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1 Vector Processing I

Consider the following piece of code:

for (i = 0; i < 100; i ++)

A[i] = ((B[i] * C[i]) + D[i])/2;

(a) Translate this code into assembly language using the following instructions in the ISA (note the number
of cycles each instruction takes is shown next to each instruction):

Opcode Operands Number of cycles Description

LEA Rd, X 1 Rd ← address of X
LD Rd, Rs, Rt 11 Rd ← MEM[Rs + Rt]

ST Rs, Rt, Ru 11 MEM[Rt + Ru] ← Rs

MOVI Rd, imm 1 Rd ← imm

MUL Rd, Rs, Rt 6 Rd ← Rs × Rt

ADD Rd, Rs, Rt 4 Rd ← Rs + Rt

ADD Rd, Rs, imm 4 Rd ← Rs + imm

RSHFA Rd, Rs, shamt 1 Rd ← Rs >>> shamt

BR<CC> Rs, X 1 Branch to X if Rs satisfies condition code CC

Assume one memory location is required to store each element of the array. Also assume that there are
eight register, R0 to R7.

Condition codes are set after the execution of an arithmetic instruction. You can assume typically
available condition codes such as zero (EQZ), positive (GTZ), negative (LTZ), non-negative (GEZ), and
non-positive (LEZ).

MOVI R1 , 99 // 1 cycle

LEA R0 , A // 1 cycle

LEA R2 , B // 1 cycle

LEA R3 , C // 1 cycle

LEA R4 , D // 1 cycle

LOOP:

LD R5 , R2 , R1 // 11 cycles

LD R6 , R3 , R1 // 11 cycles

MUL R7 , R5 , R6 // 6 cycles

LD R5 , R4 , R1 // 11 cycles

ADD R6 , R7 , R5 // 4 cycles

RSHFA R7, R6, 1 // 1 cycle

ST R7, R0 , R1 // 11 cycles

ADD R1 , R1 , -1 // 4 cycles

BRGEZ R1 LOOP // 1 cycle
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How many cycles does it take to execute the program?

5 + 100× 60 = 6005

(b) Now write Cray-like vector assembly code to perform this operation in the shortest time possible. Assume
that there are eight vector registers and the length of each vector register is 64. Use the following
instructions in the vector ISA:

Opcode Operands Number of cycles Description

SET Vst, imm 1 Vst ← imm (Vst: Vector Stride Register)
SET Vln, imm 1 Vln ← imm (Vln: Vector Length Register)
VLD Vd, X 11, pipelined Vd ← MEM[address of X]
VST Vs, X 11, pipelined MEM[address of X] ← Vs

VADD Vd, Vs, Vt 4, pipelined Vd ← Vs + Vt

VMUL Vd, Vs, Vt 6, pipelined Vdi ← Vsi × Vti
VRSHFA Vd, Vs, shamt 1 Vdi ← Vsi >>> shamt

SET Vln , 50

SET Vst , 1

VLD V1 , B

VLD V2 , C

VMUL V4, V1, V2

VLD V3 , D

VADD V6, V4, V3

VRSHFA V7 , V6 , 1

VST V7 , A

VLD V1 , B + 50

VLD V2 , C + 50

VMUL V4, V1, V2

VLD V3 , D + 50

VADD V6, V4, V3

VRSHFA V7 , V6 , 1

VST V7 , A + 50
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How many cycles does it take to execute the program on the following processors? Assume that memory
is 16-way interleaved.

Vector processor without chaining, 1 port to memory (1 load or store per cycle):

The third load (VLD) can be pipelined with the multiplication (VMUL). However as there is just only
one port to memory and no chaining, other operations cannot be pipelined.

Processing the first 50 elements takes 346 cycles as below:

| 1 | 1 | 11 | 49 | 11 | 49 | 6 | 49 |

| 11 | 49 | 4 | 49 | 1 | 49 | 11 | 49 |

Processing the next 50 elements takes 344 cycles as shown below (no need to initialize Vln and Vst

as they stay at the same value).

| 11 | 49 | 11 | 49 | 6 | 49 |

| 11 | 49 | 4 | 49 | 1 | 49 | 11 | 49 |

Therefore, the total number of cycles to execute the program is 690 cycles.

Vector processor with chaining, 1 port to memory:

In this case, the first two loads cannot be pipelined as there is only one port to memory and the third
load has to wait until the second load has completed. However, the machine supports chaining, so all
other operations can be pipelined.

