
Digital Design & Computer Arch.
Lecture 3b: Introduction to the Labs and FPGAs

Prof. Onur Mutlu
(Lecture by Hasan Hassan)

ETH Zurich
Spring 2020

27 February 2020

1



Lab Sessions

◼ Where?

❑ HG E 19, HG E 26.1, HG E 26.3, HG E 27, HG D 11, HG D 12

◼ When?

❑ Tuesday 15:15-17:00 (E 26.1, E 26.3, E 27)

❑ Wednesday 15:15-17:00 (E 26.1, E 26.3)

❑ Friday 08:15-10:00 (D 11, D 12, E 26.3, E 27)

❑ Friday 10:15-12:00 (E 26.1, E 26.3, E 27)

2



Grading

◼ 10 labs, 30 points in total

◼ We will put the lab manuals online
❑ https://safari.ethz.ch/digitaltechnik/doku.php?id=labs

◼ Grading Policy

❑ In-class evaluation (70%) and mandatory lab reports (30%)

◼ 1-point penalty for late submission of the report

❑ You can use your grades for labs from past years

◼ You can find your grades in last year’s Moodle page: https://moodle-
app2.let.ethz.ch/course/view.php?id=10483
You should finish the labs within 1 week after they are announced

◼ For questions
❑ Piazza (preferred)

❑ digitaltechnik@lists.inf.ethz.ch

3

https://safari.ethz.ch/digitaltechnik/doku.php?id=labs
https://moodle-app2.let.ethz.ch/course/view.php?id=10483
mailto:digitaltechnik@lists.inf.ethz.ch


Agenda

◼ Logistics

◼ What We Will learn?

◼ FPGAs in Today’s Systems

◼ Overview of the Lab Exercises

◼ What is an FPGA? 

◼ Programming an FPGA

◼ Tutorial and Demo 

4



What We Will Learn?

5

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

The Transformation Hierarchy

Touch upon 

implementation 

details

Hands-on experience 

in digital circuit design 

and implementation

Understanding how a processor works 
underneath the software layer



What We Will Learn? (2)

6

◼ Considering the trade-offs between performance and area/complexity in your 

hardware implementation

◼ Hands-on experience on:

❑ Hardware Prototyping on FPGA

❑ Debugging Your Hardware Implementation

❑ Hardware Description Language (HDL)

❑ Hardware Design Flow

❑ Computer-Aided Design (CAD) Tools



Agenda

7

◼ Logistics

◼ What We Will learn?

◼ FPGAs in Today’s Systems

◼ Overview of the Lab Exercises

◼ What is an FPGA? 

◼ Programming an FPGA

◼ Tutorial and Demo 



FPGAs in Today’s Systems: Project Brainwave

◼ “Microsoft’s Project Brainwave is a deep learning platform for real-time AI inference in the 
cloud and on the edge. A soft Neural Processing Unit (NPU), based on a high-performance 
field-programmable gate array (FPGA), accelerates deep neural network (DNN) inferencing, 
with applications in computer vision and natural language processing. Project Brainwave is 

transforming computing by augmenting CPUs with an interconnected and configurable compute 
layer composed of programmable silicon.”

8

https://www.microsoft.com/en-us/research/project/project-brainwave/

https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/

https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/


FPGAs in Today’s Systems: Amazon EC2 F1 

◼ “Amazon EC2 F1 instances use FPGAs to enable delivery of custom hardware 
accelerations. F1 instances are easy to program and come with everything you 
need to develop, simulate, debug, and compile your hardware acceleration code, 
including an FPGA Developer AMI and supporting hardware level development on 
the cloud. Using F1 instances to deploy hardware accelerations can be useful in 
many applications to solve complex science, engineering, and business 
problems that require high bandwidth, enhanced networking, and very 
high compute capabilities.”

9

https://aws.amazon.com/ec2/instance-types/f1/

https://aws.amazon.com/ec2/instance-types/f1/


FPGAs in Today’s Systems: DNA Sequencing

◼ DRAGEN’s suite of analysis pipelines are engineered to run on FPGAs, offering 
hardware-accelerated implementations of genomic analysis algorithms, including 
BCL conversion, mapping and alignment, sorting, duplicate marking and 
haplotype variant calling. 

