADD = 0001 (same OP as the register-mode ADD)

q DR ← SR1 + sign-extend(imm5)

n E.g., AND = 0101 (same OP as the register-mode AND)
q DR ← SR1 AND sign-extend(imm5)

q SR1 = source register

q DR = destination register

q imm5 = Literal or immediate (sign-extend to 16 bits)

21

OP DR SR1 1 imm5
4 bits 3 bits 3 bits 5 bits

n ADD assembly and machine code

ADD with one Literal in LC-3

22

ADD R1, R4, #-2

LC-3 assembly

Field Values

Machine Code

1 1 4 1 -2

OP DR SR imm5

0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0

OP DR SR imm5

15 12 11 9 8 6 05 4

122 chapter 5 The LC-3

For example, if R4 contains the value 6 and R5 contains the value−18, then
after the following instruction is executed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1

ADD R1 R4 R5

R1 will contain the value −12.
If bit [5] is 1, the second source operand is contained within the instruction.

In fact, the second source operand is obtained by sign-extending bits [4:0] to 16
bits before performing the ADD or AND. Figure 5.5 shows the key parts of the
data path that are used to perform the instruction ADD R1, R4, #−2.

Since the immediate operand in an ADD or AND instruction must fit in
bits [4:0] of the instruction, not all 2’s complement integers can be imme-
diate operands. Which integers are OK (i.e., which integers can be used as
immediate operands)?

16

1 0

0001 001 100 1 11110

ADD R1 R4 –2

16

5

0000000000000100

AB

ALU

Bit[5]

ADD

IR

1111111111111110

SEXT

R0

R1

R2

R3

R4

R5

R6

R7

0000000000000110

Figure 5.5 Data path relevant to the execution of ADD R1, R4, #-2

Register file

SR

DR

From
FSM

Instruction register

Sign-
extend

Instructions with one Literal in MIPS
n I-type

q 2 register operands and immediate
n Some operate and data movement instructions

q opcode = operation

q rs = source register

q rt =
n destination register in some instructions (e.g., addi, lw)
n source register in others (e.g., sw)

q imm = Literal or immediate

23

opcode rs rt imm
6 bits 5 bits 5 bits 16 bits

n Add immediate

Add with one Literal in MIPS

24

0 17 16 5

op rs rt imm

addi $s0, $s1, 5

MIPS assembly

Field Values

001000 10001 10010 0000 0000 0000 0101

op rs rt imm
Machine Code

0x22300005

rt ← rs + sign-extend(imm)

Subtract in LC-3
n MIPS assembly

n LC-3 assembly

n Tradeoff in LC-3
q More instructions
q But, simpler control logic

25

a = b + c - d; add $t0, $s0, $s1
sub $s3, $t0, $s2

High-level code MIPS assembly

a = b + c - d; ADD R2, R0, R1
NOT R4, R3
ADD R5, R4, #1
ADD R6, R2, R5

High-level code LC-3 assembly

2’s
complement
of R3

Subtract Immediate
n MIPS assembly

n LC-3

26

a = b - 3; subi $s1, $s0, 3

High-level code MIPS assembly

Is subi necessary in MIPS?

addi $s1, $s0, -3

MIPS assembly

a = b - 3; ADD R1, R0, #-3

High-level code LC-3 assembly

Data Movement Instructions
and Addressing Modes

27

Data Movement Instructions
n In LC-3, there are seven data movement instructions

q LD, LDR, LDI, LEA, ST, STR, STI

n Format of load and store instructions
q Opcode (bits [15:12])
q DR or SR (bits [11:9])
q Address generation bits (bits [8:0])
q Four ways to interpret bits, called addressing modes

n PC-Relative Mode
n Indirect Mode
n Base+offset Mode
n Immediate Mode

n In MIPS, there are only Base+offset and immediate modes
for load and store instructions