Processing the first 50 elements takes 242 cycles as below:

| 1 | 1 | 11 | 49 | 11 | 49 |

| 6 | 49 |

| 11 | 49 |

| 4 | 49 |

| 1 | 49 |

| 11 | 49 |

Processing the next 50 elements takes 240 cycles (same time line as above, but without the first 2
instructions to initialize Vln and Vst).

Therefore, the total number of cycles to execute the program is 482 cycles.
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Vector processor with chaining, 2 read ports and 1 write port to memory:

Assuming an in-order pipeline.

The first two loads can also be pipelined as there are two ports to memory. The third load has to wait
until the first two loads complete. However, the two loads for the second 50 elements can proceed in
parallel with the store.

SET |1|

SET |1|

VLD |11| 49 |

VLD |1|11| 49 |

VMUL |6| 49 |

VLD |11| 49 |

VADD |4| 49 |

VRSHFA |1| 49 |

VST |11| 49 |

VLD |1|11| 49 |

VLD |11| 49 |

VMUL |6| 49 |

VLD |11| 49 |

VADD |4| 49 |

VRSHFA |1| 49 |

VST |11| 49 |

1 + 1 + (11 + 49) + 11 + 4 + 1 + (1 + 11 + 49) + 11 + 4 + 1 + (11 + 49) = 215

Therefore, the total number of cycles to execute the program is 215 cycles.
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2 Vector Processing II

You are studying a program that runs on a vector computer with the following latencies for various instruc-
tions:

• VLD and VST: 50 cycles for each vector element; fully interleaved and pipelined.

• VADD: 4 cycles for each vector element (fully pipelined).

• VMUL: 16 cycles for each vector element (fully pipelined).

• VDIV: 32 cycles for each vector element (fully pipelined).

• VRSHFA: 1 cycle for each vector element (fully pipelined).

Assume that:

• The machine has an in-order pipeline.

• The machine supports chaining between vector functional units.

• In order to support 1-cycle memory access after the first element in a vector, the machine interleaves
vector elements across memory banks. All vectors are stored in memory with the first element mapped
to bank 0, the second element mapped to bank 1, and so on.

• Each memory bank has an 8KB row buffer.

• Vector elements are 64 bits in size.

• Each memory bank has two ports (so that two loads/stores can be active simultaneously), and there
are two load/store functional units available.

(a) What is the minimum power-of-two number of banks required in order for memory accesses to never
stall? (Assume a vector stride of 1.)

64 banks (because memory latency is 50 cycles and the next power of two is 64)
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(b) The machine (with as many banks as you found in part a) executes the following program (assume that
the vector stride is set to 1):

VLD V1, A // V1 ← A

VLD V2, B // V2 ← B

VADD V3, V1, V2 // V3 ← V1 + V2

VMUL V4, V3, V1 // V4i ← V3i × V1i
VRSHFA V5, V4, 2 // V5i ← V4i >>> 2

It takes 111 cycles to execute this program. What is the vector length L (i.e., the number of elements
in a vector)?

L = 40

VLD |----50------|---(L-1)----|

VLD |1|----50------|

VADD |-4-|

VMUL |-16-|

VRSHFA |1|-----(L-1)-----|

1 + 50 + 4 + 16 + 1 + (L− 1) = 71 + L = 111
∴ L = 40

If the machine did not support chaining (but could still pipeline independent operations), how many
cycles would be required to execute the same program?

228 cycles

VLD |-----50-----|---(L-1)---|

VLD |1|-----50-----|---(L-1)---|

VADD |-4-|--(L-1)---|

VMUL |-16-|--(L-1)---|

VRSHFA |1|--(L-1)--|

1 + 50 + 4 + 16 + 1 + 4× (L− 1) = 68 + 4× L = 228 cycles
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(c) The architect of this machine decides that she needs to cut costs in the machine’s memory system. She
reduces the number of banks by a factor of 2 from the number of banks you found in part (a) above.
Because loads and stores might stall due to bank contention, an arbiter is added to each bank so that
pending loads from the oldest instruction are serviced first. How many cycles does the program take to
execute on the machine with this reduced-cost memory system (but with chaining)?

129 cycles

VLD [0] |----50----| bank 0 (takes port 0)

...

[31] |--31--|----50----| bank 31

[32] |---50---| bank 0 (takes port 0)

...

[39] |--7--| bank 7

VLD [0] |1|----50----| bank 0 (takes port 1)

...