10

https://www.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html

Illumina NextSeq 2000
Illumina DRAGEN (Dynamic Read Analysis for GENomics) Bio-IT Platform

https://www.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html


FPGAs in Today’s Systems: GateKeeper

11

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating 

Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf


FPGAs in Today’s Systems: SoftMC

12

◼ An open-source FPGA-based infrastructure for 
experimental studies on DRAM

◼ Flexible

◼ Easy to Use (C++ API)

◼ Open-source 

github.com/CMU-SAFARI/SoftMC

Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,”

HPCA 2017.

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


FPGAs in Today’s Systems: Characterizing Flash Memories

13Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

USB Jack

Virtex-II Pro

(USB controller)

Virtex-V FPGA

(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm

NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, 
PIEEE 2017, HPCA 2018, SIGMETRICS 2018]



Agenda

14

◼ Logistics

◼ What We Will learn?

◼ FPGAs in Today’s Systems

◼ Overview of the Lab Exercises

◼ What is an FPGA? 

◼ Programming an FPGA

◼ Tutorial and Demo 



Basys 3: Our FPGA Board

Switches

LEDs

Seven-segment

displays

microUSB

(power/programming)

Power switch

Video out (VGA)

FPGA chip

Push-buttons

USB

15

https://reference.digilentinc.com/reference/programmable-logic/basys-3/start

https://reference.digilentinc.com/reference/programmable-logic/basys-3/start


High Level Labs Summary

◼ At the end of the exercises, we will have built a 32-bit microprocessor running on 
the FPGA board

❑ It will be a small processor, but it will be able to execute pretty much any program

◼ Each week we will have a new exercise

❑ Not all exercises will require the FPGA board

◼ You are encouraged to experiment with the board on your own

❑ We may have some extra boards for those who are interested 

❑ It is not possible 
to destroy the board by programming!

16



Lab 1: Drawing a Basic Circuit

◼ Comparison is a common operation in 
software programming

❑ We usually want to know the relation between two variables (e.g., <, >, ==, …)

◼ We will compare two electrical signals (inputs), and find whether they are same

❑ The result (output) is also an electrical signal

◼ No FPGA programming involved

❑ We encourage you to try later

17



Lab 2: Mapping Your Circuit to FPGA

◼ Another common operation in software programming?

❑ Addition

◼ Design a circuit that adds two 1-bit numbers

◼ Reuse the 1-bit adder multiple times to perform 4-bit addition

◼ Implement the design on the FPGA board

❑ Input: switches

❑ Output: LEDs

18



Lab 3: Verilog for Combinatorial Circuits

◼ Show your results from Lab 2 on a Seven Segment Display

19

https://reference.digilentinc.com/reference/programmable-

logic/basys-3/reference-manual

https://reference.digilentinc.com/reference/programmable-logic/basys-3/reference-manual


Lab 4: Finite State Machines

◼ Blinking LEDs for a car’s turn signals

❑ Implement and use memories

❑ Change the blinking speed

20



Lab 5: Implementing an ALU

◼ Towards implementing your very first processor

◼ Implement your own Arithmetic and Logic Unit (ALU)

◼ An ALU is an important part of the CPU

❑ Arithmetic operations: add, subtract, multiply, compare, …

❑ Logic operations: AND, OR, …

21



Lab 6: Testing the ALU

◼ Simulate your design from Lab 5

◼ Learn how to debug your implementation to resolve problems

22



Lab 7: Writing Assembly Code

◼ Programming in assembly language

❑ MIPS

◼ Implement a program which you will later use to run on your processor

◼ Image manipulation

23



Lab 8: Full System Integration

◼ Will be covered in two weeks

◼ Learn how a processor is built

◼ Complete your first design of a MIPS processor

◼ Run a “snake” program

24



Lab 9: The Performance of MIPS

◼ Improve the performance of your processor 
from Lab 8 by adding new instructions

❑ Multiplication

❑ Bit shifting

25



Agenda

26

◼ Logistics

◼ What We Will learn?

◼ FPGAs in Today’s Systems

◼ Overview of the Lab Exercises

◼ What is an FPGA? 

◼ Programming an FPGA

◼ Tutorial and Demo 



Basys 3: Our FPGA Board

Switches

LEDs

Seven-segment

displays

microUSB

(power/programming)

Power switch

Video out (VGA)

FPGA chip

Push-buttons

USB

27

https://reference.digilentinc.com/reference/programmable-logic/basys-3/start

https://reference.digilentinc.com/reference/programmable-logic/basys-3/start


What is an FPGA?