28

PC-Relative Addressing Mode
n LD (Load) and ST (Store)

q OP = opcode
n E.g., LD = 0010
n E.g., ST = 0011

q DR = destination register in LD
q SR = source register in ST

q LD: DR ← Memory[PC✝ + sign-extend(PCoffset9)]

q ST: Memory[PC✝ + sign-extend(PCoffset9)] ← SR

29

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

n LD assembly and machine code

LD in LC-3

30

LD R2, 0x1AF
LC-3 assembly

Field Values

Machine Code

2 2 0x1AF

OP DR PCoffset9

0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1

OP DR PCoffset9

15 12 11 9 8 0

5.3 Data Movement Instructions 125

16

16

1616

1

R0

R1

R2

R3

R4

R5

R6

R7

0010 010 110101111

15 0

IR[8:0]

PC

IR

0100 0000 0001 1001 SEXT

MAR MDR
MEMORY

0000000000000101

ADD

LD R2 x1AF

1111111110101111

3

2

Figure 5.6 Data path relevant to execution of LD R2, x1AF

incremented PC (x4019) is added to the sign-extended value contained in IR[8:0]
(xFFAF), and the result (x3FC8) is loaded into the MAR. In step 2, memory is
read and the contents of x3FC8 are loaded into theMDR. Suppose the value stored
in x3FC8 is 5. In step 3, the value 5 is loaded into R2, completing the instruction
cycle.

Note that the address of the memory operand is limited to a small range of the
total memory. That is, the address can only be within +256 or−255 locations of
the LD or ST instruction since the PC is incremented before the offset is added.
This is the range provided by the sign-extended value contained in bits [8:0] of
the instruction.

5.3.2 Indirect Mode

LDI (opcode = 1010) and STI (opcode = 1011) specify the indirect address-
ing mode. An address is first formed exactly the same way as with LD and ST.
However, instead of this address being the address of the operand to be loaded or
stored, it contains the address of the operand to be loaded or stored. Hence the
name indirect. Note that the address of the operand can be anywhere in the com-
puter’s memory, not just within the range provided by bits [8:0] of the instruction
as is the case for LD and ST. The destination register for the LDI and the source

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address
calculation

2. Memory
read

3. DR is
loaded

The memory address is only +255 to -256
locations away of the LD or ST instruction

Limitation: The PC-relative addressing mode
cannot address far away from the

instruction

Indirect Addressing Mode
n LDI (Load Indirect) and STI (Store Indirect)

q OP = opcode
n E.g., LDI = 1010
n E.g., STI = 1011

q DR = destination register in LDI
q SR = source register in STI

q LDI: DR ← Memory[Memory[PC✝ + sign-extend(PCoffset9)]]

q STI: Memory[Memory[PC✝ + sign-extend(PCoffset9)]] ← SR

31

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

n LDI assembly and machine code

LDI in LC-3

32

LDI R3, 0x1CC
LC-3 assembly

Field Values

Machine Code

A 3 0x1CC

OP DR PCoffset9

1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0

OP DR PCoffset9

15 12 11 9 8 0

Now the address of the operand can be anywhere in the memory

126 chapter 5 The LC-3

register for STI, like all the other loads and stores, are specified in bits [11:9] of
the instruction.

If the instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0

LDI R3 x1CC

is in x4A1B, and the contents of x49E8 is x2110, execution of this instruction
results in the contents of x2110 being loaded into R3.

Figure 5.7 shows the relevant parts of the data path required to execute this
instruction. As is the case with the LD and ST instructions, the first step consists
of adding the incremented PC (x4A1C) to the sign-extended value contained in
IR[8:0] (xFFCC), and the result (x49E8) loaded into theMAR. In step 2, memory
is read and the contents of x49E8 (x2110) is loaded into theMDR. In step 3, since
x2110 is not the operand, but the address of the operand, it is loaded into theMAR.
In step 4, memory is again read, and the MDR again loaded. This time the MDR
is loaded with the contents of x2110. Suppose the value −1 is stored in memory
location x2110. In step 5, the contents of the MDR (i.e.,−1) are loaded into R3,
completing the instruction cycle.