[31] |1|--31--|----50----| bank 31

[32] |---50----| bank 0 (takes port 1)

...

[39] |--7--| bank 7

VADD |--4--| (tracking last elements)

VMUL |--16--|

VRSHFA |1|

(B[39]: 1 + 50 + 50 + 7) + 4 + 16 + 1 = 129 cycles

Now, the architect reduces cost further by reducing the number of memory banks (to a lower power of
2). The program executes in 279 cycles. How many banks are in the system?

8 banks

VLD [0] |---50---|

...

[8] |---50---|

...

[16] |--50--|

...

[24] |--50--|

...

[32] |--50--|

...

[39] |--7--|

VLD [39] |1|

VADD |--4--|

VMUL |--16--|

VRSHFA |1|

5 × 50 + 7 + 1 + 4 + 16 + 1 = 279 cycles → 8 banks
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(d) Another architect is now designing the second generation of this vector computer. He wants to build a
multicore machine in which 4 vector processors share the same memory system. He scales up the number
of banks by 4 in order to match the memory system bandwidth to the new demand. However, when
he simulates this new machine design with a separate vector program running on every core, he finds
that the average execution time is longer than if each individual program ran on the original single-core
system with 1/4 the banks. Why could this be? Provide concrete reason(s).

Row-buffer conflicts (all cores interleave their vectors across all banks).

What change could this architect make to the system in order to alleviate this problem (in less than 20
words), while only changing the shared memory hierarchy?

Partition the memory mappings, or using better memory scheduling.
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3 Vector Processing III

Assume a vector processor that implements the following ISA:

Opcode Operands Number of cycles Description

SET Vst, imm 1 Vst ← imm (Vst: Vector Stride Register)
SET Vln, imm 1 Vln ← imm (Vln: Vector Length Register)
VLD Vd, addr 100, pipelined Vd ← MEM[addr]

VST Vs, addr 100, pipelined MEM[addr] ← Vs

VADD Vd, Vs, Vt 5, pipelined Vd ← Vs + Vt

VMUL Vd, Vs, Vt 10, pipelined Vdi ← Vsi × Vti
VDIV Vd, Vs, Vt 20, pipelined Vdi ← Vsi / Vti

Assume the following:

• The processor has an in-order pipeline.

• The size of a vector element is 4 bytes.

• Vst and Vln are 10-bit registers.

• The processor does not support chaining between vector functional units.

• The main memory has N banks.

• Vector elements stored in consecutive memory addresses are interleaved between the memory banks.
For example, if a vector element at address A maps to bank B, a vector element at address A + 4
maps to bank (B + 1)%N , where % is the modulo operator and N is the number of banks. N is not
necessarily a power of two.

• The memory is byte addressable and the address space is represented using 32 bits.

• Vector elements are stored in memory in 4-byte-aligned manner.

• Each memory bank has a 4KB row buffer.

• Each memory bank has a single read and a single write port so that a load and a store operation can
be performed simultaneously.

• There are separate functional units for executing VLD and VST instructions.

(a) What should the minimum value of N be to avoid stalls while executing a VLD or VST instruction,
assuming a vector stride of 1? Explain.

100 banks (because the latency of VLD and VST instructions is 100 cycles)
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(b) What should the minimum value of N be to avoid stalls while executing a VLD or VST instruction,
assuming a vector stride of 2? Explain.

101 banks.

To avoid stalls, we need to ensure that consecutive vector elements access 100 different banks.
With a vector stride of 2, consecutive elements of a vector will map to every other bank. For example,
if the first element maps to bank 0, the next element will map to bank 2, and so on.
With 100 banks, the 51st element of a vector will map to bank 100%100 = 0, conflicting with the first
element of the vector.
Howevert, with 101 banks, the 51st element will map to bank 1, which was skipped by the previous
vector elements.

Let’s assume there are 102 elements in a vector and the first elements accesses bank 0. The 101 banks
will be accessed in the following order:

(0, 2, ..., 100, 102, 104, ..., 200, 202)%101 = (0, 2, ..., 100, 1, 3, ..., 99, 0)
We can see that none of the elements conflict in the DRAM banks. Note that, when the last vector
elements accesses bank 0, the bank is already available for a new access because the 100 cycle latency
of accessing the first element is overlapped by accessing the other 101 elements.

(c) Assume:

• A machine that has a memory with as many banks as you found is part (a).

• The vector stride is set to 1.

