Design of Digital Circuits
Lab 1 Supplement:
Drawing Basic Circuits

Prof. Onur Mutlu
ETH Zurich
Spring 2020
28 February 2020
What We Will Learn?

- In Lab 1, you will design simple combinatorial circuits
- We will cover a tutorial about:
 - Boolean Equations
 - Logic operations with binary numbers
 - Logic Gates
 - Basic blocks that are interconnected to form larger units that are needed to construct a computer
Boolean Equations and Logic Gates
Simple Equations: NOT / AND / OR

<table>
<thead>
<tr>
<th>(A)</th>
<th>(\bar{A})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\bar{A} \) (reads “not A”) is 1 iff \(A \) is 0

\[A \bullet B \] (reads “A and B”) is 1 iff \(A \) and \(B \) are both 1

\[
\begin{array}{c|c|c}
A & B & A \bullet B \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

\(A + B \) (reads “A or B”) is 1 iff either \(A \) or \(B \) is 1

\[
\begin{array}{c|c|c}
A & B & A + B \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]
Boolean Algebra: Big Picture

- An algebra on 1’s and 0’s
 - with AND, OR, NOT operations
- What you start with
 - **Axioms:** basic stuff about objects and operations you just assume to be true at the start
- What you derive first
 - **Laws and theorems:** allow you to manipulate Boolean expressions
 - ...also allow us to do some simplification on Boolean expressions
- What you derive later
 - More “sophisticated” properties useful for manipulating digital designs represented in the form of Boolean equations
Common Logic Gates

<table>
<thead>
<tr>
<th>Buffer</th>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
</tr>
<tr>
<td></td>
<td>1 0</td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td></td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inverter</th>
<th>NAND</th>
<th>NOR</th>
<th>XNOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
</tr>
<tr>
<td></td>
<td>1 0</td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td></td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td>1 0</td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td></td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
</tr>
</tbody>
</table>
Boolean Algebra: Axioms

<table>
<thead>
<tr>
<th>Formal version</th>
<th>English version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (B) contains at least two elements, 0 and 1, such that 0 (\neq) 1</td>
<td>Math formality...</td>
</tr>
<tr>
<td>2. Closure (a, b \in B),</td>
<td>Result of AND, OR stays in set you start with</td>
</tr>
<tr>
<td>(i) (a + b \in B)</td>
<td></td>
</tr>
<tr>
<td>(ii) (a \cdot b \in B)</td>
<td></td>
</tr>
<tr>
<td>3. Commutative Laws: (a, b \in B),</td>
<td>For primitive AND, OR of 2 inputs, order doesn’t matter</td>
</tr>
<tr>
<td>(i) (a + b = b + a)</td>
<td></td>
</tr>
<tr>
<td>(ii) (a \cdot b = b \cdot a)</td>
<td></td>
</tr>
<tr>
<td>4. Identities: 0, 1 (\in B)</td>
<td>There are identity elements for AND, OR, give you back what you started with</td>
</tr>
<tr>
<td>(i) (a + 0 = a)</td>
<td></td>
</tr>
<tr>
<td>(ii) (a \cdot 1 = a)</td>
<td></td>
</tr>
<tr>
<td>5. Distributive Laws:</td>
<td>• distributes over +, just like algebra</td>
</tr>
<tr>
<td>(i) (a + (b \cdot c) = (a + b) \cdot (a + c))</td>
<td>...but + distributes over (\cdot), also (!!)</td>
</tr>
<tr>
<td>(ii) (a \cdot (b + c) = a \cdot b + a \cdot c)</td>
<td></td>
</tr>
<tr>
<td>6. Complement:</td>
<td>There is a complement element, ANDing, ORing give you an identity</td>
</tr>
<tr>
<td>(i) (a + a' = 1)</td>
<td></td>
</tr>
<tr>
<td>(ii) (a \cdot a' = 0)</td>
<td></td>
</tr>
</tbody>
</table>
Boolean Algebra: Duality

- Interesting observation
 - All the axioms come in "dual" form
 - Anything true for an expression also true for its dual
 - So any derivation you could make that is true, can be flipped into dual form, and it stays true

- Duality -- More formally
 - A dual of a Boolean expression is derived by replacing
 - Every AND operation with... an OR operation
 - Every OR operation with... an AND
 - Every constant 1 with... a constant 0
 - Every constant 0 with... a constant 1
 - But don’t change any of the literals or play with the complements!