16

16

1616
1

2
3 x2110

R0

R1

R2

R3

R4

R5

R6

R7

15 0

IR[8:0]

PC

IR

SEXT

MAR MDR
MEMORY

ADD

1111111111111111

1010 011 111001100

x1CCR3

xFFCC

0100 1010 0001 1100

LDI

4

5

Figure 5.7 Data path relevant to the execution of LDI R3, x1CC

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address
calculation

2. Memory
read

5. DR is
loaded

4. Memory
read

3. Loaded
address
from MDR
to MAR

Base+Offset Addressing Mode
n LDR (Load Register) and STR (Store Register)

q OP = opcode
n E.g., LDR = 0110
n E.g., STR = 0111

q DR = destination register in LDR
q SR = source register in STR

q LDR: DR ← Memory[BaseR + sign-extend(offset6)]

q STR: Memory[BaseR + sign-extend(offset6)] ← SR

33

OP DR/SR offset6
4 bits 3 bits 6 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

BaseR
3 bits

n LDR assembly and machine code

LDR in LC-3

34

LDR R1, R2, 0x1D
LC-3 assembly

Again, the address of the operand can be anywhere in the memory

1. Address
calculation

2. Memory
read

3. DR is
loaded

Field Values

6 1 0x1D

OP DR offset6

2

BaseR

Machine Code

0 1 1 0 0 0 1 0 1 1 1 0 1

OP DR offset6

15 12 11 9 8 0

0 1 0

BaseR

6 5

5.3 Data Movement Instructions 127

5.3.3 Base+offset Mode

LDR (opcode = 0110) and STR (opcode = 0111) specify the Base+offset
addressing mode. The Base+offset mode is so named because the address of the
operand is obtained by adding a sign-extended 6-bit offset to a base register. The
6-bit offset is literally taken from the instruction, bits [5:0]. The base register is
specified by bits [8:6] of the instruction.

The Base+offset addressing uses the 6-bit value as a 2’s complement integer
between −32 and +31. Thus it must first be sign-extended to 16 bits before it is
added to the base register.

If R2 contains the 16-bit quantity x2345, the instruction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1

LDR R1 R2 x1D
loads R1 with the contents of x2362.

Figure 5.8 shows the relevant parts of the data path required to execute this
instruction. First the contents of R2 (x2345) are added to the sign-extended value
contained in IR[5:0] (x001D), and the result (x2362) is loaded into the MAR.
Second, memory is read, and the contents of x2362 are loaded into the MDR.
Suppose the value stored in memory location x2362 is x0F0F. Third, and finally,
the contents of the MDR (in this case, x0F0F) are loaded into R1.

1616

1

16

2

R0

R1

R2

R3

R4

R5

R6

R7

MAR MDRMEMORY

ADD

0000111100001111

0010001101000101

15 0

IR 1010 011 011

x1D

011101

SEXT

x001D

IR[5:0]

3

LDR R1 R2

Figure 5.8 Data path relevant to the execution of LDR R1, R2, x1D

Register file

DR

Instruction register

Sign-
extend

BaseR
001 0100110

Base+Offset Addressing Mode in MIPS
n In MIPS, lw and sw use base+offset mode (or base

addressing mode)

n imm is the 16-bit offset, which is sign-extended to 32 bits

35

A[2] = a; sw $s3, 8($s0)

High-level code MIPS assembly

Memory[$s0 + 8] ← $s3

43 16 19 8

op rs rt imm
Field Values

An Example Program in MIPS and LC-3

36

a = A[0];
c = a + b - 5;
B[0] = c;

A = $s0
b = $s2
B = $s1

High-level code MIPS registers

LDR R5, R0, #0
ADD R6, R5, R2
ADD R7, R6, #-5
STR R7, R1, #0

LC-3 assembly
lw $t0, 0($s0)
add $t1, $t0, $s2
addi $t2, $t1, -5
sw $t2, 0($s1)

MIPS assembly

A = R0
b = R2
B = R1

LC-3 registers

Immediate Addressing Mode
n LEA (Load Effective Address)

q OP = 1110

q DR = destination register

q LEA: DR ← PC✝ + sign-extend(PCoffset9)

37

OP DR PCoffset9
4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

What is the difference from PC-Relative addressing mode?