• The value of the vector length is set to M (but we do not know M)

The machine executes the following program:

VLD V1, A // V1 ← MEM[A]

VLD V2, (A + 32768) // V2 ← MEM[A + 32768]

VADD V3, V1, V1 // V3 ← V1, V1

VMUL V4, V2, V3 // V4i ← V2i, V3i
VST V4, (A + 32768*2) // MEM[A + 32768*2] ← V4

It takes 4,306 cycles to execute the above program. What is M? Explain.
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M = 1000

VLD |-100-|--(M-1)--|

VLD |-100-|--(M-1)--|

VADD |-5-|--(M-1)--|

VMUL |-10-|--(M-1)--|

VST |-100-|--(M-1)--|

(M + 100− 1) + 100 + (M − 1) + 10 + (M − 1) + 100 + (M − 1) = 306 + 4 ∗M = 4306 → M = 1000
elements

(d) If we modify the vector processor to support chaining, how many cycles would be required to execute
the same program in part (c)? Explain.

2,308 cycles

Let L the vector length, i.e., the number of elements of a vector.

VLD |--100--|--(L-1)--|

VLD |---100---|---(L-1)---|

VADD |-1-|-5-|---(L-1)---| (this is delayed because the processor

executes the instructions in order)

VMUL |-10-|---(L-1)---|

VST |-100-|---(L-1)---|

100 + (L− 1) + 100 + 10 + 100 + (L− 1) = 310 + 2× 1000− 2 = 2308 cycles
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4 SIMD Processing

Suppose we want to design a SIMD engine that can support a vector length of 16. We have two options: a
traditional vector processor and a traditional array processor.

(a) Which one is more costly in terms of chip area (circle one)?

1. The traditional vector processor

2. The traditional array processor

3. Neither

Justify your answer.

An array processor requires 16 functional units for an operation whereas a vector processor requires
only 1.

(b) Assuming the latency of an addition operation is five cycles in both processors, how long will a VADD

(vector add) instruction take in each of the processors (assume that the adder can be fully pipelined and
is the same for both processors)?

For a vector length of 1:

The traditional vector processor:

5 cycles

The traditional array processor:

5 cycles

For a vector length of 4:

The traditional vector processor:

8 cycles (5 for the first element to complete, 3 for the remaining 3)

The traditional array processor:

5 cycles

For a vector length of 16:

The traditional vector processor:

20 cycles (5 for the first element to complete, 15 for the remaining 15)

The traditional array processor:

5 cycles
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5 GPUs and SIMD I

We define the SIMD utilization of a program run on a GPU as the fraction of SIMD lanes that are kept busy
with active threads during the run of a program.

The following code segment is run on a GPU. Each thread executes a single iteration of the shown
loop. Assume that the data values of the arrays A and B are already in vector registers so there are no loads
and stores in this program. (Hint: Notice that there are 2 instructions in each thread.) A warp in the GPU
consists of 32 threads, there are 32 SIMD lanes in the GPU. Assume that each instruction takes the same
amount of time to execute.

for (i = 0; i < N; i++) {

if (A[i] % 3 == 0) { // Instruction 1

A[i] = A[i] * B[i]; // Instruction 2

}

}

(a) How many warps does it take to execute this program? Please leave the answer in terms of N .

�(N32 )�

(b) Assume integer arrays A have a repetitive pattern which have 24 ones followed by 8 zeros repetitively
and integer arrays B have a different repetitive pattern which have 48 zeros followed by 64 ones. What
is the SIMD utilization of this program?

0.625

((24+8×2)/(32×2)) = 40/64 = 0.625

(c) Is it possible for this program to yield a SIMD utilization of 100%? Circle one.

YES NO

If YES, what should be true about array A for the SIMD utilization to be 100%?

Starting from A[0], consecutive 32 elements of A should be either divisible by 3 or not divisible by 3.

What should be true about array B?

B can be any array of integers.

If NO, explain why not.
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(d) Is it possible for this program to yield a SIMD utilization of 56.25%? Circle one.

YES NO

If YES, what should be true about array A for the SIMD utilization to be 56.25%?

4 out of every 32 elements of A are divisible by 3.

What should be true about array B?

B can be any array of integers.

If NO, explain why not.

(e) Is it possible for this program to yield a SIMD utilization of 50%? Circle one.

YES NO

If YES, what should be true about array A for the SIMD utilization to be 50%?

What should be true about array B?

If NO, explain why not.