◼ Field Programmable Gate Array

◼ FPGA is a reconfigurable substrate

❑ Reconfigurable functions

❑ Reconfigurable interconnection of functions

❑ Reconfigurable input/output (IO)

❑ …

◼ FPGAs fill the gap between software and hardware

❑ Achieves higher performance than software

❑ Maintains more flexibility than hardware

28



FPGA Architecture - Looking Inside an FPGA

29

◼ Two main building blocks:

❑ Look-Up Tables (LUT) and Switches

Andre DeHon, “The Density Advantage of Configurable Computing”, Computer, 2000



◼ 3-bit input LUT (3-LUT)

How Do We Program LUTs?

30

input (3 bits)

output (1 bit)

Data Input

Multiplexer (Mux): 

Selects one of the data input 

corresponding to select input

3

Select Input

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3-LUT can implement 

any 3-bit input function



◼ Let’s implement a function that outputs ‘1’ when there are 
more than one ‘1’ in select inputs

An Example of Programming a LUT

31input (3 bits)

output (1 bit)

Data Input

3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Configuration Memory

0

0

0

1

0

1

1

1



How to Implement Complex Functions?

32Andre DeHon, “The Density Advantage of Configurable Computing”, Computer, 2000

◼ FPGAs are composed of many LUTs and switches

FPGA Chip



Modern FPGA Architectures

◼ Typically 6-LUTs

❑ Thousands of them

◼ MBs of distributed on-chip memory

◼ Hard-coded special-purpose hardware blocks for high-performance operations

❑ Memory interface

❑ Low latency and high bandwidth off-chip I/O

❑ …

◼ Even a processor embedded within the FPGA chip

33



Xilinx Zynq Ultrascale+

34

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html


Advantages & Disadvantages of FPGAs

◼ Advantages

❑ Low development cost

❑ Short time to market

❑ Reconfigurable in the field

❑ Reusability

❑ An algorithm can be implemented directly in hardware

◼ No ISA, high specialization

◼ Disadvantages

❑ Not as fast and power efficient as application specific hardware

❑ Reconfigurability adds significant area overhead

35



Agenda

36

◼ Logistics

◼ What We Will learn?

◼ FPGAs in Today’s Systems

◼ Overview of the Lab Exercises

◼ What is an FPGA? 

◼ Programming an FPGA

◼ Tutorial and Demo 



Computer-Aided Design (CAD) Tools

◼ FPGAs have many resources (e.g., LUTs, switches)

◼ They are hard to program manually

◼ How can we

❑ represent a high-level functional description of our hardware circuit using the FPGA 
resources?

❑ select the resources to map our circuit to?

❑ optimally configure the interconnect between the selected resources?

❑ generate a final configuration file to properly configure an FPGA?

37



FPGA Design Flow

38

Problem Definition

Hardware Description 

Language (HDL)
Verilog, VHDL

Your task!

Logic Synthesis

Placement and Routing

Bitstream Generation Programming the FPGA

Xilinx Vivado



Vivado

◼ IDE-like software that helps us throughout the FPGA design flow

◼ Provides tools to simulate our designs

❑ Validate the correctness of the implementation

❑ Debugging

◼ Provides drivers and graphical interface to easily program the FPGA using a USB 
cable

◼ Installed in computer rooms in HG (E 19, E 26.1, E 26.3, E 27)

39



Tutorial and Demo

◼ We will see how to

❑ use Vivado to write Verilog code

❑ follow the FPGA design flow steps

❑ download the bitstream into the FPGA

◼ Simple Keyboard Demo

❑ An example for a simple hardware that you can easily develop by the end of semester

40

https://reference.digilentinc.com/learn/programmable-logic/tutorials/basys-3-keyboard-demo/start

https://reference.digilentinc.com/learn/programmable-logic/tutorials/basys-3-keyboard-demo/start


Today We Covered:

41

◼ Logistics

◼ What We Will learn?

◼ FPGAs in Today’s Systems

◼ Overview of the Lab Exercises

◼ What is an FPGA? 

◼ Programming an FPGA

◼ Tutorial and Demo 



Digital Design & Computer Arch.
Lecture 3b: Introduction to the Labs and FPGAs

Prof. Onur Mutlu
(Lecture by Hasan Hassan)

ETH Zurich
Spring 2020

27 February 2020

42