Answer: Instructions with PC-Relative mode access memory,
but LEA does not à Hence the name Load Effective Address

n LEA assembly and machine code

LEA in LC-3

38

LEA R5, #-3

LC-3 assembly

Field Values

Machine Code

E 5 0x1FD

OP DR PCoffset9

1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1

OP DR PCoffset9

15 12 11 9 8 0

128 chapter 5 The LC-3

Note that the Base+offset addressing mode also allows the address of the
operand to be anywhere in the computer’s memory.

5.3.4 Immediate Mode

The fourth and last addressing mode used by the data movement instructions is
the immediate (or, literal) addressing mode. It is used only with the load effective
address (LEA) instruction. LEA (opcode = 1110) loads the register specified by
bits [11:9] of the instruction with the value formed by adding the incremented
program counter to the sign-extended bits [8:0] of the instruction. The immediate
addressing mode is so named because the operand to be loaded into the desti-
nation register is obtained immediately, that is, without requiring any access of
memory.

The LEA instruction is useful to initialize a register with an address that
is very close to the address of the instruction doing the initializing. If memory
location x4018 contains the instruction LEAR5, #−3, and the PC contains x4018,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1

LEA R5 −3

R5 will contain x4016 after the instruction at x4018 is executed.
Figure 5.9 shows the relevant parts of the data path required to execute the

LEA instruction. Note that no access to memory is required to obtain the value
to be loaded.

16

16

16

R0

R1

R2

R3

R4

R5

R6

R7

15 0

IR[8:0]

PC

IR

0100 0000 0001 1001 SEXT

ADD

1111111111111101

0100000000010110

LEA R5 x1FD

111111101 1011110

Figure 5.9 Data path relevant to the execution of LEA R5, #−3

Register file

DR

Instruction register

Sign-
extend

Incremented PC

Immediate Addressing Mode in MIPS
n In MIPS, lui (load upper immediate) loads a 16-bit

immediate into the upper half of a register and sets the
lower half to 0

n It is used to assign 32-bit constants to a register

39

a = 0x6d5e4f3c; # $s0 = a
lui $s0, 0x6d5e
ori $s0, 0x4f3c

High-level code MIPS assembly

Addressing Example in LC-3
n What is the final value of R3?

40

5.3 Data Movement Instructions 129

Again, LEA is the only load instruction that does not accessmemory to obtain
the information it will load into the DR. It loads into the DR the address formed
from the incremented PC and the address generation bits of the instruction.

5.3.5 An Example

We conclude our study of addressing modes with a comprehensive example.
Assume the contents of memory locations x30F6 through x30FC are as shown in
Figure 5.10, and the PC contains x30F6. We will examine the effects of carrying
out the instruction cycle seven consecutive times.

The PC points initially to location x30F6. That is, the content of the PC is
the address x30F6. Therefore, the first instruction to be executed is the one stored
in location x30F6. The opcode of that instruction is 1110, which identifies the
load effective address instruction (LEA). LEA loads the register specified by bits
[11:9] with the address formed by sign-extending bits [8:0] of the instruction
and adding the result to the incremented PC. The 16-bit value obtained by sign-
extending bits [8:0] of the instruction is xFFFD. The incremented PC is x30F7.
Therefore, at the end of execution of the LEA instruction, R1 contains x30F4,
and the PC contains x30F7.