The minimum is when only 1 out of every 32 elements of A is divisible by 3. This yields a 51.5625%
usage.

Now, we will look at the technique we learned in class that tries to improve SIMD utilization by merging
divergent branches together. The key idea of the dynamic warp formation is that threads in one warp can be
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swapped with threads in another warp as long as the swapped threads have access to the associated registers
(i.e., they are on the same SIMD lane).

Consider the following example of a program that consists of 3 warps X, Y and Z that are executing the
same code segment specified at the top of this question. Assume that the vector below specifies the direction
of the branch of each thread within the warp. 1 means the branch in Instruction 1 is resolved to taken and
0 means the branch in Instruction 1 is resolved to not taken.

X = {10000000000000000000000000000010}

Y = {10000000000000000000000000000001}

Z = {01000000000000000000000000000000}

(f) Given the example above. Suppose that you perform dynamic warp formation on these three warps.
What is the resulting outcome of each branch for the newly formed warps X’, Y’ and Z’.

X = 10000000000000000000000000000010

Y = 11000000000000000000000000000001

Z = 00000000000000000000000000000000

There are several answers for this questions but the key is that the taken branch in Z can be combined
with either X or Y. However, the taken branch in the first thread of X and Y cannot be merged because
they are on the same GPU lane.

(g) Given the specification for arrays A and B, is it possible for this program to yield a better SIMD utilization
if dynamic warp formation is used? Explain your reasoning.

No. Branch divergence happens on the same lane throughout the program resulting in the case where
there is no dynamically formed warp.
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6 GPUs and SIMD II

We define the SIMD utilization of a program run on a GPU as the fraction of SIMD lanes that are kept
busy with active threads during the run of a program. As we saw in lecture and practice exercises, the SIMD
utilization of a program is computed across the complete run of the program.

The following code segment is run on a GPU. Each thread executes a single iteration of the shown
loop. Assume that the data values of the arrays A, B, and C are already in vector registers so there are no
loads and stores in this program. (Hint: Notice that there are 6 instructions in each thread.) A warp in the
GPU consists of 64 threads, and there are 64 SIMD lanes in the GPU. Please assume that all values in array
B have magnitudes less than 10 (i.e., |B[i]| < 10, for all i).

for (i = 0; i < 1024; i++) {

A[i] = B[i] * B[i];

if (A[i] > 0) {

C[i] = A[i] * B[i];

if (C[i] < 0) {

A[i] = A[i] + 1;

}

A[i] = A[i] - 2;

}

}

(a) How many warps does it take to execute this program?

16 warps

Number of Warps = �(Number of threads) / (Number of threads per warp)�
Number of threads = 210 (i.e., one thread per loop iteration).
Number of threads per warp = 64 = 26 (given).
∴ Number of Warps = �210/26 = 24�

(b) What is the maximum possible SIMD utilization of this program?

100%
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(c) Please describe what needs to be true about array B to reach the maximum possible SIMD utilization
asked in part (b). (Please cover all cases in your answer)

For every 64 consecutive elements: every value is 0, every value is positive, or every value is negative.
Must give all three of these.

(d) What is the minimum possible SIMD utilization of this program?

132/384

The first two lines must be executed by every thread in a warp (64/64 utilization for each line). The
minimum utilization results when a single thread from each warp passes both conditions on lines 2
and 4, and every other thread fails to meet the condition on line 2. The thread per warp that meets
both conditions, executes lines 3-6 resulting in a SIMD utilization of 1/64 for each line. The minimum
SIMD utilization sums to (64× 2 + 1× 4)/(64× 6) = 132/384

(e) Please describe what needs to be true about array B to reach the minimum possible SIMD utilization
asked in part (d). (Please cover all cases in your answer)

Exactly 1 of every 64 consecutive elements must be negative. The rest must be zero. This is the only
case that this holds true.
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7 GPUs and SIMD III

We define the SIMD utilization of a program that runs on a GPU as the fraction of SIMD lanes that are
kept busy with active threads during the run of the program. As we saw in lecture and practice exercises,
the SIMD utilization of a program is computed across the complete run of the program.

The following code segment is run on a GPU. Each thread executes a single iteration of the shown
loop. Assume that the data values of the arrays A and B are already in vector registers, so there are no loads
and stores in this program. (Hint: Notice that there are 3 instructions in each iteration.) A warp in the
GPU consists of 32 threads, and there are 32 SIMD lanes in the GPU.

for (i = 0; i < 1025; i++) {

if (A[i] < 33) { // Instruction 1

B[i] = A[i] << 1; // Instruction 2

}

else {

B[i] = A[i] >> 1; // Instruction 3

}

}

Please answer the following six questions.