Example

\[a \cdot (b + c) = (a \cdot b) + (a \cdot c) \]
\[\rightarrow a + (b \cdot c) = (a + b) \cdot (a + c) \]
Boolean Algebra: Useful Laws

Operations with 0 and 1:
1. \(X + 0 = X \)
2. \(X + 1 = 1 \)

Idempotent Law:
3. \(X + X = X \)

Involution Law:
4. \(\overline{X} = X \)

Laws of Complementarity:
5. \(X + \overline{X} = 1 \)
6. \(X + Y = Y + X \)

Commutative Law:
6D. \(X \cdot Y = Y \cdot X \)

Dual
1D. \(X \cdot 1 = X \)
2D. \(X \cdot 0 = 0 \)
3D. \(X \cdot X = X \)
5D. \(X \cdot \overline{X} = 0 \)

AND, OR with identities gives you back the original variable or the identity
AND, OR with self = self
double complement = no complement
AND, OR with complement gives you an identity
Just an axiom…
Useful Laws (cont.)

Associative Laws:
7. \((X + Y) + Z = X + (Y + Z)\)
 \[= X + Y + Z\]
7D. \((X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)\)
 \[= X \cdot Y \cdot Z\]
 Parenthesis order doesn’t matter

Distributive Laws:
8. \(X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)\)
8D. \(X + (Y \cdot Z) = (X + Y) \cdot (X + Z)\)
 Axiom

Simplification Theorems:
9. \(X \cdot Y + X \cdot \overline{Y} = X\)
9D. \((X + Y) \cdot (X + \overline{Y}) = X\)
 Useful for simplifying expressions
10. \(X + X \cdot Y = X\)
10D. \(X \cdot (X + Y) = X\)
11. \((X + \overline{Y}) \cdot Y = X \cdot Y\)
11D. \((X \cdot \overline{Y}) + Y = X + Y\)

Actually worth remembering — they show up a lot in real designs…
DeMorgan’s Law

DeMorgan's Law:

12. \((X + Y + Z + \cdots) = \overline{X}.\overline{Y}.\overline{Z} \ldots\)

12D. \((X . Y . Z . \ldots) = \overline{X} + \overline{Y} + \overline{Z} + \ldots\)

- Think of this as a transformation
 - Let’s say we have:

 \[F = A + B + C \]

 - Applying DeMorgan’s Law (12), gives us:

 \[F = \overline{(A + B + C)} = \overline{(A . B . C)} \]
DeMorgan’s Law (cont.)

Interesting — these are conversions between different types of logic
That’s useful given you don’t always have every type of gate

\[A = \overline{(X + Y)} = \overline{X} \overline{Y} \]

NOR is equivalent to AND with inputs complemented

\[B = \overline{(XY)} = \overline{X} + \overline{Y} \]

NAND is equivalent to OR with inputs complemented
Part 1: A Comparator Circuit

- Design a comparator that receives two 4-bit numbers A and B, and sets the output bit EQ to logic-1 if A and B are equal

Hints:
- First compare A and B bit by bit
- Then combine the results of the previous steps to set EQ to logic-1 if all A and B are equal
Part 2: A More General Comparator

- Design a circuit that receives two 1-bit inputs A and B, and:
 - sets its first output (O1) to 1 if $A > B$,
 - sets the second output (O2) to 1 if $A = B$,
 - sets the third output (O3) to 1 if $A < B$.

- Comparator 2

A
B

Comparator 2

O1 (A>B)
O2 (A=B)
O3 (A<B)
Part 3: Circuits with Only NAND Gates

- Design the circuit of Part 2 using only NAND gates

- Logical Completeness:
 - The set of gates {AND, OR, NOT} is logically complete because we can build a circuit to carry out the specification of any combinatorial logic we wish, without any other kind of gate
 - NAND and NOR are also logically complete
Last Words

- In this lab, you will draw the schematics of some simple operations

- Part 1: A comparator circuit

- Part 2: A more general comparator circuit

- Part 3: Designing circuits using only NAND gates

- You will find more exercises in the lab report
Report Deadline

23:59, 20 March 2020
Design of Digital Circuits
Lab 1 Supplement:
Drawing Basic Circuits

Prof. Onur Mutlu
ETH Zurich
Spring 2020
28 February 2020