The second instruction to be executed is the one stored in location x30F7.
The opcode 0001 identifies the ADD instruction, which stores the result of adding
the contents of the register specified in bits [8:6] to the sign-extended immediate
in bits [4:0] (since bit [5] is 1) in the register specified by bits [11:9]. Since
the previous instruction loaded x30F4 into R1, and the sign-extended immediate
value is x000E, the value to be loaded into R2 is x3102. At the end of execution of
this instruction, R2 contains x3102, and the PC contains x30F8. R1 still contains
x30F4.

The third instruction to be executed is stored in x30F8. The opcode 0011
specifies the ST instruction, which stores the contents of the register specified by
bits [11:9] of the instruction into the memory location whose address is computed
using the PC-relative addressingmode. That is, the address is computed by adding
the incremented PC to the 16-bit value obtained by sign-extending bits [8:0] of
the instruction. The 16-bit value obtained by sign-extending bits [8:0] of the
instruction is xFFFB. The incremented PC is x30F9. Therefore, at the end of

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1<- PC-3
x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2<- R1+14
x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[x30F4]<- R2
x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2<- 0
x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2<- R2+5
x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14]<- R2
x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 R3<- M[M[x3F04]]

Figure 5.10 Addressing mode example

x30F4

P&P, Chapter 5.3.5

n What is the final value of R3?

n The final value of R3 is 5

5.3 Data Movement Instructions 129

Again, LEA is the only load instruction that does not accessmemory to obtain
the information it will load into the DR. It loads into the DR the address formed
from the incremented PC and the address generation bits of the instruction.

5.3.5 An Example

We conclude our study of addressing modes with a comprehensive example.
Assume the contents of memory locations x30F6 through x30FC are as shown in
Figure 5.10, and the PC contains x30F6. We will examine the effects of carrying
out the instruction cycle seven consecutive times.

The PC points initially to location x30F6. That is, the content of the PC is
the address x30F6. Therefore, the first instruction to be executed is the one stored
in location x30F6. The opcode of that instruction is 1110, which identifies the
load effective address instruction (LEA). LEA loads the register specified by bits
[11:9] with the address formed by sign-extending bits [8:0] of the instruction
and adding the result to the incremented PC. The 16-bit value obtained by sign-
extending bits [8:0] of the instruction is xFFFD. The incremented PC is x30F7.
Therefore, at the end of execution of the LEA instruction, R1 contains x30F4,
and the PC contains x30F7.

The second instruction to be executed is the one stored in location x30F7.
The opcode 0001 identifies the ADD instruction, which stores the result of adding
the contents of the register specified in bits [8:6] to the sign-extended immediate
in bits [4:0] (since bit [5] is 1) in the register specified by bits [11:9]. Since
the previous instruction loaded x30F4 into R1, and the sign-extended immediate
value is x000E, the value to be loaded into R2 is x3102. At the end of execution of
this instruction, R2 contains x3102, and the PC contains x30F8. R1 still contains
x30F4.

The third instruction to be executed is stored in x30F8. The opcode 0011
specifies the ST instruction, which stores the contents of the register specified by
bits [11:9] of the instruction into the memory location whose address is computed
using the PC-relative addressingmode. That is, the address is computed by adding
the incremented PC to the 16-bit value obtained by sign-extending bits [8:0] of
the instruction. The 16-bit value obtained by sign-extending bits [8:0] of the
instruction is xFFFB. The incremented PC is x30F9. Therefore, at the end of

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1<- PC-3
x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2<- R1+14
x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[x30F4]<- R2
x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2<- 0
x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2<- R2+5
x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14]<- R2
x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 R3<- M[M[x3F04]]