(a) How many warps does it take to execute this program?

33 warps

Number of Warps = �(Number of threads) / (Number of threads per warp)�
Number of threads = 210 + 1 (i.e., one thread per loop iteration).
Number of threads per warp = 32 = 25 (given).

∴ Number of Warps = � 210+1
25 � = 25 + 1 = 33

(b) What is the maximum possible SIMD utilization of this program? (Hint: The warp scheduler does not
issue instructions when no threads are active).

1025
1056

Even though all active threads in a warp follow the same execution path, the last warp will only have
one active thread.
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(c) Please describe what needs to be true about array A to reach the maximum possible SIMD utilization
asked in part (b). (Please cover all cases in your answer.)

For every 32 consecutive elements of A, every element should be lower than 33 (if), or greater than
or equal to 33 (else). (NOTE: The solution is correct if both cases are given.)

(d) What is the minimum possible SIMD utilization of this program?

1025
1568

Instruction 1 is executed by every active thread ( 10251056 utilization).
Then, part of the threads in each warp executes Instruction 2 and the other part executes
Instruction 3. We consider that Instruction 2 is executed by α threads in each warp (except the
last warp), where 0 < α ≤ 32, and Instruction 3 is executed by the remaining 32− α threads.
The only active thread in the last warp executes either Instruction 2 or Instruction 3. The other
instruction is not issued for this warp.

The minimum SIMD utilization sums to 1025+α×32+(32−α)×32+1
1056+1024+1024+32 = 1025

1568 .

(e) Please describe what needs to be true about array A to reach the minimum possible SIMD utilization
asked in part (d). (Please cover all cases in your answer.)

For every 32 consecutive elements of A, part of the elements should be lower than 33 (if), and the
other part should be greater than or equal to 33 (else).
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(f) What is the SIMD utilization of this program if A[i] = i? Show your work.

1025
1072

Instruction 1 is executed by every active thread ( 10251056 utilization).
Instruction 2 is executed by the first 33 threads, i.e., all threads in the first warp and one thread
in the second warp.
Instruction 3 is executed by the remaining active threads.

The SIMD utilization sums to 1025+32+1+31+960+1
1056+32+32+32+960+32 = 2050

2144 = 1025
1072 .
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8 GPUs and SIMD IV

We define the SIMD utilization of a program run on a GPU as the fraction of SIMD lanes that are kept
busy with active threads during the run of a program.

The following code segment is run on a GPU. Each thread executes a single iteration of the shown
loop. Assume that the data values of the arrays A, B, and C are already in vector registers so there are no
loads and stores in this program. (Hint: Notice that there are 6 instructions in each thread.) A warp in the
GPU consists of 64 threads, and there are 64 SIMD lanes in the GPU.

for (i = 0; i < 4096; i++) {

if (B[i] < 8888) {

A[i] = A[i] * C[i];

A[i] = A[i] + B[i];

C[i] = B[i] + 1;

}

if (B[i] > 8888) {

A[i] = A[i] * B[i];

}

}

(a) How many warps does it take to execute this program?

Warps = (Number of threads) / (Number of threads per warp)
Number of threads = 212 (i.e., one thread per loop iteration).
Number of threads per warp = 64 = 26 (given).
Warps = 212/26 = 26

(b) When we measure the SIMD utilization for this program with one input set, we find that it is 134/320.
What can you say about arrays A, B, and C? Be precise (Hint: Look at the “if” branch).

A:
Nothing

B:
2 in every 64 of B’s elements are less than 8888, the rest are 8888

C:
Nothing
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(c) Is it possible for this program to yield a SIMD utilization of 100% (circle one)?

YES NO

If YES, what should be true about arrays A, B, C for the SIMD utilization to be 100%? Be precise. If
NO, explain why not.

Yes. All consecutive 64 elements of B should be either:
(1) All of B’s elements are equal to 8888, or
(2) All of B’s elements are less than 8888, or
(3) All of B’s elements are greater than 8888.

(d) What is the lowest SIMD utilization that this program can yield? Explain.

132/384. 1 in every 64 of B’s elements are greater than 8888, and 1 in every 64 of B’s elements are
less than 8888, and the rest of the elements are 8888.
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