
Design of Digital Circuits
Lab 1 Supplement:

Drawing Basic Circuits

Prof. Onur Mutlu
ETH Zurich
Spring 2020

28 February 2020

What We Will Learn?

n In Lab 1, you will design simple combinatorial circuits

n We will cover a tutorial about:

q Boolean Equations

n Logic operations with binary numbers

q Logic Gates
n Basic blocks that are interconnected to form larger units that are

needed to construct a computer

2

Boolean Equations and
Logic Gates

3

Simple Equations: NOT / AND / OR

4

A
B A • B

A • B (reads “A and B”) is 1 iff A and B are both 1

A
B A + B

A + B (reads “A or B”) is 1 iff either A or B is 1

A 𝑨

𝑨 (reads “not A”) is 1 iff A is 0 𝑨 𝑨
0 1
1 0

𝑨 𝑩 𝑨 • 𝑩
0 0 0
0 1 0
1 0 0
1 1 1

𝑨 𝑩 𝑨 + 𝑩
0 0 0
0 1 1
1 0 1
1 1 1

Boolean Algebra: Big Picture
n An algebra on 1’s and 0’s

q with AND, OR, NOT operations
n What you start with

q Axioms: basic stuff about objects and
operations you just assume to be true at the start

n What you derive first
q Laws and theorems: allow you to manipulate Boolean

expressions
q …also allow us to do some simplification on Boolean

expressions
n What you derive later

q More “sophisticated” properties useful for manipulating digital
designs represented in the form of Boolean equations

5

Common Logic Gates

6

Boolean Algebra: Axioms

7

1. B contains at least two elements,
0 and 1, such that 0 ≠ 1

2. Closure a,b ∈ B,
(i) a + b ∈ B
(ii) a • b ∈ B

3. Commutative Laws: a,b ∈ B,
(i) a + b = b + a
(ii) a • b = b • a

4. Identities: 0, 1 ∈ B
(i) a + 0 = a
(ii) a • 1 = a

5. Distributive Laws:
(i) a + (b • c) = (a + b) • (a + c)
(ii) a • (b + c) = a • b + a • c

6. Complement:
(i) a + a' = 1
(ii) a • a' = 0

English version

Result of AND, OR stays
in set you start with

For primitive AND, OR of
2 inputs, order doesn’t matter

There are identity elements
for AND, OR, give you back
what you started with

• distributes over +, just like algebra
…but + distributes over •, also (!!)

There is a complement element,
ANDing, ORing give you an identity

Formal version

Math formality...

Boolean Algebra: Duality
n Interesting observation

q All the axioms come in “dual” form
q Anything true for an expression also true for its dual
q So any derivation you could make that is true, can be flipped into

dual form, and it stays true

n Duality -- More formally
q A dual of a Boolean expression is derived by replacing

n Every AND operation with... an OR operation
n Every OR operation with... an AND
n Every constant 1 with... a constant 0
n Every constant 0 with... a constant 1
n But don’t change any of the literals or play with the complements!

8

➙ a + (b • c) = (a + b) • (a + c)
a • (b + c) = (a • b) + (a • c) Example

Boolean Algebra: Useful Laws

9

Operations with 0 and 1:

Idempotent Law:

Involution Law:

Laws of Complementarity:

Commutative Law:

1. X + 0 = X
2. X + 1 = 1

3. X + X = X

4. = X

5. X + = 1

6. X + Y = Y + X

AND, OR with identities
gives you back the original
variable or the identity

AND, OR with self = self

double complement =
no complement

AND, OR with complement
gives you an identity

Just an axiom…

1D. X • 1 = X
2D. X • 0 = 0

3D. X • X = X

5D. X • = 0

6D. X • Y = Y • X

Dual

$𝐗$𝐗

($𝑿)

Distributive Laws:

Simplification Theorems:
9. X • Y + X • = X

10. X + X • Y = X

11. (X +) • Y = X • Y

9D. (X + Y) • (X +) = X

10D. X • (X + Y) = X

11D. (X •) + Y = X + Y

#𝒀

#𝒀

#𝒀

#𝒀

Useful Laws (cont.)

10

8. X • (Y+ Z) = (X • Y) + (X • Z) 8D. X + (Y• Z) = (X + Y) • (X + Z)

Associative Laws:
7. (X + Y) + Z = X + (Y + Z)

= X + Y + Z
7D. (X • Y) • Z = X • (Y • Z)

= X • Y • Z
Parenthesis order
doesn’t matter

Axiom

Useful for
simplifying
expressions

Actually worth remembering — they show up a lot in real designs…

DeMorgan’s Law

11

¢ Think of this as a transformation
§ Let’s say we have:

F = A + B + C

§ Applying DeMorgan’s Law (12), gives us:

DeMorgan's Law:

12.
12D. (𝑿 . 𝒀. 𝒁. …) = *𝑿 + *𝒀 + *𝒁 + …

(𝑿 + 𝒀 + 𝒁 +⋯) = *𝑿. *𝒀. *𝒁. …

𝑭 = (𝑨 + 𝑩 + 𝑪) = ($𝑨. $𝑩. $𝑪)

DeMorgan’s Law (cont.)

12

X Y 𝑿𝒀 #𝑿 #𝒀 !𝑿 + !𝒀

0 0 1 1 1 1
0 1 1 1 0 1
1 0 1 0 1 1
1 1 0 0 0 0

𝑿 𝒀 𝑿 + 𝒀 #𝑿 #𝒀 #𝑿#𝒀
0 0 1 1 1 1
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 0

NOR is equivalent to AND
with inputs complemented

NAND is equivalent to OR
with inputs complemented

X

Y

X
Y

A

A

X
Y

X
Y

B

B

Interesting — these are conversions between different types of
logic
That’s useful given you don’t always have every type of gate

𝑨 = (𝑿 + 𝒀) = $𝑿$𝒀

𝑩 = (𝑿𝒀) = $𝑿 + $𝒀

Part 1: A Comparator Circuit

q Design a comparator that receives two 4-bit
numbers A and B, and sets the output bit EQ to
logic-1 if A and B are equal

q Hints:
n First compare A and B bit by bit
n Then combine the results of the previous steps to set

EQ to logic-1 if all A and B are equal

13

Comparator 1
A

B
EQ (A=B)

4 bits

4 bits

Part 2: A More General Comparator
n Design a circuit that receives two 1-bit inputs A and B, and:

q sets its first output (O1) to 1 if A>B,
q sets the second output (O2) to 1 if A=B,
q sets the third output (O3) to 1 if A<B.

14

Comparator 2
A

B

O1 (A>B)
O2 (A=B)

O3 (A<B)

Part 3: Circuits with Only NAND Gates

n Design the circuit of Part 2 using only NAND gates

n Logical Completeness:
q The set of gates {AND, OR, NOT} is logically complete

because we can build a circuit to carry out the specification of
any combinatorial logic we wish, without any other kind of
gate

q NAND and NOR are also logically complete

15

Last Words
n In this lab, you will draw the schematics of some simple

operations

n Part 1: A comparator circuit

n Part 2: A more general comparator circuit

n Part 3: Designing circuits using only NAND gates

n You will find more exercises in the lab report

16

Report Deadline

17

23:59, 20 March 2020

Design of Digital Circuits
Lab 1 Supplement:

Drawing Basic Circuits

Prof. Onur Mutlu
ETH Zurich
Spring 2020

28 February 2020