Figure 5.10 Addressing mode example

x30F4

Addressing Example in LC-3

41

LEA
ADD
ST
AND
ADD
STR
LDI

-3
14

-5

5
14

-9

0

R3 = M[M[PC – 9]] = M[M[0x30FD – 9]] =

R1 = PC – 3 = 0x30F7 – 3 = 0x30F4
R2 = R1 + 14 = 0x30F4 + 14 = 0x3102

M[PC - 5] = M[0x030F4] = 0x3102
R2 = 0
R2 = R2 + 5 = 5

M[R1 + 14] = M[0x30F4 + 14] = M[0x3102] = 5

M[M[0x30F4]] = M[0x3102] = 5

P&P, Chapter 5.3.5

Control Flow Instructions

42

Control Flow Instructions
n Allow a program to execute out of sequence

n Conditional branches and jumps

q Conditional branches are used to make decisions
n E.g., if-else statement

q In LC-3, three condition codes are used

q Jumps are used to implement
n Loops
n Function calls

q JMP in LC-3 and j in MIPS

43

Condition Codes in LC-3
n Each time one GPR (R0-R7) is written, three single-bit registers

are updated

n Each of these condition codes are either set (set to 1) or cleared
(set to 0)

q If the written value is negative
n N is set, Z and P are cleared

q If the written value is zero
n Z is set, N and P are cleared

q If the written value is positive
n P is set, N and Z are cleared

n x86 and SPARC are examples of ISAs that use condition codes
44

Conditional Branches in LC-3
n BRz (Branch if Zero)

q n, z, p = which condition code is tested (N, Z, and/or P)
n n, z, p: instruction bits to identify the condition codes to be tested
n N, Z, P: values of the corresponding condition codes

q PCoffset9 = immediate or constant value

q if ((n AND N) OR (p AND P) OR (z AND Z))
n then PC ← PC✝ + sign-extend(PCoffset9)

q Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp

45

BRz PCoffset9

0000 n PCoffset9
4 bits 9 bits

z p

✝This is the incremented PC

Conditional Branches in LC-3
n BRz

46

BRz 0x0D9

What if n = z = p = 1?*
(i.e., BRnzp)

And what if n = z = p = 0?

132 chapter 5 The LC-3

16

SEXT

16 16

PCMUX

ADD

0000000011011001

IR 010

N Z P PCoffset9BR

0000 011011001

9

Yes!

PZN

0 1 0

PC 0100 0000 0010 1000

0100 0001 0000 0001

Figure 5.11 Data path relevant to the execution of BRz x0D9

the instruction flow is changed unconditionally, that is, independent of the data
that is being processed.

For example, if the following instruction,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1

BR n z p x185

located at x507B, is executed, the PC is loaded with x5001.
What happens if all three bits [11:9] in the BR instruction are 0?

5.4.2 An Example

We are ready to show by means of a simple example the value of having control
instructions in the instruction set.

Suppose we know that the 12 locations x3100 to x310B contain integers, and
we wish to compute the sum of these 12 integers.

Instruction
register

Program
Counter

Condition
registers

n z p

*n, z, p are the instruction bits to identify the condition codes to be tested

Conditional Branches in MIPS
n beq (Branch if Equal)

q 4 = opcode

q rs, rt = source registers

q offset = immediate or constant value

q if rs == rt
n then PC ← PC✝ + sign-extend(offset) * 4

q Variations: beq, bne, blez, bgtz

47

4 rs rt offset
6 bits 5 bits 5 bits 16 bits

beq $s0, $s1, offset

✝This is the incremented PC

n This is an example of tradeoff in the instruction set

q The same functionality requires more instructions in LC-3

q But, the control logic requires more complexity in MIPS

beq $s0, $s1, offset

Branch If Equal in MIPS and LC-3

48

LC-3 assemblyMIPS assembly
NOT R2, R1
ADD R3, R2, #1
ADD R4, R3, R0
BRz offset

Subtract
(R0 - R1)

Lecture Summary
n Instruction Set Architectures: LC-3 and MIPS

q Operate instructions
q Data movement instructions
q Control instructions

n Instruction formats

n Addressing modes

49

Digital Design & Computer Arch.
Lecture 10a: Instruction Set Architecture

Prof. Onur Mutlu

ETH Zürich
Spring 2020

20 March 2020

